[go: up one dir, main page]

JPS6344142A - Monitoring of immersion for optical fiber cable - Google Patents

Monitoring of immersion for optical fiber cable

Info

Publication number
JPS6344142A
JPS6344142A JP18699886A JP18699886A JPS6344142A JP S6344142 A JPS6344142 A JP S6344142A JP 18699886 A JP18699886 A JP 18699886A JP 18699886 A JP18699886 A JP 18699886A JP S6344142 A JPS6344142 A JP S6344142A
Authority
JP
Japan
Prior art keywords
optical
optical fiber
light
pulse
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18699886A
Other languages
Japanese (ja)
Inventor
Toshiaki Matsumoto
松本 俊明
Yutaka Hagiwara
裕 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP18699886A priority Critical patent/JPS6344142A/en
Publication of JPS6344142A publication Critical patent/JPS6344142A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/042Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point by using materials which expand, contract, disintegrate, or decompose in contact with a fluid
    • G01M3/045Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point by using materials which expand, contract, disintegrate, or decompose in contact with a fluid with electrical detection means
    • G01M3/047Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point by using materials which expand, contract, disintegrate, or decompose in contact with a fluid with electrical detection means with photo-electrical detection means, e.g. using optical fibres

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To achieve the efficiency of searching work, by inserting a light testing circuit containing a light wavelength filter for reflecting or transmitting a specified optical pulse signal alone into an optical fiber core at a connection where an optical fiber cable is branched off to measure a reflection waveform. CONSTITUTION:When an optical fiber cable 13 is searched, a light test pulse with the wavelength lambda1 is used. This pulse is sent out to an optical fiber core 20 from an optical main distributing board 50 and enters a light testing circuit 71 in an optical fiber branch section 41. A light wavelength filter 81 in the circuit 71 totally reflects light with the wavelength lambda1 while transmitting lights with other wavelengths lambda2 and lambda3 to be propagated to an optical fiber core 23. A back scattered light of a light test pulse is inputted reversely into a optical pulse tester 60 via the core 23, the circuit 71 and the core 20. Now when light loss of a water infiltration detecting sensor 33 increases by several dB with the filtration of water at a connection of the optical fiber, the detection of the filtration point is made possible depending on an input waveform of the tester 60. Likewise, an optical test with the wavelength lambda2 is used in the searching of the optical fiber cable.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、加入者光線路あるいは中継光線路において、
光フアイバケーブルが分岐している場合の光フアイバケ
ーブル内の浸水を監視する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention provides for a subscriber optical line or a relay optical line,
The present invention relates to a method of monitoring water intrusion in an optical fiber cable when the optical fiber cable is branched.

(従来の技術) 光フアイバケーブルの浸水監視方法としては、予防保全
対策として光フアイバケーブル内に65051 / c
iの乾燥空気(Aガス)を封入する方法と、光フアイバ
ケーブルの接続点に浸水検知センサを設置して浸水を監
視する方法の2通りがある。
(Prior art) As a method for monitoring water intrusion into optical fiber cables, 65051/c is installed inside optical fiber cables as a preventive maintenance measure.
There are two methods: one is to enclose dry air (A gas), and the other is to install a water intrusion detection sensor at the connection point of the optical fiber cable to monitor water intrusion.

第2図はAガスを封入しない場合の、光フアイバケーブ
ルの接続点への浸水を監視する浸水検知センサを利用J
る従来方式の構成図である。ここで、10.11,12
,13.14は光フアイバケーブル、20.21.22
.23.24は光フアイバ心線、30.31,32,3
3.34゜35.36.37.38.39は浸水検知セ
ン量す、41.42は光フアイバケーブルの分岐部分、
50は先主配線器(光MDF)、60は光パルス試験器
(0TDR)である。
Figure 2 shows the use of a water intrusion detection sensor to monitor water intrusion into the connection point of an optical fiber cable when A gas is not sealed.
FIG. 2 is a configuration diagram of a conventional method. Here, 10.11,12
, 13.14 is optical fiber cable, 20.21.22
.. 23.24 is optical fiber core wire, 30.31, 32, 3
3.34゜35.36.37.38.39 is the water intrusion detection sensor weight, 41.42 is the branch part of the optical fiber cable,
50 is a main wiring device (optical MDF), and 60 is an optical pulse tester (0TDR).

たとえば光フアイバケーブル10に浸水が発生した場合
、ケーブル内に設置した浸水検知センサ30の動作によ
り、浸水個所の光損失が局部的に数dB増加するので、
光パルス試験器60により浸水個所を探知することがで
きる。浸水検知センサ32〜39は、その構造を第8図
(^)(B)に示すが、支持枠2で2点間を支持された
光フアイバ心線20〜21′lの中間部位において、水
に接触すると収縮する繊維製糸1を光フアイバ心線に掛
は渡しである(第8図(A))。このピン1ノが水に接
触すると糸1が収縮し光フアイバ心線20〜24が急激
に曲げられ(第8図FB))、伝送損失が急激に増加す
るので、パルス試験器60 +、’:より浸水個所を測
定゛Cきる。光フアイバ心線の伝送損失は第9図のよう
に変位量が増すにしたがって急激に増加する。
For example, when the optical fiber cable 10 is flooded, the optical loss at the flooded location locally increases by several dB due to the operation of the flood detection sensor 30 installed inside the cable.
The optical pulse tester 60 can detect flooded areas. The structure of the water immersion detection sensors 32 to 39 is shown in FIG. 8(^)(B). The fiber yarn 1, which contracts when it comes into contact with the optical fiber, is hung on the optical fiber (FIG. 8(A)). When this pin 1 comes into contact with water, the thread 1 contracts and the optical fiber cores 20 to 24 are sharply bent (FIG. 8 FB)), causing a sudden increase in transmission loss. : Measurement of flooded areas is possible. As shown in FIG. 9, the transmission loss of the optical fiber increases rapidly as the amount of displacement increases.

1条の光フアイバケーブル10が分岐部分41゜42で
光ケーブル13.14に分岐する場合、光フアイバケー
ブル13.14の監祉1には売主配線盤50から浸水検
知センサ32,33,36゜37聞に各々1本の光ファ
イバ心123.24を使用する必要がある。
When one fiber optic cable 10 branches into an optical cable 13.14 at a branch portion 41.degree. 42, water intrusion detection sensors 32, 33, 36.degree. It is necessary to use one optical fiber core 123, 24 for each period.

浸水箇所の探索は、局内の光↑配線盤50から光パルス
試験:巴60の光試験パルスによって生じる光フアイバ
内の後方散乱光を光パルス試験器60で受信づることに
より行われる。
The search for a flooded area is performed by receiving backscattered light in the optical fiber generated by the optical test pulse of the optical pulse test: tomoe 60 from the optical distribution board 50 in the station, using the optical pulse tester 60.

後方散乱光の受信例を第7図に示す。図に示すように浸
水点あるいは光フアイバ破断点にJ3いては受信レベル
が不連続に減少するので、その受信レベルの変動ωから
光フアイバケーブルの浸水点あるいは破断点を検知する
ことができる。
FIG. 7 shows an example of receiving backscattered light. As shown in the figure, the receiving level decreases discontinuously at J3 at the submergence point or optical fiber breakage point, so the submergence point or breakage point of the optical fiber cable can be detected from the fluctuation ω of the reception level.

(発明が解決しようとする問題点) しかし、このような従来の方法では次のような欠点があ
った。
(Problems to be Solved by the Invention) However, such conventional methods have the following drawbacks.

■ 光フアイバケーブルの分岐しCいろ場合、分岐光フ
ァイバケーブル毎に1心の光フアイバ心線が必要となる
■ When branching optical fiber cables, one optical fiber core is required for each branching optical fiber cable.

■ 分岐光ファイバケーブル毎に光パルス試験を行う場
合、局内の売主配線盤50でその都度光コネクタにより
接続替えを行う必要がある。このため、接続替え作業が
多くなり、光コネクタの汚れあるいは傷の発生、光コネ
クタ部分での光フアイバ心線の新線が発生しやすかった
(2) When conducting an optical pulse test for each branched optical fiber cable, it is necessary to change connections each time using an optical connector at the seller distribution board 50 in the station. As a result, there is a need for a lot of reconnection work, and the optical connector is likely to become dirty or scratched, and a new optical fiber core wire is likely to be formed at the optical connector.

(発明の目的) 本発明の目的は、光フアイバ心線を用いて浸水箇所の探
索を行う場合、分岐のおる光線路において分岐の数だけ
測定用の光フアイバ心線が増す点を解決し、1本の測定
用光フアイバ心線で実施することができるとともに探索
作業の効率化を図ることにある。
(Objective of the Invention) An object of the present invention is to solve the problem that when searching for flooded areas using optical fibers, the number of optical fibers for measurement increases by the number of branches in the optical path where there are branches, The object is to be able to carry out the measurement using a single optical fiber for measurement and to improve the efficiency of the search work.

(問題点を解決するための手段) 本発明は上記目的を達成するため、光フアイバケーブル
を用いた加入者光線路あるいは中継光線路において、光
フアイバケーブルが分岐する接続点の光フアイバ心線に
、特定の波長の光パルス信号のみ反射又は透過する光波
長フィルタを内蔵した光試験回路を挿入し、反射波形を
測定するようにした。
(Means for Solving the Problems) In order to achieve the above-mentioned object, the present invention provides an optical fiber core line at a connection point where an optical fiber cable branches in a subscriber optical line or a relay optical line using an optical fiber cable. An optical test circuit containing a built-in optical wavelength filter that reflects or transmits only optical pulse signals of specific wavelengths was inserted to measure the reflected waveform.

(作 用) 本発明によれば、各試験回路内の光波長フィルタはある
波長の光を反射させ、他の波長の光を透過させるため、
分岐後の光フアイバ心線にそれぞれ光パルス信号を送る
ことができる。
(Function) According to the present invention, since the optical wavelength filter in each test circuit reflects light of a certain wavelength and transmits light of another wavelength,
Optical pulse signals can be sent to each of the branched optical fibers.

(実施例) 第1図は本発明の一実施例を説明する方式構成図であっ
て、従来例と同一構成部分は同一符号をもって表わす。
(Embodiment) FIG. 1 is a system configuration diagram illustrating an embodiment of the present invention, and the same components as in the conventional example are represented by the same symbols.

すなわら10,11.12,13゜14は光フアイバケ
ーブル、20,21,22゜23.24は光フアイバ心
線、30,31.32゜33.34.35,36.37
,38.39は浸水検知センサ、41.42は光フアイ
バケーブルの分岐部分、504ま売主配線盤、60は光
パルス試験器、71.72は光試験回路である。
In other words, 10, 11, 12, 13, 14 are optical fiber cables, 20, 21, 22, 23, 24 are optical fiber core wires, 30, 31, 32, 33, 34, 35, 36, 37
, 38, 39 are water immersion detection sensors, 41, 42 are optical fiber cable branch parts, 504 are seller distribution boards, 60 are optical pulse testers, and 71, 72 are optical test circuits.

光ファイバの分岐部分には光試験パルスを反射又は透過
させるフィルタを有する光試験回路71゜72が挿入さ
れている。
Optical test circuits 71 and 72 having filters that reflect or transmit optical test pulses are inserted into the branch portions of the optical fibers.

第3図、および第4図に光試験回路71.72の構成を
示す。光試験回路71.72は、81基板91上に石英
系導波路で形成した分岐回路92と、20層以上の5i
02 ・l”iQ2交互多層模による長波長通過光波長
フィルタ81.82を4合せて構成している。第5図に
光波長フィルタ81の特性を、第6図に光波長フィルタ
82の特性をそれぞれ示づ。
FIGS. 3 and 4 show the configurations of the optical test circuits 71 and 72. The optical test circuits 71 and 72 include a branch circuit 92 formed of a quartz waveguide on an 81 substrate 91, and a 5i layer of 20 or more layers.
02 ・l"iQ2 It is constructed by combining four long wavelength passing optical wavelength filters 81 and 82 of alternating multilayer pattern. Figure 5 shows the characteristics of the optical wavelength filter 81, and Figure 6 shows the characteristics of the optical wavelength filter 82. Show each.

つぎに本発明による監視方法について)ホベる。Next, regarding the monitoring method according to the present invention).

光フアイバケーブル13を探索する場合、波長λ1の光
試験パルスを用いる。試験パルス21は先主配線盤5か
ら光フアイバ心線20に送出され、光フアイバ分岐部4
1内に配置された光試験回路71に入る。光試験回路7
1内の光波長フィルタ81は第5図に示J如く波長λ1
の光を全反射させ、他の波長λ2.λ3の光を透過させ
る構成であるため、光フアイバ心線23に伝播する。光
試験パルスの後方散乱光は、逆に光フアイバ心線23、
光試験回路71.光ファイバ心線20を経由して、光パ
ルス試験器60に入力される。
When searching the optical fiber cable 13, an optical test pulse of wavelength λ1 is used. The test pulse 21 is sent from the main distribution board 5 to the optical fiber core 20, and is sent to the optical fiber branch 4.
The optical test circuit 71 is located in the optical test circuit 1. Optical test circuit 7
The optical wavelength filter 81 in 1 has a wavelength λ1 as shown in FIG.
, and other wavelengths λ2. Since the configuration allows light of λ3 to pass through, it propagates to the optical fiber core wire 23. The backscattered light of the optical test pulse is conversely transmitted to the optical fiber core 23,
Optical test circuit 71. The signal is input to the optical pulse tester 60 via the optical fiber core 20.

今、光ファイバの接続点に浸水があり、浸水検知センサ
33の光損失が数dB増加すると、光パルス試験器60
の入力波形は第7図のよう゛になり、浸水個所の検知が
可能である。
Now, if there is water intrusion at the connection point of the optical fiber and the optical loss of the water inundation detection sensor 33 increases by several dB, the optical pulse tester 60
The input waveform becomes as shown in Fig. 7, and it is possible to detect a flooded area.

同様に光フアイバケーブル14の探索には波長λ2の光
試験パルスを用いて行うが、分岐部分42内に設置され
ている試験回路72内のフィルタ82は第6図に示す如
く波長λ2の光を反射させ、他の波長λ3の光を透過さ
せろ構成なので、波長λ2の光試験パルスは光フアイバ
心線24へ伝播し、θ水検知センサ36.37の異常を
検知する。
Similarly, the optical fiber cable 14 is searched using an optical test pulse of wavelength λ2, but the filter 82 in the test circuit 72 installed in the branch section 42 detects the light of wavelength λ2 as shown in FIG. Since the configuration is such that the light with the wavelength λ3 is reflected and the light with the other wavelength λ3 is transmitted, the optical test pulse with the wavelength λ2 propagates to the optical fiber core wire 24 and detects an abnormality in the θ water detection sensors 36 and 37.

なJ3、試験光波長は現在、市販されでいろ光パルス試
験器の波長(0,85μm、1.2μm、13μm)を
考慮している。
J3, the test light wavelengths are currently considered to be the wavelengths (0.85 μm, 1.2 μm, 13 μm) of commercially available color optical pulse testers.

(発明の効果) 以上説明したように本発明によれば、光フアイバ心線を
用いて浸水箇所の探索を行う場合、分岐のある光線路に
おいて、従来分岐の数だり光フアイバ心線が必要であっ
たが、分岐づる接点の光フアイバ心線に光試験回路を挿
入し、光試験パルスの波長を変えることによって1本の
光フアイバ心線で浸水箇所を探索できる利点がある。ま
た、先主配線盤での光コネクタの接続替えが無くなり、
探索作業の効率化が図られるとともに、光コネクタの汚
れあるいは傷の′R,生も防ぐことができる利点がある
(Effects of the Invention) As explained above, according to the present invention, when searching for flooded areas using optical fibers, the number of branches and optical fibers are not required in conventional optical paths with branches. However, by inserting an optical test circuit into the optical fiber core of the branching contact point and changing the wavelength of the optical test pulse, there is an advantage that it is possible to search for flooded areas using a single optical fiber core. In addition, there is no need to change the optical connector connection at the main distribution board.
This has the advantage of not only increasing the efficiency of the search work but also preventing stains or scratches on the optical connector.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明する方式構成図、第2図は
従来の光フアイバケーブルの接#A点への浸水を監視す
る方式構成図、第3図及び第4図は本発明に使用する光
試験回路の構成図・第5図及び第6図は試験回路に用い
られる光波長フィルタの特性例を示ず図、第7図は光パ
ルス試験器によるt9方散乱光の受信例3示す図、第8
図(^)1よ浸水検知センサの構造図、同図(B)は動
作説明図、第9図は光ファイバの変位量と損失増の関係
を示ザ図である。 10.11,12,13.14・・・光フアイバケーブ
ル、20.21,22.23.24・・・光フアイバ心
線、30.31.32.33.34.35゜36.37
・・・浸水検知センサ、41.42・・・光フアイバク
ープルの分岐部分、50・・・先主配線盤(光MDF)
、60・・・光パルス試験器、71゜72・・・光試験
回路、81.82・・・光波長フィルタ。
Fig. 1 is a block diagram of a system for explaining the present invention in detail, Fig. 2 is a block diagram of a conventional system for monitoring water intrusion into the connection point A of an optical fiber cable, and Figs. 3 and 4 are diagrams of a system according to the present invention. A configuration diagram of the optical test circuit used. Figures 5 and 6 do not show characteristic examples of the optical wavelength filter used in the test circuit. Figure 7 is an example 3 of reception of t9 direction scattered light by an optical pulse tester. Figure 8
Figure (^) 1 is a structural diagram of a water immersion detection sensor, Figure (B) is a diagram for explaining the operation, and Figure 9 is a diagram showing the relationship between the amount of displacement of the optical fiber and the increase in loss. 10.11, 12, 13.14... Optical fiber cable, 20.21, 22.23.24... Optical fiber core wire, 30.31.32.33.34.35° 36.37
... Water immersion detection sensor, 41.42 ... Branch part of optical fiber couple, 50 ... Main distribution board (optical MDF)
, 60... Optical pulse tester, 71° 72... Optical test circuit, 81.82... Optical wavelength filter.

Claims (1)

【特許請求の範囲】[Claims] 光ファイバケーブルを用いた加入者光線路あるいは中継
光線路において、光ファイバケーブルが分岐する接続点
の光ファイバ心線に、特定の波長の光パルス信号のみ反
射又は透過する光波長フィルタを内蔵した光試験回路を
挿入し、反射波形を測定することを特徴とする光フアイ
バケーブルの浸水監視方法。
In subscriber optical lines or relay optical lines using optical fiber cables, optical fibers at the connection points where optical fiber cables branch have a built-in optical wavelength filter that reflects or transmits only optical pulse signals of specific wavelengths. A method for monitoring flooding of optical fiber cables, which comprises inserting a test circuit and measuring reflected waveforms.
JP18699886A 1986-08-11 1986-08-11 Monitoring of immersion for optical fiber cable Pending JPS6344142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18699886A JPS6344142A (en) 1986-08-11 1986-08-11 Monitoring of immersion for optical fiber cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18699886A JPS6344142A (en) 1986-08-11 1986-08-11 Monitoring of immersion for optical fiber cable

Publications (1)

Publication Number Publication Date
JPS6344142A true JPS6344142A (en) 1988-02-25

Family

ID=16198414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18699886A Pending JPS6344142A (en) 1986-08-11 1986-08-11 Monitoring of immersion for optical fiber cable

Country Status (1)

Country Link
JP (1) JPS6344142A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009258073A (en) * 2008-03-25 2009-11-05 Central Res Inst Of Electric Power Ind Method and apparatus for detecting water of optical fiber composite overhead ground wire
WO2020213466A1 (en) * 2019-04-17 2020-10-22 長野計器株式会社 Physical quantity measurement device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009258073A (en) * 2008-03-25 2009-11-05 Central Res Inst Of Electric Power Ind Method and apparatus for detecting water of optical fiber composite overhead ground wire
WO2020213466A1 (en) * 2019-04-17 2020-10-22 長野計器株式会社 Physical quantity measurement device
JP2020176884A (en) * 2019-04-17 2020-10-29 長野計器株式会社 Physical quantity measuring device

Similar Documents

Publication Publication Date Title
RU2226270C2 (en) Device and method controlling structure with use of signals propagating in mutually antithetical directions to establish localization of disturbances
US7333681B2 (en) Intrusion detection and location system for use on multimode fiber optic cable
CN106052843A (en) Heterodyne-interference-type optical fiber hydrophone time division multiplexing array and demodulation method
US8731342B2 (en) Fiber-optic sensor for liquid-immersion detection and fiber-optic detection system for liquid-immersion detection
RU2131114C1 (en) Apparatus locating hull damage
EP0517161A2 (en) Optical coupler/splitter with a filter
JPH0728266B2 (en) Optical line test method
JPS6344142A (en) Monitoring of immersion for optical fiber cable
SE463385B (en) SET TO USE AN OPTICAL FIBER AS SENSOR
JP4562535B2 (en) Optical splitter and optical splitter monitoring system
JPH06232817A (en) Optical fiber transmitter and testing method for the same
CN1664537A (en) On-line modular test device for fiber optic ring in fiber optic gyroscope
EP4253932A1 (en) Dual-end loopback-based multi-fiber cable measurement
US12264984B2 (en) Dual-end loopback-based multi-fiber cable measurement
JPH02176535A (en) Optical line monitoring device
US20230304892A1 (en) Dual-end loopback-based multi-fiber cable measurement
JPS5915841A (en) Refractive index measuring apparatus
JPH0480671A (en) Power cable abnormal point detector
JPS59226832A (en) Optical ic sensor
JP3039995B2 (en) Characteristic detection method of optical fiber communication line
JPH0793054B2 (en) Humidity detection method for power cable lines
JP3244093B2 (en) Test method and apparatus for branch type optical line
JP3282644B2 (en) Optical component inspection equipment
JPH05281087A (en) Light loss cause searching method
JPH0875606A (en) Monitoring method of optical fiber line