[go: up one dir, main page]

JPS6344609B2 - - Google Patents

Info

Publication number
JPS6344609B2
JPS6344609B2 JP57066319A JP6631982A JPS6344609B2 JP S6344609 B2 JPS6344609 B2 JP S6344609B2 JP 57066319 A JP57066319 A JP 57066319A JP 6631982 A JP6631982 A JP 6631982A JP S6344609 B2 JPS6344609 B2 JP S6344609B2
Authority
JP
Japan
Prior art keywords
liquefied gas
low
container
temperature liquefied
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57066319A
Other languages
Japanese (ja)
Other versions
JPS58183419A (en
Inventor
Eiichi Yoshida
Nobuyasu Aoki
Toshimitsu Suzuki
Akira Ppongo
Hideki Ueda
Kazunari Nakada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teisan KK
Original Assignee
Teisan KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teisan KK filed Critical Teisan KK
Priority to JP6631982A priority Critical patent/JPS58183419A/en
Priority to DE8383302226T priority patent/DE3369495D1/en
Priority to EP19830302226 priority patent/EP0092966B1/en
Priority to AU13827/83A priority patent/AU563071B2/en
Publication of JPS58183419A publication Critical patent/JPS58183419A/en
Priority to US06/818,398 priority patent/US4703609A/en
Publication of JPS6344609B2 publication Critical patent/JPS6344609B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Filling Of Jars Or Cans And Processes For Cleaning And Sealing Jars (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Vacuum Packaging (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、一定流量の低温液化ガスが連続流下
している吐出孔の下を、内容液入りの上部開口容
器を一定速度で移動させることにより容器内に所
定量の低温液化ガスを添加する方法に関する。 (発明の背景) 低温液化ガスを容器内に定量充填する方法は、
各種工業分野で求められているが、とくに不活性
な低温液化ガスを用いた上記方法は、ビール等の
ように炭酸ガスを液自体内に含有する発泡性の内
容液ではなく、非発泡性の内容液(例えば果物の
シロツプ漬け、果汁飲料、果粒入りみかん飲料、
及びコーヒー飲料)を加熱充填法等を用いて容器
詰にする際に用いることが好ましい方法である。 即ち、加熱充填法等により充填されて製造され
た缶詰の場合には、蓋を巻締めて密封した後に缶
内容液の温度が低下すると、缶内が負圧になるた
めに、従来は負圧になつてもへこみを生じない厚
い胴壁の缶が使用されているが、最近薄い胴壁の
缶を使用するために、非発泡性飲料を熱間充填し
た缶内に、内容液の味覚を換えない不活性ガスを
液化状態(例えば液体窒素)で所定量充填するこ
とにより、缶内容液冷却後(このとき液化ガスは
気化ガスとなつている)の缶内圧を大気圧より大
にする方法が提案されている。 本発明は、この目的を達成するために用いられ
る方法である。 (従来の技術とその問題点) 容器に不活性低温液化ガス(以下、不活性であ
つても、単に「低温液化ガス」と称する。)を充
填する方法は、数多く提案されている。 例えば、特開昭49−134855号公報には、針部材
が刺し通し可能な弾性部材を缶蓋に設けた缶の中
に飲用液を充填し密封した後、弾性部材の上から
注射針を刺し通して注射針の孔から不活性低温液
化ガスを注入する発明が開示されている。しか
し、この発明は、特殊な構造をもつ缶蓋を使用し
なければならないことに加え、低温液化ガスの注
入速度が遅すぎて商業生産には向かない。 又、特開昭56−4521号公報には、内容物を充填
済みの缶内に液体窒素を滴下した後缶口に缶蓋を
二重巻締めする前に缶蓋及び缶口外側から窒素ガ
スを吹き付けながら缶を二重巻締して密封する液
体窒素入り缶詰の製造方法が開示されている。 この発明が液体窒素を缶内に添加する方法とし
て採用しているのは、滴下ノズル方式といい、内
容物充填済みの缶が滴下ノズルの下に移送されて
きたのを検知器が検知したならば、滴下ノズルの
弁体を解放にして滴下ノズルから液体窒素を缶内
に所要量滴下するというものである。 同様の滴下ノズル方式を使用した低温液化ガス
滴下法は特開昭56−109996号公報にも開示されて
いる。 この滴下ノズル方式は、滴下ノズルの下方を缶
が通過するために弁体を開閉作動させるので、通
常の飲料缶詰製造ライン(低速でも200缶/分以
上、高速ラインでは1200缶/分を超えるものもあ
る)で使用する場合には、弁体の開閉を、3.3
回/秒以上の速度で行う必要があり、弁体と弁座
との繰り返し衝突及び/又は摩擦に起因する発熱
のため、弁の周囲で低温液化ガスの気化が起こ
り、低温液化ガスと気化ガスとの気液混合状態で
滴下されるので定量滴下がきわめて困難であり、
又、必然的に滴下ノズルから滴下される低温液化
ガスの滴下速度が速くなるので、缶内容液と衝突
した際に、かなりの量が缶外へ飛散したり急激に
気化してしまう。 その結果、密封後の缶内に残留する低温液化ガ
スの量は少なくなり(液化ガスのロスが多くな
る)、しかも各缶詰毎の残留液化ガス量(各缶詰
毎の缶内圧)のバラツキも大きくなつてしまう。 各缶詰毎の残留液化ガス量に大きなバラツキが
あるということは、内圧不足缶詰(密封不良缶詰
と区別がつきにくく、しかも缶胴にへこみが発生
しやすい缶詰)や内圧過大缶詰(缶蓋や缶底等が
膨出変形する缶詰)が発生しやすいことを意味す
るから望ましくないのは明らかである。 更に、滴下ノズル方式は、滴下ノズルの下方を
缶が通過するたびに弁体が解放及び閉鎖の位置に
それぞれ1回ずつ動くようになつているため、ラ
イン速度が500缶/分以上の缶詰製造ラインに使
用するのは、弁体の開閉作動の追随性の点で問題
がある(もしこのような高速ラインに使用する
と、滴下された低温液化ガスがタイミング良く缶
内に入らなかつたり、定量滴下ができなかつたり
するので、低温液化ガスのロスがかなり大きくな
り、しかも缶内圧の各缶詰毎のバラツキ巾も非常
に大きくなつてしまう)。 上述したように、公知の滴下ノズル方式の問題
点は、高速で移動中の缶内にきわめて低温度の液
化ガスを高速で滴下するので気液混合滴下にな
り、又、缶外への飛散とか、急激な気化等によつ
て液化ガスのロスが多く、しかも密封後の缶内圧
の各缶詰毎のバラツキが大きい上に、高速の缶詰
製造ラインには使用できないことである。 その対策の1つが特開昭56−161915号公報に開
示されている。即ち吐出孔から吐出されて缶内の
液面と衝突する時の液体窒素の滴下速度を200
cm/秒以下(内容物の温度95℃)にすると、缶内
の残留液体窒素の量の供給液体窒素の量に対する
割合が大きくなり、ロスが少なくなるというもの
である。 特開昭56−161915号公報に開示されている方法
は、液体窒素を滴下される缶が静置されている場
合には液体窒素のロスを少なくするのにかなり有
効であるが、商業生産用の缶詰製造ラインにおい
ては、からり高速で移動中の缶内に所望量の低温
液化ガスをタイミング良く滴下することが必要に
なるため、滴下速度をかなり上げなければ滴下ノ
ズルの下を通過する缶内にタイミング良く滴下す
ることができなくなり、実際上は、低温液化ガス
の缶内残留率をあまり高くすることができず、し
かも液体窒素の缶外への飛散に加え、移動する缶
と低温液化ガスの滴下のタイミングのずれも発生
しやすく、更に気液混合滴下になるので、各缶詰
毎の残留低温液化ガス量のバラツキもまだかなり
大きいのである。 尚、前記のように低温液化ガス(例えば液体窒
素は沸点が約−196℃)が極低温の液体であるの
で、吐出孔から吐出され容器内の液面に到達する
間に周囲の雰囲気と接触し、低温液化ガスが気化
して缶外に逃げることが十分に予想される。この
気化は吐出された液化ガスの表面積に比例するこ
とから、液化ガスはその所要量を1個の吐出孔か
ら吐出する方法が提案されていた。 上述したように、滴下ノズル方式は、高速の缶
詰製造ラインに使用できないので、本発明者等
は、吐出孔から常に一定流量(単位時間当たりの
流量)の低温液化ガスを連続的に流下し続け、そ
の下を一定速度で缶を移動させることによつて各
缶内に一定量の低温液化ガスを添加する方法を考
案した。 この方法は、吐出孔の大きさを変えるとか下部
に吐出孔を有する低温液化ガス貯留タンク内の低
温液化ガスの液面高さを変える等の手段で容易に
低温液化ガスの単位時間当たりの流下量を変える
ことができるので、缶詰製造ラインが低速ライン
であつても、高速ラインであつても使用可能であ
るという利点がある。 しかしながら、低温液化ガスを連続流下流とし
て缶内に流下させる方法でも、液化ガスが缶内容
液面と衝突した際の缶外への飛散や急激な気化等
に起因する液化ガスのロスは多く、又、密封後の
各缶詰毎の残留液化ガス量のバラツキも多くて、
そのままでは実際の缶詰製造ラインへの使用がで
きなかつた。 本発明は、低速だけでなく高速の容器詰製造ラ
インであつても使用できる低温液化ガス連続流下
法を使用して、容器内に供給された低温液化ガス
のうち容器内に残留する割合を多くすることによ
り低温液化ガス使用量も少なくすること及び密封
後の各容器詰毎の低温液化ガス残留量のバラツキ
巾を少なくした低温液化ガスの添加法を提供する
ことを目的とする。 (本発明者等の知見と問題を解決する手段) 本発明者等の実験によれば、高速で移動する内
容液入り容器内に低温液化ガスを連続流として流
下注入する場合、低温液化ガスの容器内液面への
衝突による飛散及び急激な気化は、衝突時の衝撃
力に比例して大きくなること、及び同一量の低温
液化ガスを吐出させるのであれば、低温液化ガス
の連続流下流を複数条として容器内の液面との衝
突時の衝撃力を小さくすることが低温液化ガスの
飛散、急激な気化を抑えることに大きな効果があ
り、更に、低温液化ガスの連続流下流を複数条と
するのであれば、これら連続流下流の配列を、移
動する上部開口容器の進行方向と略平行にする
と、他の配列にした場合に比べて、容器内容液の
液面との衝突時に於ける低温液化ガスの急激な気
化と気化ガスによる低温液化ガスの吹き飛ばしと
が少なくなり、しかも密封後の容器内圧のバラツ
キが少なくなることがわかつた。 もつとも、容器内に所定量の低温液化ガスを吐
出添加するのに連続流下流を複数条にすると、1
条の場合に比べて、ノズルから吐出される連続流
下流全体の表面積は大きくなるので、容器内容液
の液面へ接触するまでの間に気化する量が増加す
ることが予想されるが、この欠点は、ノズルの吐
出孔下面と容器上端との間隔を小さくする(好ま
しくは約35mm以下、特に好ましくは10mm以下にす
る)ことにより軽減でき、一方、この距離の短縮
はそれだけ前記の衝撃力を小さくするので、飛散
等の防止効果はさらに高められ、表面積が大きく
なる不利益は充分補償される。 本発明はこのような知見から生まれたものであ
り、一定流量の低温液化ガスが連続流下している
吐出孔の下を、内容液入りの上部開口容器を一定
速度で移動させることにより該容器内に所定量の
低温液化ガスを添加する方法であつて、前記低温
液化ガスの連続流下流を、前記容器の進行方向と
略平行に配列した複数条の流下流から形成される
流下流列としたことを特徴とする低温液化ガスの
添加方法である。 (作用) 本発明では、低温液化ガスの連続流下流を複数
条としたので、同一流量を1条の流下流として流
下させる場合に比べて、各流下流は細流となり、
その結果、容器内の液面との衝突時の衝撃力が小
さくなつて、低温液化ガスの飛散や急激な気化を
抑制することができる。更に、本発明では、低温
液化ガスの複数条の流下流を定速移動する容器の
進行方向と略平行に配列したので、第1図を参照
して、ノズル4の容器進行方向手前側(第1図で
は左側)の一番端の吐出孔5から流下した低温液
化ガスが落下した容器内容液の液面と実質的に同
一の位置に、容器の移動に伴つて、容器進行方向
手前側の端から二番目の吐出孔からの低温液化ガ
スが落下し、更にその上に三番目の吐出孔からの
低温液化ガスが落下し、次にその上に四番目の吐
出孔からの低温液化ガスが落下するという様に、
僅かの時間を置くだけでほぼ同一位置に低温液化
ガスが次々と落下する様になるので、二番目以降
の吐出孔から吐出された低温液化ガスは、実質的
に容器内容液に比べると非常に低い温度である低
温液化ガス上に落ちて、これと接触することにな
り、従つて、内容液面上での衝突時の低温液化ガ
スの気化量が減少すると共に低温液化ガスの激し
い気化に伴う低温液化ガスの飛散も減少する。 そして、これらのことが相俟つて、容器密封後
の容器内圧の各容器毎のバラツキも少なくなるの
である。 (実施例) 次に、本発明の実施例を図面を参照して説明す
る。 第1図は、本発明方法を実施するための装置の
要部縦断面図であり、第2図は第1図に示されて
いるノズルの底面図である。 尚、第2図の矢印は、容器の進行方向を示して
いる。 1は二重壁により断熱構造とした低温液化ガス
貯留タンクで、この内壁2と外壁3との間は真空
にしてある。 4は貯留タンク1の底部に形成した低温液化ガ
スを吐出流下させるためのノズルで、5はノズル
4に設けた吐出孔(第1図、第2図は5個の吐出
孔を一列に設けた例を示している)である。 6は既に内容液の充填されている容器(図では
2ピース罐)であり、7は一定速度で移動する無
端チエイン(図示せず)に等間隔で取り付けてあ
り、容器の胴部を後方から押して容器を定速移動
させるための爪である。 8は移動する容器の進行方向と直交する方向の
動きを規制するためのガイドレールで、9は容器
が滑り移動するためのテーブルである。 ここで、ノズル4の吐出孔5の各々と、移送さ
れる容器6との関係を、吐出孔5の各々が、移送
される容器6の開口部の中心を通る様にする(即
ち開口部の横断面が円形の容器であれば、容器の
進行方向と平行な直径線と、吐出孔5の列とが、
ほぼ一致する様にする)のが好ましい。 即ち、この様にすると、各吐出孔5から低温液
化ガスを連続的に吐出流下させた場合、各吐出孔
5からの各連続流下流は容器間の間隔の最も小さ
い直径線上にほぼ落下するので、容器と容器との
間に落下する低温液化ガスの量を減少させること
ができる。 尚、貯留タンク1内の低温液化ガスの液面は、
大気圧となつており、又、液面高さは、図示して
いない液面制御センサーと、低温液化ガス供給管
に取り付けてあり、液面制御センサーからの信号
により開閉する電磁弁とによつてほぼ一定に保た
れているので、一定時間内に於ける吐出孔5から
の低温液化ガス吐出総量は、常にほぼ一定となつ
ている。 この装置を用いると、低温液化ガスの時間当り
の流下量(ml/s)は、常にほぼ一定となるの
で、連続的に低温液化ガスを吐出流下させている
ノズルの下方を、上部開口容器が一定速度で移動
する様にすると、容器内に一定量の低温液化ガス
が添加されることになる。 そして、低温液化ガスが添加された容器は、直
ちに密封されて液化ガスの気化による散逸の防止
と容器内の一定ガス圧の保持が図られる。 次に、本発明方法についての実験例について説
明する。 この実験には、径が約52.6mm(所謂202径)で、
高さが約132mm、内容積が250mlと呼称されるブリ
キ製DI罐を使用した。 このDI罐に、450罐/分の速度で90℃の水を
240g(240±1g)充填した後、同じ速度で、吐
出孔の配列をそれぞれ変えた液体窒素吐出用ノズ
ルの吐出孔の下を通過させることにより、各吐出
孔から連続的に流下している液体窒素を罐内に受
取つた後、直ちに蓋巻締め機によりイージーオー
プン罐蓋を巻締めて罐を密封した。 実験条件 ●液体窒素の添加量;約0.22ml/罐 ●液体窒素添加から蓋巻締までに要する時間;
1.8秒間 ●ノズル下面と罐フランジ上端との間隔(垂直距
離);約5mm ●液体窒素貯留タンク内の液面高さ;約140mm ●ノズルの吐出孔の数、直径、吐出孔間のピツチ
(吐出孔の中心間距離);A、B、C、Dはそれ
ぞれ5個、0.8mm、2.5mm、Eのみそれぞれ12
個、0.52mm、2.0mm 尚、Aの吐出孔の列を、進行方向に平行な罐の
開口部の直径線とほぼ一致する様にした。 実験結果
(Industrial Application Field) The present invention moves a top-open container containing liquid at a constant speed under a discharge hole through which a constant flow of low-temperature liquefied gas is continuously flowing down, thereby depositing a predetermined amount into the container. The present invention relates to a method of adding low temperature liquefied gas. (Background of the invention) A method for quantitatively filling a container with low-temperature liquefied gas is
The above method, which uses inert low-temperature liquefied gas, is required in various industrial fields, but it is not a foaming liquid that contains carbon dioxide gas like beer, but a non-foaming liquid. Liquid contents (e.g. fruits pickled in syrup, fruit juice drinks, mandarin orange drinks with fruit particles,
It is a preferred method to use when packaging (and coffee beverages) using a hot filling method or the like. In other words, in the case of canned goods filled by hot filling method etc., when the temperature of the liquid inside the can decreases after the lid is rolled up and sealed, the inside of the can becomes negative pressure. Cans with thick body walls that do not dent even when exposed to water are used, but in recent years, cans with thin body walls have been used. A method of increasing the internal pressure of the can after the liquid in the can has cooled (at this time, the liquefied gas has become vaporized gas) by filling a predetermined amount of an inert gas in a liquefied state (for example, liquid nitrogen) that will not be replaced. is proposed. The present invention is a method used to achieve this objective. (Prior art and its problems) Many methods have been proposed for filling a container with an inert low-temperature liquefied gas (hereinafter simply referred to as "low-temperature liquefied gas" even though it is inert). For example, Japanese Patent Application Laid-Open No. 49-134855 discloses that after filling a can with a drinking liquid and sealing the lid with an elastic member through which a needle member can penetrate, a syringe needle is inserted from above the elastic member. An invention is disclosed in which an inert low temperature liquefied gas is injected through the hole of the injection needle. However, this invention is not suitable for commercial production because it requires the use of a can lid with a special structure and the injection rate of low-temperature liquefied gas is too slow. Furthermore, in Japanese Patent Application Laid-Open No. 56-4521, after dropping liquid nitrogen into a can that has already been filled with contents, before double-sealing the can lid to the can mouth, nitrogen gas is applied from the outside of the can lid and can mouth. A method for manufacturing cans containing liquid nitrogen is disclosed, in which the cans are double-sealed and sealed while being sprayed with nitrogen. The method that this invention uses to add liquid nitrogen into the can is called the drip nozzle method. For example, a required amount of liquid nitrogen is dripped from the dripping nozzle into the can by opening the valve body of the dripping nozzle. A low-temperature liquefied gas dropping method using a similar dropping nozzle system is also disclosed in JP-A-56-109996. This dripping nozzle system opens and closes the valve body in order for the can to pass below the dripping nozzle, so it can be used on normal beverage canning production lines (more than 200 cans/min even at low speeds, and more than 1200 cans/min on high speed lines). ), the valve body should be opened and closed according to 3.3.
It is necessary to perform this at a speed of more than 3 times per second, and due to heat generation caused by repeated collisions and/or friction between the valve body and the valve seat, the low temperature liquefied gas vaporizes around the valve, and the low temperature liquefied gas and the vaporized gas Since it is dropped in a gas-liquid mixture with
Furthermore, since the dropping speed of the low-temperature liquefied gas dripped from the dripping nozzle is inevitably high, when it collides with the liquid in the can, a considerable amount of the gas is scattered outside the can or rapidly vaporized. As a result, the amount of low-temperature liquefied gas remaining in the can after sealing decreases (liquefied gas loss increases), and the variation in the amount of residual liquefied gas (can internal pressure for each can) also increases. I get used to it. There is a large variation in the amount of residual liquefied gas for each can, which means canned goods with insufficient internal pressure (canned goods that are difficult to distinguish from canned goods with poor sealing, and moreover, are prone to dents on the can body) and canned goods with excessive internal pressure (canned goods with poor seals or This is clearly undesirable because it means that cans with bulging deformation of the bottom etc. are likely to occur. Furthermore, with the drip nozzle method, the valve body moves once to the open and closed positions each time a can passes below the drip nozzle, making it suitable for can production at line speeds of 500 cans/min or higher. When used in a line, there is a problem with the ability to follow the opening and closing operations of the valve body (if used in such a high-speed line, the dropped low-temperature liquefied gas may not enter the can in a timely manner, or the metered drop may not be possible). (As a result, the loss of low-temperature liquefied gas becomes quite large, and the internal pressure of each can also varies greatly.) As mentioned above, the problem with the known drip nozzle method is that very low-temperature liquefied gas is dripped at high speed into a can that is moving at high speed, resulting in a mixture of gas and liquid dripping, and the possibility of splashing outside the can. There is a large loss of liquefied gas due to rapid vaporization, etc., and the internal pressure after sealing varies greatly from can to can, and it cannot be used in high-speed can manufacturing lines. One of the countermeasures is disclosed in Japanese Unexamined Patent Publication No. 161915/1983. In other words, the dropping speed of liquid nitrogen when it is discharged from the discharge hole and collides with the liquid level in the can is 200
cm/sec or less (temperature of the contents at 95°C), the ratio of the amount of residual liquid nitrogen in the can to the amount of supplied liquid nitrogen increases, reducing loss. The method disclosed in JP-A-56-161915 is quite effective in reducing loss of liquid nitrogen when the can into which liquid nitrogen is dripped is left standing, but it is not suitable for commercial production. In canning production lines, it is necessary to drip a desired amount of low-temperature liquefied gas into cans that are moving at high speed in a timely manner, so unless the dripping speed is considerably increased, the cans will pass under the dripping nozzle. In reality, it is not possible to make the residual rate of low-temperature liquefied gas very high inside the can, and in addition to the liquid nitrogen scattering outside the can, there is a risk of the liquid nitrogen dropping between the moving can and the low-temperature liquefied gas. The timing of gas dropping is likely to be misaligned, and since the dropping is a mixture of gas and liquid, the amount of residual low-temperature liquefied gas for each can still varies considerably. As mentioned above, low-temperature liquefied gas (for example, liquid nitrogen has a boiling point of approximately -196°C) is a cryogenic liquid, so it comes into contact with the surrounding atmosphere while being discharged from the discharge hole and reaching the liquid level in the container. However, it is fully expected that the low-temperature liquefied gas will vaporize and escape outside the can. Since this vaporization is proportional to the surface area of the discharged liquefied gas, a method has been proposed in which the required amount of liquefied gas is discharged from one discharge hole. As mentioned above, the dripping nozzle method cannot be used in high-speed canning production lines, so the inventors developed a system in which a constant flow rate (flow rate per unit time) of low-temperature liquefied gas continues to flow down from the discharge hole. devised a method of adding a fixed amount of low-temperature liquefied gas into each can by moving the can under it at a constant speed. This method can easily reduce the flow rate of low-temperature liquefied gas per unit time by changing the size of the discharge hole or changing the liquid level of the low-temperature liquefied gas in the low-temperature liquefied gas storage tank that has a discharge hole at the bottom. Since the amount can be changed, there is an advantage that it can be used whether the canning line is a low-speed line or a high-speed line. However, even with the method of flowing low-temperature liquefied gas into the can as a continuous flow downstream, there is a lot of loss of liquefied gas due to scattering outside the can or rapid vaporization when the liquefied gas collides with the liquid level inside the can. In addition, there are many variations in the amount of residual liquefied gas in each can after sealing.
As it was, it could not be used in an actual canning production line. The present invention uses a low-temperature liquefied gas continuous flow method that can be used not only in low-speed but also high-speed container filling manufacturing lines, to increase the proportion of the low-temperature liquefied gas that remains inside the container. The purpose of the present invention is to reduce the amount of low-temperature liquefied gas used and to provide a method for adding low-temperature liquefied gas that reduces the variation in the amount of low-temperature liquefied gas remaining in each container after sealing. (Findings of the Inventors and Means for Solving the Problems) According to the experiments of the present inventors, when low-temperature liquefied gas is injected as a continuous flow into a container containing liquid that moves at high speed, the low-temperature liquefied gas The scattering and rapid vaporization caused by collision with the liquid surface in the container increase in proportion to the impact force at the time of collision, and if the same amount of low-temperature liquefied gas is to be discharged, the continuous downstream flow of low-temperature liquefied gas must be Using multiple strips to reduce the impact force upon collision with the liquid surface in the container has a great effect on suppressing the scattering and rapid vaporization of low-temperature liquefied gas. If this is the case, if the downstream arrangement of these continuous flows is made approximately parallel to the traveling direction of the moving top-opening container, the flow rate will be lower when the liquid in the container collides with the surface of the container, compared to other arrangements. It was found that the rapid vaporization of the low-temperature liquefied gas and the blowing of the low-temperature liquefied gas by the vaporized gas were reduced, and furthermore, the variation in the internal pressure of the container after sealing was reduced. However, if there are multiple continuous flow downstream lines to discharge and add a predetermined amount of low-temperature liquefied gas into a container, it will take 1
Since the surface area of the entire downstream of the continuous flow discharged from the nozzle is larger than in the case of continuous flow, it is expected that the amount of vaporized liquid before it contacts the liquid surface of the container will increase. This disadvantage can be alleviated by reducing the distance between the lower surface of the nozzle discharge hole and the upper end of the container (preferably approximately 35 mm or less, particularly preferably 10 mm or less); on the other hand, the shortening of this distance will reduce the aforementioned impact force accordingly. Since it is made smaller, the effect of preventing scattering etc. is further enhanced, and the disadvantage of a larger surface area is sufficiently compensated for. The present invention was born from this knowledge, and it is possible to move an upper open container containing liquid at a constant speed under the discharge hole through which a constant flow of low-temperature liquefied gas is continuously flowing down. A method of adding a predetermined amount of low-temperature liquefied gas to a container, wherein the continuous flow downstream of the low-temperature liquefied gas is a downstream line formed from a plurality of downstream lines arranged substantially parallel to the traveling direction of the container. This is a method for adding low-temperature liquefied gas. (Function) In the present invention, since the continuous flow downstream of the low temperature liquefied gas is made into multiple streams, each stream becomes a trickle, compared to the case where the same flow rate is made to flow down as one stream.
As a result, the impact force upon collision with the liquid surface in the container is reduced, making it possible to suppress scattering and rapid vaporization of the low-temperature liquefied gas. Furthermore, in the present invention, since the plurality of downstream streams of low-temperature liquefied gas are arranged approximately parallel to the traveling direction of the container moving at a constant speed, referring to FIG. As the container moves, the low-temperature liquefied gas that has flowed down from the discharge hole 5 at the far end (on the left side in Figure 1) falls to the same position as the liquid level of the liquid in the container. The low-temperature liquefied gas from the second discharge hole from the end falls, then the low-temperature liquefied gas from the third discharge hole falls on top of it, and then the low-temperature liquefied gas from the fourth discharge hole falls on top of it. Like falling,
After a short period of time, the low-temperature liquefied gas will fall one after another in almost the same position, so the low-temperature liquefied gas discharged from the second and subsequent discharge holes will be substantially smaller than the liquid in the container. It falls on top of the low-temperature liquefied gas, which is at a low temperature, and comes into contact with it. Therefore, the amount of vaporization of the low-temperature liquefied gas at the time of collision on the content liquid level decreases, and accompanied by intense vaporization of the low-temperature liquefied gas. The scattering of low-temperature liquefied gas is also reduced. In combination, these factors reduce the variation in the internal pressure of each container after the container is sealed. (Example) Next, an example of the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal cross-sectional view of a main part of an apparatus for carrying out the method of the present invention, and FIG. 2 is a bottom view of the nozzle shown in FIG. 1. Note that the arrow in FIG. 2 indicates the direction of movement of the container. Reference numeral 1 denotes a low temperature liquefied gas storage tank with a double-walled heat insulating structure, and a vacuum is created between the inner wall 2 and outer wall 3. 4 is a nozzle formed at the bottom of the storage tank 1 to discharge and flow down the low-temperature liquefied gas, and 5 is a discharge hole provided in the nozzle 4 (Figures 1 and 2 show five discharge holes arranged in a row). example). Reference numeral 6 indicates a container (a two-piece can in the figure) that is already filled with the liquid content, and 7 is attached at equal intervals to an endless chain (not shown) that moves at a constant speed, and the body of the container is inserted from the rear. This is a claw that is pushed to move the container at a constant speed. 8 is a guide rail for regulating the movement of the moving container in a direction perpendicular to the traveling direction, and 9 is a table on which the container slides. Here, the relationship between each of the discharge holes 5 of the nozzle 4 and the container 6 to be transferred is such that each of the discharge holes 5 passes through the center of the opening of the container 6 to be transferred (i.e., If the container has a circular cross section, the diameter line parallel to the direction of travel of the container and the row of discharge holes 5 are
It is preferable to make them almost identical. That is, in this case, when low-temperature liquefied gas is continuously discharged and flowed down from each discharge hole 5, each continuous flow downstream from each discharge hole 5 falls almost on the diameter line with the smallest interval between the containers. , the amount of low-temperature liquefied gas that falls between containers can be reduced. The liquid level of the low-temperature liquefied gas in the storage tank 1 is
The pressure is atmospheric pressure, and the liquid level is determined by a liquid level control sensor (not shown) and a solenoid valve that is attached to the low-temperature liquefied gas supply pipe and opens and closes in response to signals from the liquid level control sensor. Therefore, the total amount of low temperature liquefied gas discharged from the discharge holes 5 within a certain period of time is always substantially constant. When this device is used, the amount of low-temperature liquefied gas flowing down per hour (ml/s) is always approximately constant, so the top-opening container is placed below the nozzle that is continuously discharging low-temperature liquefied gas. If it is moved at a constant speed, a constant amount of low temperature liquefied gas will be added into the container. Then, the container to which the low-temperature liquefied gas is added is immediately sealed to prevent the liquefied gas from evaporating and dissipating, and to maintain a constant gas pressure within the container. Next, an experimental example of the method of the present invention will be explained. For this experiment, a diameter of approximately 52.6 mm (so-called 202 diameter) was used.
A tin DI can with a height of approximately 132 mm and an internal volume of 250 ml was used. Water at 90℃ is poured into this DI can at a rate of 450 cans/min.
After filling 240g (240±1g), the liquid is passed under the discharge holes of liquid nitrogen discharge nozzles with different arrangement of discharge holes at the same speed, so that the liquid continuously flows down from each discharge hole. Immediately after nitrogen was received into the can, the lid of the easy-open can was tightened using a lid tightening machine to seal the can. Experimental conditions ●Amount of liquid nitrogen added; approx. 0.22ml/can ●Time required from adding liquid nitrogen to tightening the lid;
1.8 seconds ● Distance between the bottom of the nozzle and the top of the can flange (vertical distance): approx. 5 mm ● Liquid level height in the liquid nitrogen storage tank: approx. 140 mm ● Number of nozzle discharge holes, diameter, pitch between discharge holes (discharge Distance between centers of holes): 5 each for A, B, C, and D, 12 each for 0.8 mm, 2.5 mm, and E only
0.52 mm, 2.0 mm The row of discharge holes in A was made to almost coincide with the diameter line of the opening of the can parallel to the direction of travel. Experimental result

【表】 第1表からノズルの吐出孔の数が同一の場合に
は、吐出孔の配列が罐進行方向と平行なノズルA
を用いて液体窒素を添加した場合、即ち、複数条
の液体窒素流下流の配列を、罐進行方向と平行に
した場合(本実施例)に、その罐詰の平均罐内圧
が最も高く、しかも各罐詰毎の罐内圧のバラツキ
が少ないことが判る。 又、ノズルの吐出孔の配列が罐の進行方向と平
行に近いノズルを用いて液体窒素を添加した罐
程、その平均罐内圧が高く、罐内圧のバラツキも
少ないことが判る。 そして、いずれのノズルを用いた場合にも、吐
出孔からの液体窒素の吐出総量は同一であるの
で、平均罐内圧が高い程、ノズル吐出孔から吐出
された後の液体窒素のロスが少ないことになる。 ノズルAを用いた場合の液体窒素のロスが少な
いのは、罐の進行方向手前側から2番目以降の4
個の吐出孔から流下した液体窒素が、既に落下し
て罐内容液面上に浮いている極低温(約−196℃)
の液体窒素上に落下するため、90℃の内容液面上
に直接落下する、B、C、Dの場合に比べて、内
容液面上での衝突時の急激な気化が少なくなり、
それに伴つて、急激に気化した窒素ガスによる罐
外への吹き飛ばしも少なくなること、更には、罐
と罐との間に吐出される(罐は円筒形であるの
で、進行方向と平行な罐の開口部の直径線と吐出
孔とがずれる程、連続流下している液体窒素は罐
外へ落ちる量が多くなる)量が少なくてすむ(各
吐出孔の位置が罐の進行方向と平行な開口部の直
径線上に近い程少なくなる)ためと思われる。更
にEとAとの比較から、ノズルの吐出孔の数を増
す代りに、その一つ一つの吐出孔の直径を小さく
して、一つの吐出孔当りの吐出量を少なくすると
(総吐出量は吐出孔の数が少ない場合と同じにす
る)、液体窒素のロスが少なくてすみ、又、添加
した各罐詰の内圧のバラツキも少ないことが判
る。 これは、各吐出孔から吐出され、流下した液体
窒素のそれぞれが罐内容液の液面と衝突した際の
衝撃力が弱くなるので、液体窒素の罐内容液面か
らの跳ね返りによる罐外への飛散が少なくなるた
めと思われる。 第3図は、本発明方法に使用する別のノズルの
底面図であり、ノズル4の吐出孔5の数を12個と
し、その配列を6個ずつ2列にし、それぞれの吐
出孔列を罐の進行方向(矢印の方向)と平行にし
た例(本例のノズルは実験例のEで用いた)であ
る(尚、見易くするため図では吐出孔の大きさを
第2図の吐出孔と同じにした)。 尚、本例の場合、容器6の開口部の横断面が描
く円の直径線の両側に、各吐出孔列から吐出され
流下した液体窒素が落下する様にノズル4と移送
される容器6の位置を調節するのが、容器外への
液体窒素の吐出を少なくするという観点から望ま
しい。 本例のノズル4は、実験例の結果から明らかな
様に、各吐出孔5の大きさが第2図の例よりも小
さいために第2図に示したノズル4を用いた場合
に比べて液体窒素のロスが少ない。 第4図は、本発明方法に使用する更に別のノズ
ルの底面図であり、ノズル4の吐出孔5の数を18
個とし、その配列を6個ずつ3列にし、それぞれ
の吐出孔列を容器の進行方向(矢印方向)と平行
にした例である(図では、ノズルの吐出孔の大き
さを見易くするために、第2図、第3図の例と同
じに書いておいた)。 本例では、容器6の開口部の描く円の直径線上
に中央の吐出孔列からの液体窒素の連続流下流が
落下する様に、ノズル4と移送される容器6との
配置を調整するのが、容器6外への吐出を少なく
するという観点から望ましい。 本例のノズル4の吐出孔5は、第3図に示した
ノズル4よりも吐出孔5の数を5割増加したこと
に伴い、各吐出孔5の直径を2割弱小さくしてあ
る(従つてノズルの吐出総量は、第3図の例と同
じである)ので、各流下流が容器内容液面に衝突
する際の衝撃力が弱くなり、従つて液体窒素の跳
ね返りによる容器外への飛散が少ない。 第5図は、本発明方法を実施するための別の装
置の要部断面図である。 第1図図示の装置と異なる点は、低温液化ガス
貯留タンク1の底部に形成したノズル4が2つ直
列に設けられている点である(吐出孔5は3個ず
つ直列に容器の進行方向と平行に配列してある)。 これは、容器6への内容液の充填速度を変えて
も、容器6への液体窒素の添加量(又は充填量)
を変えない様にするためである。 即ち、容器6への内容液の充填速度は、充填ラ
インの能力によつて決まるが、本例の様にノズル
4を2つ、吐出孔5をそれぞれ3個ずつ設けてお
くと、高速充填時に使用する場合(即ち、容器の
移動速度が大きい)には、2つのノズル4,4の
6個の吐出孔5から液体窒素を吐出流下させ、一
方、充填速度の低い間(即ち、容器の移動速度が
高速ラインの1/2)には、一方のノズル4の吐出
孔を弁(図示せず)で閉じておけば、一つのノズ
ル4の3個の吐出孔5からのみ液体窒素が流下す
るので、結局どちらの場合にも容器6への液体窒
素添加量は同じとなる。 本例では、各ノズル4,4の吐出孔5の数を各
3個ずつの例を示したが、勿論もつと数を増した
方が望ましいのは前述した通りである。 尚、上記全実施例に於て、ノズルの吐出孔の配
列は、すべて一直線上に並べたものを示したが、
吐出孔から吐出された液化ガスが、真下ではなく
斜めに落下する様に傾斜した通路をもつ吐出孔を
用いれば、吐出孔の配列を一直線上に並べる必要
がない。即ち、3個の吐出孔をもつノズルの例で
説明すると、3個の吐出孔のうち2個の吐出孔を
容器進行方向と一直線上に並べ、残りの1個の吐
出孔を前の2個の中間でやや側方に設け、しかも
3個のうち一直線上に並べた2個の吐出孔は、低
温液化ガスが真下に吐出される様にし、この2個
の吐出孔の中間でやや側方に設けた1個の吐出孔
は、2個の吐出孔列側に傾斜した通路をもつ吐出
孔として、容器内容液面上で3個の吐出孔から流
下した低温液化ガスが実質的に次々と重なる(即
ち、一直線上に並べた吐出孔列の容器進行方向手
前側の吐出孔から吐出されて内容液面上に落下し
た低温液化ガスの上に、傾斜した通路をもつ吐出
孔からの低温液化ガスが落下し、更にその上に、
一直線上に並べた吐出孔列の残りの吐出孔からの
低温液化ガスが落下する)様にした場合とか、一
直線上に並べた2個の吐出孔をやや側方に設けた
吐出孔側にそれぞれ傾斜した通路をもつ吐出孔と
し、一方やや側方に設けた1個の吐出孔を前記2
個の吐出孔列側に傾斜した通路をもつ吐出孔とし
て、容器内容液面上で3個の吐出孔からの低温液
化ガスが実質的に次々と重なる様にした場合に
は、吐出孔を一直線上に並べたものと同じ効果を
奏することができるからである。 尚、本発明方法で使用できる低温液化ガスは、
実施例で示した液体窒素だけでなく、例えば液体
アルゴンでもよく、又容器としては、金属罐の他
に、一層又は二層以上の層から成るプラスチツク
容器や金属箔、紙、プラスチツク等の二種以上か
ら形成された複合容器でもよい。 更に、本発明方法により低温液化ガスを内容液
入り容器内に添加すると、容器を密封するまでの
時間に気化したガスにより容器内の残留空気が追
出されるので、貯蔵中における容器内容液や内容
物の品質劣化が防止できる。従つて、内容液を容
器に充填する方法として、加熱充填法だけでな
く、冷間充填法を用いても良質の容器詰食品がで
きるのである。 (発明の効果) 本発明は、前記実験データに示されるように、
複数条の低温液化ガス連続流下流の配列を、容器
進行方向と略平行にしない場合に比べて、容器内
に残留する低温液化ガス(容器密封後、僅かの間
に気化ガスとなる)の割合が増加し、所望残留液
化ガス量を得るために必要な低温液化ガス総使用
量を減少させることができるという効果と、密封
後の各容器詰毎の低温液化ガス容器内残留量のバ
ラツキ巾が狭くなること、即ち、過分なガス封入
による蓋等の膨出変形や過少なガス封入による容
器胴部のへこみに起因する不良品発生を減少又は
防止できるという効果とを有する。 又、本発明は、1条の低温液化ガス連続流下流
を用いて容器内に添加する方法に比べると、低温
液化ガスの総使用量を非常に少なくすることがで
きると共にガス封入容器詰の不良品発生も非常に
減少又は防止できるという効果を有する。 更に、本発明は、滴下ノズル方式を用いる方法
に比べて、高速の容器詰製造ラインに使用するこ
とができ、しかも製造されたガス封入容器詰の不
良品発生も非常に減少又は防止できるという効果
を有する。
[Table] From Table 1, if the number of nozzles has the same number of discharge holes, nozzle A whose discharge holes are arranged parallel to the can traveling direction
When liquid nitrogen is added using a method of adding liquid nitrogen, that is, when the downstream arrangement of multiple lines of liquid nitrogen flow is arranged parallel to the can advancing direction (this example), the average can internal pressure of the packed can is the highest, and It can be seen that there is little variation in the internal pressure of each can. Furthermore, it can be seen that the average can internal pressure is higher and the variation in the can internal pressure is smaller as the liquid nitrogen is added to the can using a nozzle whose discharge holes are arranged closer to parallel to the traveling direction of the can. Since the total amount of liquid nitrogen discharged from the discharge hole is the same no matter which nozzle is used, the higher the average can internal pressure, the less loss of liquid nitrogen after being discharged from the nozzle discharge hole. become. When nozzle A is used, the loss of liquid nitrogen is small when the can is nozzle 4 from the second from the front in the direction of travel of the can.
The liquid nitrogen that has flowed down from the discharge holes has already fallen and is floating on the liquid level inside the can at an extremely low temperature (approximately -196℃)
Because it falls onto the liquid nitrogen at 90°C, there is less rapid vaporization upon impact on the liquid content surface compared to cases B, C, and D, which drop directly onto the liquid content surface at 90°C.
Along with this, the amount of rapidly vaporized nitrogen gas being blown out of the can is reduced, and furthermore, it is discharged between the cans (since the cans are cylindrical, the flow of nitrogen gas parallel to the direction of travel is reduced). The more the diameter line of the opening and the discharge hole deviate from each other, the more the continuously flowing liquid nitrogen will fall out of the can. This seems to be because the closer you are to the diameter line of the Furthermore, from the comparison between E and A, it is found that instead of increasing the number of nozzle discharge holes, if the diameter of each discharge hole is made smaller and the discharge amount per discharge hole is reduced (the total discharge amount is (This is the same as when the number of discharge holes is small), it can be seen that there is less loss of liquid nitrogen, and there is also less variation in the internal pressure of each canned material to which it is added. This is because the impact force when each of the liquid nitrogen discharged from each discharge hole and flowing down collides with the liquid level inside the can is weakened, so that the liquid nitrogen bounces off the liquid level inside the can and goes out of the can. This seems to be because there is less scattering. FIG. 3 is a bottom view of another nozzle used in the method of the present invention, in which the number of discharge holes 5 of the nozzle 4 is 12, the array is arranged in two rows of 6 discharge holes, and each row of discharge holes is arranged in a can. (The nozzle in this example was used in Experimental Example E). (For ease of viewing, the size of the discharge hole in the figure is the same as the discharge hole in Figure 2.) the same). In this example, the nozzle 4 and the container 6 to be transferred are arranged so that the liquid nitrogen discharged from each discharge hole row falls on both sides of the diameter line of the circle drawn by the cross section of the opening of the container 6. Adjusting the position is desirable from the viewpoint of reducing the discharge of liquid nitrogen outside the container. As is clear from the results of the experimental example, the nozzle 4 of this example has a smaller size of each discharge hole 5 than the example shown in FIG. There is little loss of liquid nitrogen. FIG. 4 is a bottom view of yet another nozzle used in the method of the present invention, in which the number of discharge holes 5 of the nozzle 4 is 18.
This is an example in which the nozzles are arranged in 3 rows of 6 nozzles, and each row of discharge holes is parallel to the direction of travel of the container (direction of the arrow). , written in the same way as the examples in Figures 2 and 3). In this example, the arrangement of the nozzle 4 and the container 6 to be transferred is adjusted so that the continuous downstream flow of liquid nitrogen from the central discharge hole row falls on the diameter line of the circle drawn by the opening of the container 6. However, it is desirable from the viewpoint of reducing discharge to the outside of the container 6. The number of discharge holes 5 of the nozzle 4 of this example is increased by 50% compared to the nozzle 4 shown in FIG. 3, and the diameter of each discharge hole 5 is reduced by slightly less than 20% ( Therefore, the total discharge amount of the nozzle is the same as in the example shown in Fig. 3), so the impact force when each stream collides with the liquid level inside the container becomes weaker, and therefore, the liquid nitrogen rebounds to the outside of the container. Less scattering. FIG. 5 is a sectional view of a main part of another apparatus for carrying out the method of the present invention. The difference from the device shown in FIG. 1 is that two nozzles 4 formed at the bottom of the low-temperature liquefied gas storage tank 1 are provided in series (three discharge holes 5 are arranged in series in the direction of travel of the container). ). This means that even if you change the filling speed of the liquid in the container 6, the amount of liquid nitrogen added to the container 6 (or the amount filled)
This is to ensure that it does not change. That is, the filling speed of the content liquid into the container 6 is determined by the capacity of the filling line, but if two nozzles 4 and three discharge holes 5 are provided as in this example, it will be easier to fill the container 6 at high speed. When used (i.e., when the container is moving at a high speed), liquid nitrogen is discharged and flowed down from the six discharge holes 5 of the two nozzles 4, 4. On the other hand, while the filling speed is low (i.e., when the container is moving) When the speed is 1/2 that of the high-speed line), if the discharge hole of one nozzle 4 is closed with a valve (not shown), liquid nitrogen flows down only from the three discharge holes 5 of one nozzle 4. Therefore, in either case, the amount of liquid nitrogen added to the container 6 is the same. In this example, the number of ejection holes 5 of each nozzle 4 is three, but as described above, it is of course preferable to increase the number of ejection holes 5. In all of the above embodiments, the discharge holes of the nozzles are all arranged in a straight line.
If a discharge hole is used that has an inclined passage so that the liquefied gas discharged from the discharge hole falls diagonally instead of straight down, it is not necessary to arrange the discharge holes in a straight line. That is, to explain using an example of a nozzle with three discharge holes, two of the three discharge holes are aligned in a straight line with the container traveling direction, and the remaining one discharge hole is aligned with the previous two discharge holes. Two of the three discharge holes are arranged in a straight line, and the low temperature liquefied gas is discharged directly below. One discharge hole provided in the is a discharge hole with a passage inclined toward the two discharge hole rows, so that the low-temperature liquefied gas flowing down from the three discharge holes above the liquid level in the container is substantially one after another. Overlapping (that is, low-temperature liquefied gas discharged from the discharge holes on the front side in the direction of travel of the container in the row of discharge holes arranged in a straight line and falling onto the liquid surface of the container, the low-temperature liquefied gas is liquefied from the discharge holes with inclined passages. The gas falls, and on top of that,
In some cases, the low-temperature liquefied gas falls from the remaining discharge holes in a row of discharge holes arranged in a straight line, or two discharge holes arranged in a straight line are placed on the discharge hole side slightly laterally. The discharge hole has an inclined passage, and one discharge hole provided slightly to the side is used as the discharge hole described above.
In the case where the discharge holes have passages inclined toward the row of discharge holes so that the low-temperature liquefied gas from the three discharge holes overlaps one after another on the liquid level in the container, the discharge holes can be arranged in a straight line. This is because it can produce the same effect as arranging them on a line. The low-temperature liquefied gas that can be used in the method of the present invention is
In addition to the liquid nitrogen shown in the examples, for example, liquid argon may also be used.In addition to the metal can, there are two types of containers, such as a plastic container consisting of one or more layers, metal foil, paper, and plastic. A composite container formed from the above may also be used. Furthermore, when low-temperature liquefied gas is added into a container containing liquid by the method of the present invention, residual air in the container is expelled by the vaporized gas until the container is sealed, so that the liquid and contents of the container are not affected during storage. Deterioration of product quality can be prevented. Therefore, high-quality packaged foods can be produced by using not only the hot filling method but also the cold filling method as a method for filling containers with the liquid contents. (Effects of the Invention) As shown in the experimental data, the present invention has the following advantages:
The proportion of low-temperature liquefied gas remaining in the container (which becomes vaporized gas within a short period of time after the container is sealed) compared to the case where the downstream arrangement of multiple continuous streams of low-temperature liquefied gas is not approximately parallel to the container traveling direction. This has the effect of reducing the total amount of low-temperature liquefied gas used to obtain the desired amount of residual liquefied gas, and reducing the variation in the amount of residual low-temperature liquefied gas in each container after sealing. This has the effect of reducing or preventing the occurrence of defective products due to bulging deformation of the lid etc. due to excessive gas filling or denting of the container body due to insufficient gas filling. Furthermore, the present invention can significantly reduce the total amount of low-temperature liquefied gas used and reduce the cost of filling gas-filled containers, compared to a method in which low-temperature liquefied gas is added into a container using a continuous stream downstream. This has the effect of greatly reducing or preventing the occurrence of non-defective products. Furthermore, compared to a method using a dropping nozzle method, the present invention can be used in a high-speed container packaging production line, and has the advantage that the occurrence of defective products in manufactured gas-filled containers can be greatly reduced or prevented. has.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施するための装置の要
部断面図、第2図は第1図図示の装置のノズルの
底面図、第3図、第4図は本発明方法を実施する
ためのそれぞれ別の装置のノズルの底面図、第5
図は本発明を実施するための別の装置の要部断面
図、第6図は、比較実験のために使用した装置の
ノズル底面図である。 4……ノズル、5……吐出孔、6……容器。
Figure 1 is a cross-sectional view of the main parts of an apparatus for carrying out the method of the present invention, Figure 2 is a bottom view of the nozzle of the apparatus shown in Figure 1, and Figures 3 and 4 are for carrying out the method of the present invention. Bottom view of the nozzle of each separate device, No. 5
The figure is a sectional view of a main part of another apparatus for carrying out the present invention, and FIG. 6 is a bottom view of the nozzle of the apparatus used for comparative experiments. 4... Nozzle, 5... Discharge hole, 6... Container.

Claims (1)

【特許請求の範囲】 1 一定流量の低温液化ガスが連続流下している
吐出孔の下を、内容液入りの上部開口容器を一定
速度で移動させることにより該容器内に所定量の
低温液化ガスを添加する方法であつて、 前記低温液化ガスの連続流下流を、前記容器の
進行方向と略平行に配列した複数条の流下流から
形成される流下流列とした ことを特徴とする低温液化ガスの添加方法。 2 低温液化ガスの流下流列が複数であることを
特徴とする特許請求第1項記載の方法。 3 上部開口容器の開口部の横断面形状が円形で
あり、低温液化ガスの複数条の流下流の配列が該
容器の開口部の直径線とほぼ一致している特許請
求の範囲第1項または第2項記載の方法。
[Claims] 1. A predetermined amount of low-temperature liquefied gas is introduced into the container by moving a top-open container containing liquid at a constant speed under a discharge hole through which a constant flow of low-temperature liquefied gas is continuously flowing down. A method for adding low-temperature liquefied gas, characterized in that the continuous flow downstream of the low-temperature liquefied gas is a downstream stream formed from a plurality of downstream streams arranged substantially parallel to the traveling direction of the container. How to add gas. 2. The method according to claim 1, characterized in that there are a plurality of downstream rows of low-temperature liquefied gas. 3. Claim 1 or 3, wherein the cross-sectional shape of the opening of the top-opening container is circular, and the arrangement of the plurality of downstream streams of the low-temperature liquefied gas substantially coincides with the diameter line of the opening of the container. The method described in Section 2.
JP6631982A 1982-04-22 1982-04-22 How to add low temperature liquefied gas Granted JPS58183419A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP6631982A JPS58183419A (en) 1982-04-22 1982-04-22 How to add low temperature liquefied gas
DE8383302226T DE3369495D1 (en) 1982-04-22 1983-04-19 Method of manufacturing gas-sealed containered food
EP19830302226 EP0092966B1 (en) 1982-04-22 1983-04-19 Method of manufacturing gas-sealed containered food
AU13827/83A AU563071B2 (en) 1982-04-22 1983-04-21 Gas-sealed food method
US06/818,398 US4703609A (en) 1982-04-22 1986-01-13 Method of manufacturing pressurized sealed containered food

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6631982A JPS58183419A (en) 1982-04-22 1982-04-22 How to add low temperature liquefied gas

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP12972987A Division JPS6352865A (en) 1987-05-28 1987-05-28 Manufacturing method for gas-filled canned goods

Publications (2)

Publication Number Publication Date
JPS58183419A JPS58183419A (en) 1983-10-26
JPS6344609B2 true JPS6344609B2 (en) 1988-09-06

Family

ID=13312388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6631982A Granted JPS58183419A (en) 1982-04-22 1982-04-22 How to add low temperature liquefied gas

Country Status (1)

Country Link
JP (1) JPS58183419A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014020667A (en) * 2012-07-18 2014-02-03 Taiyo Nippon Sanso Corp Low temperature liquefied gas supplying device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6160416A (en) * 1984-08-22 1986-03-28 東洋製罐株式会社 Liquefied inert gas dropping device
JPH0633118B2 (en) * 1985-04-12 1994-05-02 アサヒビール株式会社 Beer filling method
JPS62124398A (en) * 1985-11-21 1987-06-05 Takeuchi Press Kogyo Kk Low-temperature liquefied gas falling device
SE464126B (en) * 1988-09-05 1991-03-11 Profor Ab FILLER ROW AT PACKAGING MACHINE

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5833439B2 (en) * 1980-02-05 1983-07-19 東洋製罐株式会社 Inert liquefied gas quantitative dropping method and equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014020667A (en) * 2012-07-18 2014-02-03 Taiyo Nippon Sanso Corp Low temperature liquefied gas supplying device

Also Published As

Publication number Publication date
JPS58183419A (en) 1983-10-26

Similar Documents

Publication Publication Date Title
EP0092966B1 (en) Method of manufacturing gas-sealed containered food
WO1999054207A1 (en) Method and device for manufacturing positive pressure packaging body
IE59227B1 (en) A beverage package and a method of packaging a beverage containing gas in solution
CA2072050C (en) Method of packaging a beverage
JPS6344609B2 (en)
JPS62502680A (en) Method of inactivating airtight packaging and equipment for its use
KR900006864B1 (en) Manufacturing method of gas filling container stew
JPH0159169B2 (en)
EP0489589A1 (en) Dissolving a gas in a liquid
EP1609721B1 (en) An apparatus for inerting the headspace of a container
JPH0121950B2 (en)
CA1215950A (en) Plural anti-splash injection streams in liquid gas food sealing systems
JP4136516B2 (en) Bottled can gassing method
US12351444B2 (en) System comprising a static microdoser for introducing an additive into a container
JP4174646B2 (en) Container pushing device in retort equipment
JPS61178815A (en) Manufacture of sealed vessel
JPH10250711A (en) Nozzle for liquefied gas flow
JPS58183417A (en) Manufacturing method for nitrogen-filled canned goods
JP2001206313A (en) Metal can containing granular solid sealed with nitrogen gas sealed therein, and its manufacturing method
JPH04173521A (en) Method of filling nitrogen gas into containers such as canned food
JPS59187517A (en) Method for manufacturing canned goods filled with liquid nitrogen
HK1215238B (en) A method for filling bottles
HK1215238A1 (en) A method for filling bottles
ZA200504998B (en) An apparatus for interting the headspace of a container