[go: up one dir, main page]

JPS6342791A - Treatment of waste water - Google Patents

Treatment of waste water

Info

Publication number
JPS6342791A
JPS6342791A JP61186886A JP18688686A JPS6342791A JP S6342791 A JPS6342791 A JP S6342791A JP 61186886 A JP61186886 A JP 61186886A JP 18688686 A JP18688686 A JP 18688686A JP S6342791 A JPS6342791 A JP S6342791A
Authority
JP
Japan
Prior art keywords
reaction
waste water
solid
liquid
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61186886A
Other languages
Japanese (ja)
Other versions
JPH0673670B2 (en
Inventor
Kazushige Kawamura
和茂 川村
Takafumi Hashimoto
橋本 尚文
Hiromi Koshizuka
博美 腰塚
Kimio Nishio
西尾 公男
Takashi Tsushima
津島 隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Original Assignee
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Chemical Engineering and Construction Co Ltd
Priority to JP61186886A priority Critical patent/JPH0673670B2/en
Publication of JPS6342791A publication Critical patent/JPS6342791A/en
Publication of JPH0673670B2 publication Critical patent/JPH0673670B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

PURPOSE:To decrease the amt. of the chemical to be used with waste water of a particularly high fluorine concn. and to decrease the amt. of the sludge to be generated by executing a treatment of heavy metals in the waste water, fluorine treatment, dithionic acid treatment and further, SS treatment, etc., in the state of combining the treatments in a manner that the respective treatments can be efficiently executed. CONSTITUTION:(a) A hydrochloric acid and the solid slurry to be generated in the stage (d) to be described afterward are added to and dissolved in the waste water according to the concn. of the chlorine in the waste water; thereafter, a Ca hydroxide or Na hydroxide and liquid heavy metal capturing agent are added thereto and while air is blown to the waste water, a reaction is effected at 5-9 pH and the solid-liquid sepn. of the reactive mixture is thereby executed in a 1st reaction stage. (b) The hydrochloric acid and Al compd. are added to the liquid section from the above- mentioned stage and the reaction is caused at 2-4 pH in the 2nd reaction stage. (c) The Ca hydroxide or Na hydroxide and high-polymer flocculating agent are added to the waste water and the reaction is caused at 6-8 pH in the 3rd reaction stage. (d) The solid-liquid sepn. of the above-mentioned reaction mixture is executed. (e) The liquid section from the stage (d) is brought into contact with a chlorine synthesize type adsorbent in the 4th reaction stage.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は排水の処理υ:に関し、詳しくは湿式排煙脱硫
装置及び周辺設備の各所から排出される排水の処理法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the treatment of wastewater, and more particularly to a method for treating wastewater discharged from various parts of a wet flue gas desulfurization device and peripheral equipment.

[従来の技術とその問題点] 石炭燃焼排ガス中にはSOx 、 NOx 、 HF 
、 HCl2.  フライアッシュ等が含まれており、
湿式排煙脱硫装置やAH,湿式EP、GGH等の各所か
ら排出される排水の性状は極めて複雑であり、除去しな
ければならない物質が多く含まれている。
[Conventional technology and its problems] Coal combustion exhaust gas contains SOx, NOx, and HF.
, HCl2. Contains fly ash etc.
The properties of wastewater discharged from various locations such as wet flue gas desulfurization equipment, AH, wet EP, and GGH are extremely complex, and contain many substances that must be removed.

これら物質を効率良く除去することは当然に望まれるこ
とであるが、これまでに実施され、もしくは提案された
方法は、装置の簡素化、薬剤費などの処理費用、スケー
リング発生などに伴う保守費用等を考慮したとき、必ず
しも効率的であるとは考えられない。
It is naturally desirable to efficiently remove these substances, but the methods that have been implemented or proposed so far have been limited to simplification of equipment, processing costs such as chemical costs, and maintenance costs associated with scaling. Considering the above, it is not necessarily considered to be efficient.

排水から除去しなければならない物質として、たとえば
カドミウム、ヒ素などの重金属類;フッ素;ジチオン酸
;含窒素硫黄化合物等が挙げられ、特に重金属、フッ素
、ジチオン酸の効率的な除去方法が要求されている。
Substances that must be removed from wastewater include, for example, heavy metals such as cadmium and arsenic; fluorine; dithionic acid; and nitrogen-containing sulfur compounds. In particular, an efficient method for removing heavy metals, fluorine, and dithionic acid is required. There is.

従来法による重金属の除去については、高pH処理が必
要とされることから、薬剤使用量、スラッジ生成量やス
ケーリングの発生という問題がある。また、フッ素の除
去に関しては、処理工程が複雑である−1に重金属除去
の場合と同様に薬剤使用量、スラッジ生成量、スケーリ
ングの発生という問題がある。特に、排水中のフッ素濃
度が500ppm以上でホウ素を含有する場合、また特
にホウ素濃度が40ppm以上である場合、アルミニウ
ム添加剤としての硫酸アルミニウム(硫酸パン土)やポ
リ塩化アルミニウム(PAC)の使用量が大巾に増加し
、経済性だけでなくスケーリングの発生という問題が生
じ、安定したフッ素除去率が得られないことを本発明者
らは知見した。さらに、ジチオン酸の吸着除去について
も、吸着の前処理としての軟化操作の段階でスラッジや
スケーリングの発生、さらには薬剤の使用量に問題があ
る。特に、この軟化工程操作の問題は技術的にも経済的
にもマイナス要因として大きい。
Regarding the removal of heavy metals by conventional methods, since high pH treatment is required, there are problems with the amount of chemicals used, the amount of sludge produced, and the occurrence of scaling. In addition, regarding the removal of fluorine, there are problems such as the amount of chemicals used, the amount of sludge produced, and the occurrence of scaling, as in the case of removing heavy metals, as the treatment process is complicated. In particular, when the fluorine concentration in the wastewater is 500 ppm or more and contains boron, and especially when the boron concentration is 40 ppm or more, the amount of aluminum sulfate (sulfuric acid bread earth) or polyaluminum chloride (PAC) used as an aluminum additive. The present inventors have found that the amount of fluorine increases significantly, causing problems not only in terms of economy but also in the occurrence of scaling, making it impossible to obtain a stable fluorine removal rate. Furthermore, regarding the adsorption and removal of dithionic acid, there are problems with the generation of sludge and scaling during the softening operation as a pretreatment for adsorption, and the amount of chemicals used. In particular, this problem in the operation of the softening process is a major negative factor both technically and economically.

[問題点を解決するための手段] 本発明はこれらの問題点を解決して排水を効率よく処理
する方法を提供することを目的としている。すなわち本
発明は重金属、フッ素およびジチオン酸を含有する排水
を以下の工程により順次処理することを特徴とする排水
の処理法に関する。
[Means for Solving the Problems] The present invention aims to solve these problems and provide a method for efficiently treating wastewater. That is, the present invention relates to a method for treating wastewater, which is characterized by sequentially treating wastewater containing heavy metals, fluorine, and dithionic acid through the following steps.

a)排水に該排水中の塩素濃度に応じ塩酸と後記e)工
程で生ずる固形物スラリーを添加溶解後、水酸化カルシ
ウムと水酸化ナトリウムのうちの少なくとも一方ならび
に液状重金属捕集剤を添加し、空気を吹き込みなからP
)15〜9にて反応を行う第1反応工程、 b)第1工程反応混合物の固液分離を行う工程、C)上
記固液分離工程からの液体区分に塩酸とアルミニウム化
合物を添加し、pH2〜4にて反応を行う第2反応工程
、 d)第2工程反応混合物に水酸化カルシウムと水酸化ナ
トリウムのうちの少なくとも一方ならびに高分子凝集剤
を添加し、pH6〜8にて反応を行う第3反応工程、 e)第3工程反応混合物の固液分離を行う工程、f)上
記固液分離工程からの液体区分を塩素型合成吸着材と接
触させる第4反応工程。
a) adding and dissolving hydrochloric acid according to the chlorine concentration in the wastewater and the solid slurry produced in step e) described below to the wastewater, and then adding at least one of calcium hydroxide and sodium hydroxide as well as a liquid heavy metal scavenger; Let's blow some air in
) a first reaction step of carrying out the reaction in steps 15 to 9; b) a step of performing solid-liquid separation of the first step reaction mixture; C) adding hydrochloric acid and an aluminum compound to the liquid fraction from the solid-liquid separation step, and adjusting the pH to 2. d) A second reaction step in which at least one of calcium hydroxide and sodium hydroxide and a polymer flocculant are added to the second step reaction mixture, and the reaction is carried out at pH 6 to 8. 3 reaction steps; e) a step of performing solid-liquid separation of the third step reaction mixture; f) a fourth reaction step of bringing the liquid fraction from the solid-liquid separation step into contact with a chlorine-type synthetic adsorbent.

本発明の対象となる排水は湿式排煙脱硫装置やAH,湿
式EP、 GG)I等の各所から排出されるものであり
、該湿式排煙脱硫装置の方式は灰分離方式、灰混合方式
のいずれであってもよい。
The wastewater that is the object of the present invention is discharged from various places such as wet flue gas desulfurization equipment, AH, wet EP, and GG)I. It may be either.

本発明の第1反応工程では、排水中の塩素イオン濃度に
応じて塩酸を添加して該塩素イオン濃度を1000〜3
0000PP■程度、好ましくは5000〜2DOOO
ppmに増加せしめる。その結果、カルシウム濃度が増
加し、以下の工程において効率的な排水処理を行うこと
が可能となる。さらに、塩酸添加により、e)工程で生
ずる固形物スラリーの溶解を容易にさせる。
In the first reaction step of the present invention, hydrochloric acid is added depending on the chloride ion concentration in the wastewater to adjust the chloride ion concentration to 1000 to 3.
About 0000PP■, preferably 5000~2DOOO
ppm. As a result, the calcium concentration increases, making it possible to perform efficient wastewater treatment in the following steps. Furthermore, the addition of hydrochloric acid facilitates the dissolution of the solid slurry produced in step e).

従来、重金属を除去するためにpnto以上という高p
H領域で処理が行われていたが、本発明では水溶性キレ
ート剤を重金属捕集剤として使用したことにより、高p
H領域での操作が不要となった。これによってマグネシ
ウム等の沈でんによるスラッジ生成量を大巾に減少させ
ることができ、かつpiを5〜9とすることによりフッ
素の大部分を除去することができる。さらに、この第1
反応工程では後記e)工程で分離された固形物または固
形物を含むスラリーを添加し溶解する。この固形物はア
ルミニウムフロックを含んでおり、フッ素処理を容易に
する効果がある。また、重金属捕集剤のほか同一槽に空
気を導入することによりCOD成分である残留SO3,
NO2などを酸化または分解して放出することができる
Conventionally, high p of pnto or higher was used to remove heavy metals.
Previously, treatment was carried out in the H region, but in the present invention, by using a water-soluble chelating agent as a heavy metal scavenger, treatment can be performed in the high p region.
Operation in the H region is no longer necessary. As a result, the amount of sludge produced due to precipitation of magnesium and the like can be greatly reduced, and by setting pi to 5 to 9, most of the fluorine can be removed. Furthermore, this first
In the reaction step, the solids separated in step e) below or a slurry containing solids are added and dissolved. This solid material contains aluminum flocs and has the effect of facilitating fluorine treatment. In addition to the heavy metal scavenger, by introducing air into the same tank, residual SO3, which is a COD component, can be removed.
NO2 etc. can be oxidized or decomposed and released.

次に、第2反応工程では排水に塩酸とアルミニウム化合
物を添加し、pH2〜4にてフルオロホウ酸などのホウ
フッ化物の形で存在するフッ素処理を以下に示す主な分
解反応式により行う。
Next, in the second reaction step, hydrochloric acid and an aluminum compound are added to the waste water, and treatment with fluorine present in the form of fluoroboric acid such as fluoroboric acid is performed at pH 2 to 4 according to the main decomposition reaction formula shown below.

38Fa−+ 4Aff3番+8H20→4A4h+3
8(OH)3 +9H・通常、アルミニウム化合物とし
て硫酸パン上やPACが使用されるが、塩化アルミニウ
ムの使用は溶解APイオン生成速度が速く、かつAJ)
イオン濃度としても高くなることからホウフッ化物の分
解が速く、効率的にフッ素処理を行うことができる。
38Fa-+ 4Aff No.3 +8H20→4A4h+3
8(OH)3 +9H・Usually, sulfuric acid sulfate or PAC is used as an aluminum compound, but the use of aluminum chloride has a fast generation rate of dissolved AP ions, and AJ)
Since the ion concentration is also high, the decomposition of the borofluoride is fast and the fluorine treatment can be carried out efficiently.

さらに、塩化アルミニウムは塩素イオン濃度の増加によ
り処理系を高カルシウム濃度状態に保つことが可能とな
り、ホウ素から分離したフッ素のフッ化カルシウムの生
成が促進され、フッ素の除去を一層効率的に行うことが
できる。また、塩化物であるため硫酸パン上と異なり硫
酸根の生成がなく、また凝集剤としての効果が小さいた
め、COD処理工程等のスケーリング及びフロックノ+
−f着を減少\させることができる。なお、フッ素濃度
が高く、かつホウ素も含まれている場合、たとえばフッ
素濃度5QOppm以1−であり、かつホウ素濃度40
pp+w以上である場合には、アルミニウム化合物とし
て塩化アルミニウムの使用が特に好適となる。
Furthermore, aluminum chloride makes it possible to maintain a high calcium concentration state in the treatment system due to the increase in chloride ion concentration, which promotes the production of calcium fluoride from fluorine separated from boron, making fluorine removal more efficient. Can be done. In addition, since it is a chloride, unlike on sulfuric acid bread, there is no generation of sulfuric acid groups, and the effect as a flocculant is small, so it can be used for scaling and flocculation in COD treatment processes, etc.
-F can be reduced\. In addition, when the fluorine concentration is high and boron is also included, for example, the fluorine concentration is 5QOppm or more and the boron concentration is 40
When pp+w or more, it is particularly suitable to use aluminum chloride as the aluminum compound.

第3反応工程では、L記第2反応工程の反応混合物に水
酸化カルシウムと水酸化ナトリウムのうちの少なくとも
一方ならびに高分子凝集剤を添加してpH6〜8の状態
で反応を行う。これら第2゜第3反応工程により排水中
のフッ素は、規制値濃度以下に除去される。
In the third reaction step, at least one of calcium hydroxide and sodium hydroxide and a polymer flocculant are added to the reaction mixture of the second reaction step in L, and the reaction is carried out at a pH of 6 to 8. Through these second and third reaction steps, fluorine in the waste water is removed to a concentration below the regulation value.

次いで、反応混合物の固液分離を行い、水酸化アルミニ
ウム、石こうなどを含む固形物または固形物を含むスラ
リーを第1反応工程に戻すことにより、アルミニウム化
合物の有効利用を図ると共に、第1反応工程における石
こうスケーリング防止のための石こう種晶として使用す
る。
Next, solid-liquid separation of the reaction mixture is performed, and the solids containing aluminum hydroxide, gypsum, etc., or the slurry containing the solids, are returned to the first reaction step, thereby making effective use of the aluminum compound, and also returning the solids containing the solids to the first reaction step. used as gypsum seed crystal for prevention of gypsum scaling in

本発明の第4反応工程はジチオン酸除去のためのCOD
処理工程である。
The fourth reaction step of the present invention is COD for removal of dithionic acid.
This is a processing step.

塩素型合成吸着材を使用したCOD除去装置へ前工程か
らの液体区分を導いて接触させ、ジチオン酸等を除去す
る。
The liquid fraction from the previous step is introduced into a COD removal device using a chlorine-type synthetic adsorbent and brought into contact with it to remove dithionic acid and the like.

この場合、従来より使用されている硫酸型合成吸着材は
吸着後、出口における液中のSO4濃度が増加するため
、液中のカルシウム濃度が高いと、石こう等のスケール
発生が起り、トラブルが生ずる。そのため、前処理とし
て軟化操作が必須であった。しかし、この軟化操作の段
階で、前述したように、スラッジやスケーリングの発生
等の問題があり、その解決が望まれていたのである。
In this case, the sulfuric acid type synthetic adsorbent used conventionally increases the SO4 concentration in the liquid at the outlet after adsorption, so if the calcium concentration in the liquid is high, scales such as gypsum will occur, causing trouble. . Therefore, a softening operation was essential as a pretreatment. However, as mentioned above, there are problems such as the generation of sludge and scaling at this stage of the softening operation, and a solution to these problems has been desired.

本発明では塩素型合成吸着材を使用するため、液中のS
Oa濃度が増加することがなく、軟化操作は不要である
。すなわち、前工程においてSO4濃度を極く僅かに抑
えた排水をCOD除去装置へ通すため、スケールの発生
は起こらない。本発明では排水処理の全系において液中
のカルシウム濃度を高濃度に維持して処理しているため
、石こう溶解度積からSOn 6度を低濃度に抑えるこ
とができる。そのため、スケーリングの生成を極力抑え
ることができるのである。
In the present invention, since a chlorine type synthetic adsorbent is used, S in the liquid is
The Oa concentration does not increase, and a softening operation is not necessary. That is, since the wastewater whose SO4 concentration has been suppressed to a very low level in the previous step is passed through the COD removal device, no scale is generated. In the present invention, since the calcium concentration in the liquid is maintained at a high concentration in the entire wastewater treatment system, SOn 6 degrees can be suppressed to a low concentration based on the gypsum solubility product. Therefore, generation of scaling can be suppressed as much as possible.

なお、COD除去装置から排出される再生液の酸分解液
は酸性であるので、たとえばp)l調整用として使用す
るなど脱硫装置等にて有効利用することができる。
In addition, since the acid decomposition liquid of the regeneration liquid discharged from the COD removal device is acidic, it can be effectively used in a desulfurization device, etc., for example, for use in adjusting p)l.

[発明の効果] 本発明によれば、排水中の重金属処理、フッ素処理、 
COD成分のジチオン酸処理、さらにはSS処理等をそ
れぞれ効率よく行えるように組合せた状態で実施するこ
とができる。特に、高フツ素濃度かつホウ素含有排水に
ついても薬剤の使用量を抑えてスラッジ量、スケール発
生が低減した安定な処理を行える。
[Effects of the Invention] According to the present invention, heavy metal treatment, fluorine treatment, and
The dithionic acid treatment of the COD component, furthermore the SS treatment, etc. can be carried out in combination so that each can be carried out efficiently. In particular, it is possible to stably treat wastewater with high fluorine concentration and boron content by reducing the amount of chemicals used and reducing the amount of sludge and scale generation.

しかも、本発明ではNaOH、アルミニウム化合物等の
薬剤の使用量が少なく、スラッジの発生量を抑えること
ができる。また、排水処理系全体において液中のカルシ
ウム濃度を高濃度に維持して運転するため、フッ素処理
の効率が向上し、かつ問題の多かった軟化工程も省略で
き、装置やシステムを簡素化することが回部となった。
Moreover, in the present invention, the amount of chemicals such as NaOH and aluminum compounds used is small, and the amount of sludge generated can be suppressed. In addition, since the entire wastewater treatment system is operated while maintaining a high concentration of calcium in the liquid, the efficiency of fluorine treatment is improved, and the problematic softening process can be omitted, simplifying equipment and systems. became the turning section.

[実施例] 次に、本発明の実施例を示す。[Example] Next, examples of the present invention will be shown.

実施例 石炭燃焼排ガスの湿式排煙脱硫装置から排出される排水
(カドミウム濃度0.2ppm、ヒ素濃度0.5 pp
m、 Cr濃度0.4ppi+ 、 7−/素濃度30
0ppm 。
Example Drainage discharged from a wet flue gas desulfurization equipment for coal combustion flue gas (cadmium concentration 0.2 ppm, arsenic concentration 0.5 ppm)
m, Cr concentration 0.4 ppi+, 7-/element concentration 30
0ppm.

ホウ素濃度20pp■、 アルミニウム濃度50ppm
Boron concentration 20pp■, aluminum concentration 50ppm
.

COD濃度80ppm、マグネシウム濃度300ppm
、塩素濃度1500pp鳳)を第1図に示すフローにて
2層3/hrの流量で流して処理した。なお、含窒素硫
黄化合物の分解のために排水中に亜硝酸ナトリウム80
pp+*を添加した。また、各反応工程におけるpHは
図示した値に保持した。
COD concentration 80ppm, magnesium concentration 300ppm
, chlorine concentration 1500 pp) was flowed at a flow rate of 3/hr in two layers according to the flow shown in FIG. In addition, 80% sodium nitrite is added to the wastewater to decompose nitrogen-containing sulfur compounds.
pp+* was added. Moreover, the pH in each reaction step was maintained at the value shown in the figure.

その結果、第4反応工程から放出される処理水の各成分
濃度はカドミウム0.002ppm 、ヒ素0、O5p
pm以下、Cr濃度0.01ppm 、フッ素5ppm
As a result, the concentrations of each component in the treated water released from the fourth reaction step were cadmium 0.002 ppm, arsenic 0, and O5p.
pm or less, Cr concentration 0.01 ppm, fluorine 5 ppm
.

con 4PP11であった。なお、上記排水を硫酸パ
ン土を加えて処理したときの処理水中のフッ素濃度はl
 opp■であった。
It was con 4PP11. In addition, when the above wastewater is treated by adding sulfuric acid bread soil, the fluorine concentration in the treated water is 1
It was opp ■.

また、第1反応工程からの反応混合物を固液分離して得
られる石こうを含むスラッジは成分分析の結果、脱硫装
置からの石こうと同様に有効利用できることが確認され
た。さらに、スケーリング発生は微少であり、運転−L
支障はなかった。また、フッ素濃度1400PP■、ホ
ウ素濃度150ppmを含む排水に対しても排出規制値
を満足する処理性能を発揮できることを確認した。
Further, as a result of component analysis, it was confirmed that the sludge containing gypsum obtained by solid-liquid separation of the reaction mixture from the first reaction step can be used effectively in the same way as gypsum from the desulfurization equipment. Furthermore, the occurrence of scaling is slight, and the operation-L
There were no problems. It was also confirmed that the treatment performance that satisfies the emission regulation values can be achieved even for wastewater containing 1400 ppm of fluorine and 150 ppm of boron.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法の1実施態様を示すフローである
FIG. 1 is a flow diagram illustrating one embodiment of the method of the present invention.

Claims (5)

【特許請求の範囲】[Claims] (1)重金属、フッ素およびジチオン酸を含有する排水
を以下の工程により順次処理することを特徴とする排水
の処理法。 a)排水に該排水中の塩素濃度に応じ塩酸と後記e)工
程で生ずる固形物スラリーを添加溶解後、水酸化カルシ
ウムと水酸化ナトリウムのうちの少なくとも一方ならび
に液状重金属捕集剤を添加し、空気を吹き込みながらp
H5〜9にて反応を行う第1反応工程、 b)第1工程反応混合物の固液分離を行う工程、c)上
記固液分離工程からの液体区分に塩酸とアルミニウム化
合物を添加し、pH2〜4にて反応を行う第2反応工程
、 d)第2工程反応混合物に水酸化カルシウムと水酸化ナ
トリウムのうちの少なくとも一方ならびに高分子凝集剤
を添加し、pH6〜8にて反応を行う第3反応工程、 e)第3工程反応混合物の固液分離を行う工程、f)上
記固液分離工程からの液体区分を塩素型合成吸着材と接
触させる第4反応工程。
(1) A method for treating wastewater, which comprises sequentially treating wastewater containing heavy metals, fluorine, and dithionic acid through the following steps. a) adding and dissolving hydrochloric acid according to the chlorine concentration in the wastewater and the solid slurry produced in step e) described below to the wastewater, and then adding at least one of calcium hydroxide and sodium hydroxide as well as a liquid heavy metal scavenger; While blowing air
A first reaction step in which the reaction is carried out at H5-9, b) a step in which solid-liquid separation of the first step reaction mixture is performed, c) hydrochloric acid and an aluminum compound are added to the liquid fraction from the solid-liquid separation step, and the pH is adjusted to pH 2-9. d) A third reaction step in which at least one of calcium hydroxide and sodium hydroxide and a polymer flocculant are added to the second step reaction mixture, and the reaction is carried out at pH 6 to 8. a reaction step; e) a step of performing solid-liquid separation of the third step reaction mixture; f) a fourth reaction step of bringing the liquid fraction from the solid-liquid separation step into contact with a chlorine-type synthetic adsorbent.
(2)排水が湿式排煙脱硫装置から排出されるものであ
る特許請求の範囲第1項記載の方法。
(2) The method according to claim 1, wherein the waste water is discharged from a wet flue gas desulfurization device.
(3)c)第2反応工程で用いるアルミニウム化合物が
塩化アルミニウムである特許請求の範囲第1項記載の方
法。
(3) The method according to claim 1, wherein the aluminum compound used in the second reaction step is aluminum chloride.
(4)排水が、フッ素濃度500ppm以上であり、か
つホウ素を含有するものである特許請求の範囲第3項記
載の方法。
(4) The method according to claim 3, wherein the waste water has a fluorine concentration of 500 ppm or more and contains boron.
(5)排水が、フッ素濃度500ppm以上であり、か
つホウ素濃度40ppm以上のものである特許請求の範
囲第3項記載の方法。
(5) The method according to claim 3, wherein the waste water has a fluorine concentration of 500 ppm or more and a boron concentration of 40 ppm or more.
JP61186886A 1986-08-11 1986-08-11 Wastewater treatment method Expired - Lifetime JPH0673670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61186886A JPH0673670B2 (en) 1986-08-11 1986-08-11 Wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61186886A JPH0673670B2 (en) 1986-08-11 1986-08-11 Wastewater treatment method

Publications (2)

Publication Number Publication Date
JPS6342791A true JPS6342791A (en) 1988-02-23
JPH0673670B2 JPH0673670B2 (en) 1994-09-21

Family

ID=16196404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61186886A Expired - Lifetime JPH0673670B2 (en) 1986-08-11 1986-08-11 Wastewater treatment method

Country Status (1)

Country Link
JP (1) JPH0673670B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011218338A (en) * 2010-04-14 2011-11-04 Nec Facilities Ltd Method of processing boron-containing drainage
JP2014200744A (en) * 2013-04-05 2014-10-27 オルガノ株式会社 Method of treating waste liquid containing boron fluoride ion and apparatus of treating waste liquid containing boron fluoride ion

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5310553A (en) * 1976-07-15 1978-01-31 Kurita Water Ind Ltd Mehtod of treating waste water containing fluorine and boron
JPS5564899A (en) * 1978-11-07 1980-05-15 Ebara Infilco Co Ltd Treatment of waste water being scavenged, desulfurized and denitrified waste gas
JPS57144086A (en) * 1981-03-03 1982-09-06 Kurita Water Ind Ltd Treatment of water contg. fluoride
JPS60143891A (en) * 1983-12-28 1985-07-30 Hitachi Plant Eng & Constr Co Ltd Treatment of waste water from stack gas desulfurization

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5310553A (en) * 1976-07-15 1978-01-31 Kurita Water Ind Ltd Mehtod of treating waste water containing fluorine and boron
JPS5564899A (en) * 1978-11-07 1980-05-15 Ebara Infilco Co Ltd Treatment of waste water being scavenged, desulfurized and denitrified waste gas
JPS57144086A (en) * 1981-03-03 1982-09-06 Kurita Water Ind Ltd Treatment of water contg. fluoride
JPS60143891A (en) * 1983-12-28 1985-07-30 Hitachi Plant Eng & Constr Co Ltd Treatment of waste water from stack gas desulfurization

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011218338A (en) * 2010-04-14 2011-11-04 Nec Facilities Ltd Method of processing boron-containing drainage
JP2014200744A (en) * 2013-04-05 2014-10-27 オルガノ株式会社 Method of treating waste liquid containing boron fluoride ion and apparatus of treating waste liquid containing boron fluoride ion

Also Published As

Publication number Publication date
JPH0673670B2 (en) 1994-09-21

Similar Documents

Publication Publication Date Title
RU2766116C2 (en) Production of phosphate compounds of materials containing phosphorus and at least one metal selected from iron and aluminum
JP2018079439A (en) Method and apparatus for treating wastewater containing sulfuric acid, fluorine and heavy metal ions
JPH1190165A (en) Treatment of waste water from flue gas desulfurization
JPH11137958A (en) Treatment of stack gas desulfurization waste water
JP4954131B2 (en) Treatment method of water containing borofluoride
JP2564252B2 (en) Fluorine-containing wastewater treatment method
JPH07265869A (en) Treatment of fluorine-phosphorus-containing discharged water
JP2007283216A (en) Boron-containing wastewater treatment method
JPS6342791A (en) Treatment of waste water
JP6723058B2 (en) Water treatment method and water treatment system
TW200305543A (en) Effluent water treatment method
JPS6328492A (en) Treatment of waste liquid of stack gas scrubbing
JP2005144209A (en) Fluorine-containing waste water treatment method
JP2006218354A (en) Treatment method for fluorine-containing wastewater
JPH105769A (en) Treatment of fluorine-containing discharge water
JP4034218B2 (en) Wastewater treatment method
JPS62125894A (en) Treatment method for fluorine-containing wastewater
KR100756838B1 (en) Wastewater Treatment Method
JP2007175673A (en) Treatment of ammonia-containing wastewater
JP6723057B2 (en) Water treatment method and water treatment system
KR20080058077A (en) Waste water treatment method containing fluorine ion
JP2003117564A (en) Treatment method for wastewater containing fluorine
JP2596908B2 (en) Treatment method for fluorine-containing wastewater
JP5754819B2 (en) Calcium elution prevention method at final disposal site
KR19990077951A (en) Process for removing fluorine from desulfurization waste water of flue gas