[go: up one dir, main page]

JPS6344177A - Transmission function measuring apparatus - Google Patents

Transmission function measuring apparatus

Info

Publication number
JPS6344177A
JPS6344177A JP61187750A JP18775086A JPS6344177A JP S6344177 A JPS6344177 A JP S6344177A JP 61187750 A JP61187750 A JP 61187750A JP 18775086 A JP18775086 A JP 18775086A JP S6344177 A JPS6344177 A JP S6344177A
Authority
JP
Japan
Prior art keywords
transfer function
frequency
frequency characteristic
model
arma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61187750A
Other languages
Japanese (ja)
Inventor
Takashi Shigemasa
隆 重政
Minoru Iino
穣 飯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61187750A priority Critical patent/JPS6344177A/en
Priority to US07/085,726 priority patent/US4882526A/en
Priority to DE3750203T priority patent/DE3750203T2/en
Priority to EP87307109A priority patent/EP0256842B1/en
Priority to KR1019870008826A priority patent/KR900005546B1/en
Publication of JPS6344177A publication Critical patent/JPS6344177A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

PURPOSE:To obtain a correct frequency characteristic, by determining a pulse transmission function to be controlled from a coefficient of an autoregressive moving average (ARMA) model identified. CONSTITUTION:A control value y(t) of a process 1 is picked up with an A/D converter 2 as such sampled at a fixed sampling cycle. An output signal u(k) of an identification signal generating section 3 which generates a simulated white noise or the like to identify dynamic characteristic of the process 1 is held with a D/A converter 4 at the same sampling cycle and the signal u(t) outputted is turned to an input of the process 1. An ARMA model identifying section 5 picks up signals u(k) and y(k) sequentially to identify a coefficient of an ARMA model of the process 1 by identification method. Then, a frequency characteristic computing section 6 computes the frequency characteristic of the process. This enables the computation of a correct gain/phase characteristic from low to high frequency.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は、プロセスの動特性をあられす伝達関数の測
定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a transfer function measuring device for determining the dynamic characteristics of a process.

(従来の技術) プロセスの動特性をあられす伝達関数の測定方法として
、(イ)サーボアナライザによる方法、(0)相関法、
(ハ)ARMA(自己回帰移動平均)モデルと最小2乗
法の組み合わせによる方法が知られている。
(Prior art) As methods for measuring the transfer function that determines the dynamic characteristics of a process, (a) a method using a servo analyzer, (0) a correlation method,
(c) A method using a combination of an ARMA (autoregressive moving average) model and a least squares method is known.

サーボアナライザによる方法は、同定用信号としてプロ
セスの操作信号に正弦波を入力し、定常状態になったと
きの制御量の振幅と入力波形との位相差を周波数をパラ
メータに調べることにより。
The method using a servo analyzer involves inputting a sine wave as the process operation signal as an identification signal, and examining the phase difference between the amplitude of the controlled variable and the input waveform when a steady state is reached, using frequency as a parameter.

プロセスのゲインと位相の周波数特性を測定するもので
ある。この方法は、制御対象を長時間にわたって正弦波
を入力し、しかも、開ループで実施するものであるため
、実プロセスへの適用は難しい。次に相関法では、同定
用信号としてプロセスの操作信号に沢山の周波数成分を
含んだ白色雑音を入力し、制御量との相関関数からパワ
ースペクトルを求め、そのパワースペクトル比から、制
御対象のゲインと位相の周波数特性を求めるものである
。サーボアナライザによる方法に比べ、沢山の周波数成
分を有する同定信号を用いるため、測定時間は多少短か
くなる利点はあるがデータの処理量が膨大になり、しか
も得られた制御対象の周波数特性にしても誤差が多かっ
た。
It measures the frequency characteristics of process gain and phase. This method inputs a sine wave to the controlled object over a long period of time, and is implemented in an open loop, so it is difficult to apply to actual processes. Next, in the correlation method, white noise containing many frequency components is input into the process operation signal as an identification signal, the power spectrum is determined from the correlation function with the controlled variable, and the gain of the controlled object is determined from the power spectrum ratio. and the frequency characteristics of the phase. Compared to the method using a servo analyzer, since it uses an identification signal with many frequency components, it has the advantage that the measurement time is somewhat shorter, but the amount of data to be processed is enormous, and the frequency characteristics of the obtained controlled object are There were also many errors.

最後のARMAモデルと最小2乗法の組み合わせによる
方法は、可同定条件が成立すれば、閉ループ1シ1」御
中にも制御対象の動特性が測定できる系統だった方法と
して利用価値が高く近年、広く用いられるようになって
きているが、得られたARMAモデルは一定サンプル周
期により表現されたパルス伝達関数と等価である。その
ため、パルス伝達関数の周波数特性は、元の伝達関数の
周波数特性に比ベナイキスト周波数に近づくにつれ側常
波の影響により誤差が生じてしまう問題があった。
Finally, the method based on the combination of the ARMA model and the least squares method is highly useful and has been widely used in recent years as a systematic method that can measure the dynamic characteristics of a controlled object even during closed-loop control if the identification conditions are met. As increasingly used, the resulting ARMA model is equivalent to a pulse transfer function expressed by a constant sample period. Therefore, there is a problem in that the frequency characteristic of the pulse transfer function has an error in the frequency characteristic of the original transfer function due to the influence of side waves as it approaches the relative Beniquist frequency.

(発明が解決しようとする問題点) この発明の目的は、ARMAモデルと最小2乗法の組み
合わせる方法による伝達関数の測定法の欠点を改良した
もので、測定されたARMAモデルから正確な周波数特
性を得る伝達関数の測定装置を提供することにある。
(Problems to be Solved by the Invention) The purpose of the present invention is to improve the drawbacks of the transfer function measurement method by combining the ARMA model and the least squares method, and to obtain accurate frequency characteristics from the measured ARMA model. An object of the present invention is to provide a measuring device for the transfer function obtained.

〔発明の構成〕 (問題点を解決するための手段) 本発明は、同定したARMAモデルの係数から。[Structure of the invention] (Means for solving problems) The present invention uses the identified coefficients of the ARMA model.

制御対象のパルス伝達関数を求め、このパルス伝達関数
のゲインと位相の周波数特性から、更に、サンプリング
データとホールドされる効果を除去する補正関数により
周波数特注を補正するように構成したプロセスの動特性
をあられす伝達関数の測定装置である。
Dynamic characteristics of a process configured to calculate the pulse transfer function of the controlled object, and then correct the frequency customization from the frequency characteristics of the gain and phase of this pulse transfer function using a correction function that removes sampling data and held effects. This is a device for measuring transfer functions.

(作用) 制御対象のパルス伝達関数の周波数特性を求めるために
時間推移演算子Zにejxを代入する方法が広く用いら
れているが、この場合、この周波数特性が元の伝達関数
の周波数特性とずれることが知られている。その理由は
、パルス伝達関数がサンプリング周期毎のホールドデー
タに対して定義されているため、サンプリング周期によ
り決まるナイキスト周波数近傍で、側帯波のスペクトω
が影響して見かけ上、デインと位相がずれることによる
。連続制御系を設計する面からは、この1111j帯波
によるゲインと位相のズレは高周波域であるため限界設
計を困難にさせている。そこで1本発明では、このホー
ルドされているサンプリングデータの効果を除去する補
正関数によりゲインと位相の周波数特性を補正するよう
に演算させるようにするため低周波領域から高周波領域
談で誤差なく周波数特性を求めることができる。
(Operation) In order to obtain the frequency characteristics of the pulse transfer function of the controlled object, a method of substituting ejx into the time transition operator Z is widely used, but in this case, this frequency characteristic is different from the frequency characteristic of the original transfer function. It is known to deviate. The reason for this is that the pulse transfer function is defined for hold data for each sampling period, so the sideband spectrum ω
This is due to the fact that the phase appears to be out of phase with the dein due to the influence of From the standpoint of designing a continuous control system, the gain and phase shift due to the 1111j band wave is in a high frequency range, making it difficult to design the limit. Therefore, in the present invention, in order to perform calculations to correct the frequency characteristics of gain and phase using a correction function that removes the effect of this held sampling data, the frequency characteristics can be adjusted from the low frequency region to the high frequency region without error. can be found.

(実施例) 以下、図面を参照して本発明の詳細な説明する。第1図
は1本発明に係る伝達関数の測定装置の構成を示すブロ
ック図である。この図において。
(Example) Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing the configuration of a transfer function measuring device according to the present invention. In this figure.

プロセス1の制御my(1)は一定サンプリング周期τ
によりA/D変撲器2によりサンプルされた制H量y(
k)として取り込まれる。また、プロセス1の動特性を
同定するための擬似化白色雑音、ステップ信号、パルス
信号などを発生する同定信号発生部3の出力信号u(k
)は、 D/A変換器4により、同じサンプリング周期
τでホールドされ、出力された信号u(1)がプロセス
1の入力となっている。
The control my(1) of process 1 is a constant sampling period τ
The suppressed H amount y (
k). Furthermore, the output signal u(k
) is held by the D/A converter 4 at the same sampling period τ, and the output signal u(1) is input to the process 1.

ARM Aモデル同定部5では、u(k)トyCk)ヲ
逐次取り込みプロセスのA几MAモデル y(k)+ as Y(k−1)+ at Y(k’ 
+−叫” +  (k−n)ny =b、 u (k 1 )+ b、 u (k z )
 + 、、・、、、、・、+ yu (k″1)・・・
・・・・・・第1式 %式% 知られた最小2乗法、最尤度法などの同定方法により同
定する。次に、周波数特性演算部6は、プロセスの周波
数特性を演算するブロックである。
In the ARM A model identification unit 5, the A model MA model y(k)+ as Y(k-1)+ at Y(k'
+-Scream” + (k-n)ny = b, u (k 1 ) + b, u (k z )
+ ,,・・,,,,・,+yu (k″1)...
. . . 1st formula % Formula % Identification is performed using known identification methods such as the least squares method and the maximum likelihood method. Next, the frequency characteristic calculating section 6 is a block that calculates the frequency characteristics of the process.

第2図は、この周波数特性演算部の内部での演算ステッ
プを詳述したものである。この図において。
FIG. 2 details the calculation steps inside this frequency characteristic calculation section. In this figure.

ブロック6−1では、ARMAモデル同定部5で求めら
れた係数を用いて表わしたパルス伝達関数0、(Z) において、時間推移演算子2にeTSを代入した伝達関
数を構成するブロックである。
The block 6-1 is a block that constitutes a transfer function in which eTS is substituted for the time transition operator 2 in the pulse transfer function 0, (Z) expressed using the coefficients determined by the ARMA model identification unit 5.

ひきつづき、ブロック6−2では、u(k)がサンプリ
ンタされホールドされていることによる生ずる側帯波の
影響を除去するための補正用の伝達関数△(s)を構成
するブロックである。最後のブロック6−3では、ブロ
ック6−1とブロック6−2で構成された伝達関数にも
とづき、角周波数ωを輻inとωrrIIXの間で、 0AINとPHA、9Eを演算するブロックである。
Continuing on, block 6-2 is a block that configures a correction transfer function Δ(s) for removing the influence of sidebands caused by u(k) being sampled and held. The last block 6-3 is a block that calculates 0AIN, PHA, and 9E by changing the angular frequency ω between the radial in and ωrrIIX based on the transfer function formed by the blocks 6-1 and 6-2.

側帯波を除去するように補正する伝達関数△(S)を用
いた周波数特性演算部6の演算性能を次に示す。
The calculation performance of the frequency characteristic calculation unit 6 using the transfer function Δ(S) corrected to remove sidebands will be shown below.

まず、第4式のGp(Σ)は、第5式の伝達関数G(5
)をARSIAモデルにより同定したパルス伝達関数で
ある。
First, Gp(Σ) in the fourth equation is the transfer function G(5
) is the pulse transfer function identified using the ARSIA model.

・・・・・・・・・ 第4式 第3図は、周波数特性演算部6の演算性能を比較したも
のである。同図において、実線Aおよび曲線Aは、第5
式の伝達関数のゲイン(実線)と位相(点線)の周波数
特性であり、実線Bおよび点線Bは、第4式のパルス伝
達関数の周波数特性であり、実@Cおよび点線Cが周波
数特性演算部6により演算した周波数特性である。同図
より低周波から高周波まで、実線Cおよび点線Cが実線
Aおよび実IAとそれぞれ一致していることがわかる。
. . . Equation 4 FIG. 3 compares the calculation performance of the frequency characteristic calculation section 6. In the same figure, solid line A and curve A represent the fifth
These are the frequency characteristics of the gain (solid line) and phase (dotted line) of the transfer function of the equation, the solid line B and the dotted line B are the frequency characteristics of the pulse transfer function of the fourth equation, and the real @C and dotted line C are the frequency characteristics calculation This is the frequency characteristic calculated by section 6. It can be seen from the figure that the solid line C and the dotted line C match the solid line A and the real IA, respectively, from low frequencies to high frequencies.

〔発明の効果〕〔Effect of the invention〕

以上詳述してきたように、同定したA RM Aモデル
から、ホールド要素の効果を除くように補正する伝達関
数を用いることにより、低周波から高周波まで正確なゲ
イン・位相特性が演算される。
As described in detail above, by using a transfer function that is corrected to remove the effect of the hold element from the identified ARM A model, accurate gain and phase characteristics can be calculated from low frequencies to high frequencies.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る伝達関数の測定製蓋の構造を示
すブロック図、第2図は、最も中心となる周波数特性演
算部の演算ブロック図、第3図は、比較のため示した周
波数特性図である。 5・・・ARMAモデル同定部、6・・・周波数特性演
算部、6−2・・・補正用伝達関数ブロック。 代理人 弁理士 則 近 憲 佑 同    竹 花 喜久男 第 1 図 第2図
Fig. 1 is a block diagram showing the structure of the transfer function measurement lid according to the present invention, Fig. 2 is a calculation block diagram of the most central frequency characteristic calculation section, and Fig. 3 is shown for comparison. It is a frequency characteristic diagram. 5... ARMA model identification section, 6... Frequency characteristic calculation section, 6-2... Correction transfer function block. Agent Patent Attorney Noriyuki Chika Yudo Kikuo Takehana Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] プロセスの制御量(出力)と操作量(入力)を一定のサ
ンプリング周期で入力して、プロセスのARMA(自己
回帰移動平均)モデルを同定する手段と、同定したAR
MAモデルの係数と、サンプリング周期と、サンプリン
グの効果を除くように補正する補正用伝達関数よりプロ
セスの伝達関数のゲインと位相の周波数特性を演算する
手段を備えたことを特徴とした伝達関数測定装置。
A means for identifying an ARMA (autoregressive moving average) model of a process by inputting a controlled variable (output) and a manipulated variable (input) of a process at a constant sampling period, and an identified AR
Transfer function measurement characterized by comprising means for calculating the frequency characteristics of the gain and phase of the process transfer function from the coefficients of the MA model, the sampling period, and the correction transfer function that corrects to remove the sampling effect. Device.
JP61187750A 1986-08-12 1986-08-12 Transmission function measuring apparatus Pending JPS6344177A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP61187750A JPS6344177A (en) 1986-08-12 1986-08-12 Transmission function measuring apparatus
US07/085,726 US4882526A (en) 1986-08-12 1987-08-10 Adaptive process control system
DE3750203T DE3750203T2 (en) 1986-08-12 1987-08-11 Adaptive process control system.
EP87307109A EP0256842B1 (en) 1986-08-12 1987-08-11 Adaptive process control system
KR1019870008826A KR900005546B1 (en) 1986-08-12 1987-08-12 Adaptive Process Control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61187750A JPS6344177A (en) 1986-08-12 1986-08-12 Transmission function measuring apparatus

Publications (1)

Publication Number Publication Date
JPS6344177A true JPS6344177A (en) 1988-02-25

Family

ID=16211544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61187750A Pending JPS6344177A (en) 1986-08-12 1986-08-12 Transmission function measuring apparatus

Country Status (1)

Country Link
JP (1) JPS6344177A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59204714A (en) * 1983-05-10 1984-11-20 Koito Mfg Co Ltd Measuring device for vehicle
WO2007002770A2 (en) * 2005-06-27 2007-01-04 Qualcomm Flarion Technologies, Inc. Methods and apparatus for implementing and using amplifiers for performing various amplification related operations
US7289050B1 (en) 2005-06-27 2007-10-30 Qualcomm Incorporated Amplification method and apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59204714A (en) * 1983-05-10 1984-11-20 Koito Mfg Co Ltd Measuring device for vehicle
JPH0217064B2 (en) * 1983-05-10 1990-04-19 Koito Mfg Co Ltd
WO2007002770A2 (en) * 2005-06-27 2007-01-04 Qualcomm Flarion Technologies, Inc. Methods and apparatus for implementing and using amplifiers for performing various amplification related operations
WO2007002770A3 (en) * 2005-06-27 2007-03-22 Qualcomm Flarion Tech Methods and apparatus for implementing and using amplifiers for performing various amplification related operations
US7289050B1 (en) 2005-06-27 2007-10-30 Qualcomm Incorporated Amplification method and apparatus
US7405686B2 (en) 2005-06-27 2008-07-29 Qualcomm Incorporated Methods and apparatus for implementing and/or using amplifiers and/or for performing various amplification related operations

Similar Documents

Publication Publication Date Title
Zheng et al. Real-time dynamic displacement monitoring with double integration of acceleration based on recursive least squares method
KR101885009B1 (en) Angle error correction device and angle error correction method for position detector
US20160123796A1 (en) Frequency-response measurement device
US9773489B2 (en) Active vibration noise control apparatus
US6046595A (en) Group delay estimate system using least square fit to phase response ramp
US4310892A (en) Method for determining imbalance in a mechanical system
JPH0290082A (en) Measuring device for detecting distance "h" up to body
CN109670139B (en) Method and system for determining tracking frequency of ultrasonic turning device
Andria et al. Interpolated smoothed pseudo Wigner-Ville distribution for accurate spectrum analysis
JPS6344177A (en) Transmission function measuring apparatus
JPS60192269A (en) Method and device for measuring frequency
CN111551785B (en) Frequency and Harmonic Detection Method Based on Unscented Kalman Filtering
US5646541A (en) Apparatus and method for measuring circuit network
JPH04328471A (en) Digital signal measuring apparatus
JP4242346B2 (en) Method for determining the envelope of a modulated signal
CN109633623B (en) Radar speed tracking loop design method
JPS63247806A (en) Transfer function measuring device
Yurasova et al. Dynamic measurement errors correction adaptive to noises of a sensor
CN112881799A (en) FFT (fast Fourier transform) -based harmonic detection method for ground power system
CN113917384B (en) Estimation Method of Output Harmonic Parameters of Capacitor Voltage Transformer
RU2166789C2 (en) Method for determining transfer function coefficients of linear dynamic entities
JPH03162620A (en) Correction system for characteristic of body to be measured
JPS6365964B2 (en)
CN107147373B (en) Composite filtering method and device
JP4489311B2 (en) Signal analyzer