[go: up one dir, main page]

JPS6344150A - Bubble detector for solution infusion pipe - Google Patents

Bubble detector for solution infusion pipe

Info

Publication number
JPS6344150A
JPS6344150A JP18677686A JP18677686A JPS6344150A JP S6344150 A JPS6344150 A JP S6344150A JP 18677686 A JP18677686 A JP 18677686A JP 18677686 A JP18677686 A JP 18677686A JP S6344150 A JPS6344150 A JP S6344150A
Authority
JP
Japan
Prior art keywords
light
pipe
infusion tube
light sources
bubbles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18677686A
Other languages
Japanese (ja)
Inventor
Gen Sato
弦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koken Co Ltd
Original Assignee
Koken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koken Co Ltd filed Critical Koken Co Ltd
Priority to JP18677686A priority Critical patent/JPS6344150A/en
Publication of JPS6344150A publication Critical patent/JPS6344150A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To enable the detection of bubbles in a liquid at a high accuracy, by irradiating a cylindrical liquid conveying pipe with two light sources of monochoric light or the like. CONSTITUTION:Two light sources 2 and 2' are arranged as opposed on the right and left of a solution infusion pipe 4 for a fluorocarbon resin in a yoke 3 and a light receiving element 1 is provided at the right angle to the pipe 4 on a plane containing the light sources 2 and 2'. The light sources 2 and 2' herein used are preferably monochroic light or the like with the wavelength of about 300-1,100nm from a light emitting diode which generates visible light or the like and the yoke 3 is made of a black synthetic resin. A chemical aqueous solution is made to flow into the pipe 4, which then is, irradiated with the light sources 2 and 2'. At this point, as bubbles existing in the chemical aqueous solution passes through a light irradiation portion in the pipe 4, the inner wall surface of the pipe 4 is made reflective and refractive with air contacting the surface. Thus, being circular arc in the shape, the inner wall surface of the pipe 4 causes a scattered reflection, yet a part of the transmission light is made to irradiate the element 1 by reflected and refraction to actuate it 1 thereby enabling detection of bubbles with an increase in the output of the element 1.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は輸液管を流れる液体中の気泡検出装置に関し、
特に簡単で且つ精度の高い気泡検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a device for detecting air bubbles in a liquid flowing through an infusion tube.
In particular, it relates to a simple and highly accurate bubble detection device.

(従来の技術) 従来より患者に輸液を行う際、その薬液中に気泡が存在
すると空気により血栓を生じ、患者に対して極めて危険
なことになりかねないので、薬液中の空気を注入しない
ように保証することは極めて重要なことである。このた
め輸液注入ポンプなどの装置と共に輸液管内における気
泡を検出するための種々の検出装置が開発されているが
、これらの装置は機械的な調整が困難であるため一般に
その操作の信頼性は低い。また、受光素子を使用し液体
の屈折率と空気の屈折率との差、或は透過光を利用して
液体中の気泡の存在を検出する装置がある。例えば米国
特許第4 、366384号は、1つの光源と2つの受
光素子を設置し、1つの受光素子は反射光を、他の受光
素子は透過光を感知して気泡の検出を行っているが、1
つの光源で反射光と透過光を感知するためその調整が困
難であり、また、特開昭59−184843号は1つの
光源を輸液管の平坦部に照射させその平坦面における反
射特性によって気泡の存在を検出しているが、輸液管に
このような平坦面を設けることは極めて困難である。
(Prior art) Conventionally, when injecting fluid into a patient, if air bubbles are present in the drug solution, the air can cause blood clots, which can be extremely dangerous to the patient, so care has been taken to avoid injecting air in the drug solution. It is extremely important to ensure that For this reason, various detection devices have been developed to detect air bubbles in infusion tubes along with devices such as infusion pumps, but these devices are difficult to mechanically adjust, so their operation is generally unreliable. . There is also a device that uses a light receiving element to detect the presence of bubbles in a liquid by using the difference between the refractive index of the liquid and the refractive index of the air, or by using transmitted light. For example, in U.S. Pat. No. 4,366,384, one light source and two light receiving elements are installed, and one light receiving element detects reflected light and the other light receiving element senses transmitted light to detect bubbles. ,1
Adjustment is difficult because reflected light and transmitted light are sensed with one light source, and Japanese Patent Application Laid-Open No. 184843/1984 illuminates the flat part of the infusion tube with one light source and uses the reflection characteristics of the flat surface to eliminate air bubbles. However, it is extremely difficult to provide such a flat surface on an infusion tube.

(解決しようとする問題点) 本発明者らは上記の欠点を改良すべく種々検討した結果
、二つの単色光又は半単色光よりなる光源を用いること
により通常の輸液管を使用しても極めて簡単にして精度
の高い気泡検出装置が得られることを見出し、本発明を
完成したもので1本発明の目的は簡単で且つ精度の高い
気泡検出装置を提供するものである。
(Problems to be Solved) As a result of various studies to improve the above-mentioned drawbacks, the present inventors found that by using a light source consisting of two monochromatic or semi-monochromatic lights, even when using a normal infusion tube, It was discovered that a simple and highly accurate bubble detecting device could be obtained, and the present invention was completed.An object of the present invention is to provide a simple and highly accurate bubble detecting device.

(問題点を解決するための手段) すなわち、本発明は、透明もしくは半透明の円柱状の輸
液管に対して水平な面に該管の左右に相対向した対称な
る位置に2個のiIL色光もしくは半単色光の光源を設
置すると共に輸液管に垂北て、且つ、前記光源を含む平
面内に前記光源からの直する受光素子を設けたことを特
徴とする輸液管における気泡検出装置である。しかして
、本発明は211Mの光源によって輸液管が照射されて
いるが、この2個の光源間の光路の上に気泡が通過する
と屈折率に変化をもたらし、これを受光素子が感知して
気泡を検出するのである。本発明においては光源は輸液
管の左右相対向した位置に2個設置することが必要であ
って、光源を1個とした場合気泡が管体内を通過しても
受光素子方向への反射光が前述の光g2個の場合はど強
くなく、更に管体中の気泡の通過位置によって受光素子
方向への反射光の光量が著しく少なくその結果受光素子
の出力信号は低レベルとなり気泡検出能が低い6さらに
、輸液管の断面は円形であるため照射光は管の外壁面及
び内壁面で乱反射を生ずるが、本発明では2個の光源の
ために照射光が気泡検出に影響する程減衰することはな
く、また1反射光の大部分はヨークに吸収されるので、
気泡検出には殆ど影響しない。本発明で使用する輸液管
の材料としては通常使用されている何れのものでもよく
、例えばフッ素樹脂、ポリ塩化ビニル樹脂、メタクリル
樹脂、ポリエチレン樹脂、シリコンゴム等の輸液管が使
用される。また気泡検知に使用される光源としては波光
が300〜1100no+の単色光又は半単色光であり
、受光部の受光素子としては波長が300〜1l100
nの単色光または半単色光を検知するものである。そし
て本発明における光源間の光路は必ずしも輸液管に対し
直交する必要はないが、光の強度の点より直交する場合
が好ましく、また1本発明の気泡検出器は輸液管に対し
て単独で使用しても、或は、必要に応じて複数個使用し
てもよい。
(Means for Solving the Problems) That is, the present invention provides two iIL color lights at symmetrical positions opposite to each other on the left and right sides of a transparent or translucent cylindrical infusion tube in a horizontal plane. Alternatively, there is a bubble detection device in an infusion tube, characterized in that a light source of semi-monochromatic light is installed, and a light-receiving element that extends from the infusion tube and receives light from the light source is provided in a plane that includes the light source. . However, in the present invention, the infusion tube is illuminated by a 211M light source, but when a bubble passes on the optical path between these two light sources, the refractive index changes, and the light receiving element detects this and detects the bubble. It detects. In the present invention, it is necessary to install two light sources at opposite positions on the left and right sides of the infusion tube, and if there is only one light source, even if bubbles pass through the tube, the reflected light toward the light receiving element will not be reflected. In the case of the two light beams described above, the intensity is not strong, and furthermore, depending on the passage position of the bubble in the tube, the amount of reflected light towards the light receiving element is extremely small.As a result, the output signal of the light receiving element is at a low level and the bubble detection ability is low. 6 Furthermore, since the cross section of the infusion tube is circular, the irradiated light causes diffuse reflection on the outer and inner wall surfaces of the tube, but in the present invention, because of the two light sources, the irradiated light is attenuated to the extent that it affects bubble detection. Since most of the reflected light is absorbed by the yoke,
It has almost no effect on bubble detection. The material for the infusion tube used in the present invention may be any commonly used material, such as fluororesin, polyvinyl chloride resin, methacrylic resin, polyethylene resin, silicone rubber, or the like. The light source used for bubble detection is monochromatic or semi-monochromatic light with a wave length of 300 to 1100 NO+, and the light receiving element of the light receiving section has a wavelength of 300 to 1100 NO+.
It detects n monochromatic or semi-monochromatic light. Although the optical path between the light sources in the present invention does not necessarily have to be perpendicular to the infusion tube, it is preferable to do so in view of the intensity of the light. Alternatively, a plurality of them may be used as necessary.

本発明を図面について説明する。第1図は本発明の気泡
検出装置の概略図であり、第2図はその平面断面図であ
る。図面において、輸液管4の左右に相対向する2個の
光源2.2′を設ける。光源としては可視光又は赤外光
を発生する光発生ダイオードの波長が300〜1l10
0nの単色光又は半単色光を使用するのが好ましく、ま
た、光源2,2′を含む平面上で輸液管に対して直角方
向に受光素子1を設ける。そして、輸液管と光源及び受
光素子の各位置関係を前記のように保ちながら輸液管を
保持するヨーク3中に前記の光源及び受光素子を設置す
る。ヨーク3は外乱光を透過しないような黒色の合成樹
脂でつくられている。なお、出来るだけ外乱光の影響を
受けないように光源に偏調をかけることが望ましい。
The invention will be explained with reference to the drawings. FIG. 1 is a schematic diagram of the bubble detection device of the present invention, and FIG. 2 is a plan sectional view thereof. In the drawing, two light sources 2.2' are provided on the left and right sides of the infusion tube 4, facing each other. As a light source, a light generating diode that generates visible light or infrared light has a wavelength of 300 to 1l10.
It is preferable to use 0n monochromatic or semi-monochromatic light, and the light receiving element 1 is provided in a direction perpendicular to the infusion tube on a plane containing the light sources 2, 2'. Then, the light source and light receiving element are installed in the yoke 3 that holds the infusion tube while maintaining the respective positional relationships between the infusion tube, the light source, and the light receiving element as described above. The yoke 3 is made of a black synthetic resin that does not transmit disturbance light. Note that it is desirable to bias the light source so that it is not affected by disturbance light as much as possible.

次に例示した装置の操作について述べる。Next, the operation of the illustrated device will be described.

薬液水溶液が輸液管体4の内部内を流動し、光′g2及
び2″より輸液管を照射する。輸液管の外壁面で照射光
は僅かに反射を生ずるが大部分は輸液管を透過する。輸
液管内に薬液水溶液が存在するときは内壁面は該水溶液
と接触しているので内壁面でも実質的に反射性・屈折性
を持たないので光は反対側に透過されるか或は液体によ
り吸収され受光素子1は実質的には作動しない。なお照
射光の一部は内壁面及び外壁面で反射・屈折して受光素
子1を照射する場合もあるが、この光量は極めて僅かな
ので受光素子の出力信号は小さく無視できる。薬液水溶
液中に気泡が存在し、管内の光照射部分を気泡が通過す
ると、空気が該管体の内壁面と接触するため該面が反射
性・屈折性となる。
The aqueous drug solution flows inside the infusion tube body 4, and the infusion tube is irradiated with light 'g2 and 2''.The irradiated light is slightly reflected on the outer wall of the infusion tube, but most of it passes through the infusion tube. When an aqueous drug solution is present in the infusion tube, the inner wall surface is in contact with the aqueous solution, so the inner wall surface has virtually no reflective or refractive properties, so light is transmitted to the opposite side or is absorbed by the liquid. It is absorbed and the light-receiving element 1 does not substantially operate.Although some of the irradiated light may be reflected and refracted by the inner and outer wall surfaces and illuminate the light-receiving element 1, the amount of this light is extremely small, so the light-receiving element 1 does not operate. The output signal of is small and can be ignored. When air bubbles exist in the aqueous chemical solution and the bubbles pass through the light irradiated part of the tube, the air comes into contact with the inner wall surface of the tube body, making that surface reflective and refractive. .

しかして、該管体の内壁面は円弧状であるため、乱反射
を生ずるが必ず透過光の一部は反射・屈折により受光素
子1を照射することとなる。更に、空気と液体の境界面
上においても反射・屈折を生ずる。これらの結果、透過
光の大部分は反射・屈折により受光素子を作動し受光素
子の出力が著しく増大する結果となる。
However, since the inner wall surface of the tube is arcuate, diffuse reflection occurs, but a portion of the transmitted light inevitably irradiates the light receiving element 1 by reflection and refraction. Furthermore, reflection and refraction also occur on the interface between air and liquid. As a result, most of the transmitted light operates the light receiving element by reflection and refraction, resulting in a significant increase in the output of the light receiving element.

(発明の効果) 本発明は上述したように従来使用されている円柱状の輸
液管を2個の単色光もしくは牛車色光の光源で照射する
という極めて簡単な装置により高精度で液体中の気泡を
検出することが出来、しかもその操作及び調整は、従来
のものに比して容易である等の効果を奏する。
(Effects of the Invention) As described above, the present invention detects air bubbles in a liquid with high precision using an extremely simple device in which a conventionally used cylindrical infusion tube is irradiated with two monochromatic light sources or oxcart color light sources. It can be detected, and its operation and adjustment are easier than conventional ones.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明するための概略図であり、
第2図はその平面断面図である。
FIG. 1 is a schematic diagram for explaining the present invention in detail,
FIG. 2 is a plan sectional view thereof.

Claims (1)

【特許請求の範囲】[Claims] 透明もしくは半透明の円柱状の輸液管に対して水平な面
に該管の左右に相対向した対称なる位置に2個の単色光
もしくは半単色光の光源を設置すると共に輸液管に垂直
にして且つ、前記光源を含む平面内に前記光源からの直
射光を受けない位置に輸液管中の気体が存在する際には
当該輸液管内面及び気体と輸液との境界面が光学的に反
射性を有することを検知する受光素子を設けたことを特
徴とする輸液管における気泡検知装置
Two monochromatic or semi-monochromatic light sources are installed at symmetrical positions facing each other on the left and right sides of the transparent or translucent cylindrical infusion tube on a horizontal plane, and are perpendicular to the infusion tube. In addition, when the gas in the infusion tube exists in a position that does not receive direct light from the light source within a plane that includes the light source, the inner surface of the infusion tube and the interface between the gas and the infusion have optical reflectivity. A bubble detection device in an infusion tube, characterized by being provided with a light-receiving element that detects the presence of air bubbles in an infusion tube.
JP18677686A 1986-08-11 1986-08-11 Bubble detector for solution infusion pipe Pending JPS6344150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18677686A JPS6344150A (en) 1986-08-11 1986-08-11 Bubble detector for solution infusion pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18677686A JPS6344150A (en) 1986-08-11 1986-08-11 Bubble detector for solution infusion pipe

Publications (1)

Publication Number Publication Date
JPS6344150A true JPS6344150A (en) 1988-02-25

Family

ID=16194411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18677686A Pending JPS6344150A (en) 1986-08-11 1986-08-11 Bubble detector for solution infusion pipe

Country Status (1)

Country Link
JP (1) JPS6344150A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023171252A1 (en) * 2022-03-08 2023-09-14 キヤノン株式会社 Culture device, cell density measurement device, and cell density measurement method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS554579A (en) * 1978-06-27 1980-01-14 Meidensha Electric Mfg Co Ltd Measuring method of bubble amounts in liquid
JPS6114459A (en) * 1984-06-28 1986-01-22 Caterpillar Mitsubishi Ltd Air-fuel ratio controller for gas engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS554579A (en) * 1978-06-27 1980-01-14 Meidensha Electric Mfg Co Ltd Measuring method of bubble amounts in liquid
JPS6114459A (en) * 1984-06-28 1986-01-22 Caterpillar Mitsubishi Ltd Air-fuel ratio controller for gas engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023171252A1 (en) * 2022-03-08 2023-09-14 キヤノン株式会社 Culture device, cell density measurement device, and cell density measurement method

Similar Documents

Publication Publication Date Title
EP0121848B1 (en) Apparatus for detecting bubbles in a liquid
US6806947B1 (en) Apparatus for monitoring a fluid conduit
JP3698732B2 (en) Erythrocyte outflow detection technology
US4658244A (en) Air-in-line detector
US8269953B2 (en) Spectroscopic detector and method for determining the presence of blood and biological marker substances in liquids
FR2106060A5 (en)
EP0682232A2 (en) Fluid sensing/flow detection apparatus
JPH0257239A (en) Probe for optical sensor
MX2007007906A (en) System and method of non-invasive continuous level sensing.
CN208905860U (en) Detection device for the medium in pipe section and the Medical Devices including it
CN112326604A (en) System and method for detecting bubbles in liquid path of full-automatic chemiluminescence immunoassay analyzer
US5838429A (en) Apparatus for measuring physiological parameters of blood guided in an extracorporeal circulatory system
CN102565063A (en) Reagent detection device, system, method, blood analysis device
JPS6344150A (en) Bubble detector for solution infusion pipe
EP0245272A1 (en) A device for detecting the presence or absence of liquid in a vessel
EP0116746A3 (en) Apparatus and method for measuring refractive index of liquids
JPS6385336A (en) Turbidity meter
JPH02176543A (en) Method and apparatus for detecting interface between liquid and gas and bubble within liquid
JP2016223878A (en) Transmitted light intensity measurement unit
SU855445A1 (en) Tray for x-ray analysis of inflammable liquids
JP2018189608A (en) Photometer
JP6161065B2 (en) Blood information measuring device and measuring method
US20230098744A1 (en) Multi-Wavelength Ozone Concentration Sensor and Method of Use
JPH08247933A (en) Detection device of particle concentration in liquid
JPH08508920A (en) Air sensor in dual sensor line