[go: up one dir, main page]

JPS6342181B2 - - Google Patents

Info

Publication number
JPS6342181B2
JPS6342181B2 JP51124239A JP12423976A JPS6342181B2 JP S6342181 B2 JPS6342181 B2 JP S6342181B2 JP 51124239 A JP51124239 A JP 51124239A JP 12423976 A JP12423976 A JP 12423976A JP S6342181 B2 JPS6342181 B2 JP S6342181B2
Authority
JP
Japan
Prior art keywords
solution
temperature generator
pipe
high temperature
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51124239A
Other languages
Japanese (ja)
Other versions
JPS5349359A (en
Inventor
Shozo Saito
Osayuki Inoe
Tetsuo Sugimoto
Seiji Sanada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP12423976A priority Critical patent/JPS5349359A/en
Publication of JPS5349359A publication Critical patent/JPS5349359A/en
Publication of JPS6342181B2 publication Critical patent/JPS6342181B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 本発明は、冷媒液及び吸収溶液を用いて吸収冷
凍サイクルを行なう吸収式冷凍装置を用いて、冷
房サイクルと暖房サイクルとに切換え使用できる
吸収式冷暖房装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an absorption cooling/heating system that can be switched between a cooling cycle and a heating cycle using an absorption refrigeration system that performs an absorption refrigeration cycle using a refrigerant liquid and an absorption solution. .

従来の吸収冷凍装置例えば発生器を複数設けた
2重効用吸収冷凍装置にて暖房サイクルを行わせ
るためには配管中の弁操作で冷房サイクルと暖房
サイクルを行うことができるようにしてあり、こ
の暖房サイクルでは高温発生器からの冷媒蒸気を
直接凝縮器に入れ暖房に利用する温水に凝縮熱を
与えることや冷媒を溶液中に混入させて運転する
ことなどが知られている。
In order to perform a heating cycle in a conventional absorption refrigeration system, such as a dual-effect absorption refrigeration system equipped with multiple generators, the cooling cycle and heating cycle can be performed by operating valves in the piping. In the heating cycle, it is known to directly input refrigerant vapor from a high temperature generator into a condenser to provide heat of condensation to hot water used for heating, and to operate by mixing refrigerant into a solution.

しかしながら吸収冷凍サイクルにおいては、高
温発生器を出入する溶液流量が多くなると効率が
低下していくこと、また、流量が少なくなると濃
度幅が大きくなり結晶化の危険のあることが知ら
れている。このため通常、吸収冷凍装置では、オ
リフイス、調節弁等の流量制御機構を設け、結晶
しないだけの流量を確保すると共に、効率低下を
防ぐため、最大流量を制限しており、成積係数を
1.1〜1.3程度としている。
However, in an absorption refrigeration cycle, it is known that efficiency decreases as the flow rate of solution in and out of the high temperature generator increases, and that as the flow rate decreases, the concentration range increases and there is a risk of crystallization. For this reason, absorption refrigeration equipment is usually equipped with a flow rate control mechanism such as an orifice or a control valve to ensure a sufficient flow rate to prevent crystallization, and to limit the maximum flow rate to prevent a drop in efficiency.
It is set at around 1.1 to 1.3.

一方、暖房サイクルでは、高温発生器に加えら
れる熱源からの熱を、冷媒蒸気の潜熱や、溶液の
顕熱の形で温水に与えるだけであり、成積係数は
溶液流量によつて影響されずほぼ1.0である。従
つて、冷凍容量と暖房容量とを熱量的に等しいと
すると、暖房時に高温発生器に加えられる熱源か
らの熱量は冷房時の1.1〜1.3倍程度となり、も
し、高温発生器内を出入する最大流量が、冷房時
と暖房時とでほぼ一定であると、暖房時に高温発
生器内の濃度幅がつきすぎ、結晶化のおそれがあ
る。特に稀溶液を高温発生器と低温発生器に分配
するサイクル(所謂、並列フローサイクル)であ
るときには、高温発生器内の濃度幅が大きくなり
すぎ、高温発生器出口で結晶する危険が非常に大
きくなる。
On the other hand, in the heating cycle, the heat from the heat source applied to the high-temperature generator is simply imparted to the hot water in the form of latent heat of the refrigerant vapor or sensible heat of the solution, and the formation coefficient is not affected by the solution flow rate. It is approximately 1.0. Therefore, assuming that the refrigeration capacity and the heating capacity are equal in terms of calorific value, the amount of heat from the heat source added to the high-temperature generator during heating is approximately 1.1 to 1.3 times that during cooling. If the flow rate is approximately constant during cooling and heating, the concentration range in the high temperature generator will be too large during heating, and there is a risk of crystallization. Particularly in a cycle in which a dilute solution is distributed between a high temperature generator and a low temperature generator (so-called parallel flow cycle), the concentration range in the high temperature generator becomes too large and there is a great risk of crystallization at the outlet of the high temperature generator. Become.

このため、従来の吸収冷暖房装置では、暖房時
の結晶をさけるように、暖房時に合わせて溶液流
量を多めにしたり、(流量を多くすることにより、
冷房時の効率は低下する。)または、冷暖房装置
に大きな冷媒タンクを備えて、冷房時にこのタン
クに冷媒を貯えて運転し、暖房時にこの冷媒でサ
イクルの濃度を下げるようなことをしてきた。
For this reason, in conventional absorption heating and cooling systems, in order to avoid crystals during heating, the solution flow rate is increased to match the heating time (by increasing the flow rate,
Efficiency during cooling decreases. ) Alternatively, heating and cooling equipment has been equipped with a large refrigerant tank, and the refrigerant is stored in this tank during operation during cooling, and this refrigerant is used during heating to reduce the concentration of the cycle.

本発明は、これら従来の不便を適確に除去しよ
うとするもので、暖房時に高温発生器に出入する
流量を増加させることにより暖房サイクル中にお
ける溶液の結晶現象発生を皆無として安全に運転
することを可能とすると共に暖房並びに冷房両サ
イクルの効率をも向上させることができる冷暖房
装置を提供することを目的としたものである。
The present invention aims to appropriately eliminate these conventional inconveniences, and aims to safely operate the solution by completely eliminating crystallization of the solution during the heating cycle by increasing the flow rate into and out of the high temperature generator during heating. The object of the present invention is to provide a heating and cooling device that can improve the efficiency of both heating and cooling cycles.

本発明は、高温発生器、低温発生器、凝縮器、
蒸発器、吸収器、低温熱交換器、高温熱交換器を
配管接続して吸収冷凍サイクルを構成する機構と
前記の配管中に冷暖房切換機構とを備えて冷房サ
イクルと暖房サイクルとを行う装置において、暖
房サイクル時に前記高温発生器に出入する溶液量
を冷房時の溶液流量よりも多くするため高温発生
器の流入側の溶液配管で高温熱交換器に接続する
溶液路に前記高温発生器の液面変動によつて作動
されるフロート弁を設けると共に、前記高温発生
器から流出して低温発生器又は低温熱交換器加熱
側に導かれる溶液配管と、この溶液配管に設けら
れた絞り装置と、該絞り装置をバイパスさせ、そ
のバイパス溶液が高温発生器から吸収器に至る溶
液系路に導かれるバイパス配管とを備え、さらに
前記バイパス配管に流量調節弁を配備したことを
特徴とするものである。
The present invention provides a high temperature generator, a low temperature generator, a condenser,
In a device that performs a cooling cycle and a heating cycle, comprising a mechanism that connects an evaporator, an absorber, a low-temperature heat exchanger, and a high-temperature heat exchanger to form an absorption refrigeration cycle, and an air conditioning/heating switching mechanism in the piping. In order to make the amount of solution flowing in and out of the high temperature generator during the heating cycle larger than the solution flow rate during cooling, the liquid from the high temperature generator is connected to the solution pipe connected to the high temperature heat exchanger on the inflow side of the high temperature generator. A solution piping provided with a float valve operated by surface fluctuation and flowing out from the high temperature generator and guided to the heating side of the low temperature generator or the low temperature heat exchanger, and a throttling device provided in the solution piping; It is characterized by comprising a bypass pipe that bypasses the throttle device and guides the bypass solution to a solution system path from the high temperature generator to the absorber, and further includes a flow rate control valve provided in the bypass pipe. .

また本発明の他の重要な特徴の一つとして前記
特徴に組み合せて弁のある補助バイパス配管を設
けて暖房サイクル時に吸収器からの稀溶液を前記
フロート弁及び溶液送給配管にある絞り装置をバ
イパスさせて高温発生器又はこれと低温発生器と
に導くようにすることを特徴とするものである。
Another important feature of the present invention is that, in combination with the above features, an auxiliary bypass line with a valve is provided to divert the dilute solution from the absorber during the heating cycle to the float valve and the throttle device in the solution delivery line. It is characterized in that it is bypassed and led to a high temperature generator or both to a low temperature generator.

本発明を実施例につき図面を参照して説明する
と、高温発生器1、低温発生器2、凝縮器3、蒸
発器4、吸収器5、低温熱交換器6、高温熱交換
器7を配管接続して吸収冷凍サイクルを構成する
機構と、前記の配管中に冷暖房切換機構8,9と
を備えて冷房サイクルと暖房サイクルとを行う装
置において、凝縮器3より導出され、蒸発器4に
入る凝縮液の戻り配管18に弁8を設けると共
に、弁9を有する冷媒液バイパス配管19の一端
を前記戻り配管18に連結し、他端を低温発生器
2に連結される系路及び/又は低温発生器2に直
接連結してある。
To explain the present invention with reference to the drawings, a high temperature generator 1, a low temperature generator 2, a condenser 3, an evaporator 4, an absorber 5, a low temperature heat exchanger 6, and a high temperature heat exchanger 7 are connected by piping. In a device that performs a cooling cycle and a heating cycle by providing a mechanism for configuring an absorption refrigeration cycle and heating/cooling switching mechanisms 8 and 9 in the piping, condensed water drawn out from the condenser 3 and entering the evaporator 4 is provided. A valve 8 is provided in the liquid return pipe 18, and one end of a refrigerant liquid bypass pipe 19 having a valve 9 is connected to the return pipe 18, and the other end is connected to a system line and/or a low temperature generator 2 connected to the low temperature generator 2. It is directly connected to vessel 2.

そして前記弁8を開き、弁9を閉じて運転すれ
ば、冷房サイクルを行なう。即ち稀溶液は溶液ポ
ンプ25により低温熱交換器6、高温熱交換器7
を経て高温発生器1に送られ、ここで高温まで加
熱されて冷媒蒸気を放出し、濃縮されて中間溶液
となる。この溶液は高温熱交換器7に入り、吸収
器5からの稀溶液との熱交換により温度が低下
し、次で低温発生器2に入りここで先に高温発生
器1で発生した冷媒蒸気により加熱されて、冷媒
蒸気を更に放出し、溶液は濃度を増して濃溶液と
なる。
Then, by opening the valve 8 and closing the valve 9, the cooling cycle is performed. That is, the dilute solution is transferred to a low temperature heat exchanger 6 and a high temperature heat exchanger 7 by a solution pump 25.
The liquid is sent to the high temperature generator 1, where it is heated to a high temperature, releases refrigerant vapor, and is concentrated to form an intermediate solution. This solution enters the high temperature heat exchanger 7, where its temperature is lowered by heat exchange with the dilute solution from the absorber 5, and then enters the low temperature generator 2 where it is heated by the refrigerant vapor previously generated in the high temperature generator 1. As it is heated, more refrigerant vapor is released and the solution increases in concentration to become a concentrated solution.

一方、低温発生器2で発生した冷媒蒸気は凝縮
器3に入り、冷却水により冷却されて凝縮する。
また高温発生器1で発生した冷媒蒸気も低温発生
器2で溶液との熱交換により凝縮して凝縮器3に
入る。凝縮器3に溜つた冷媒は凝縮液戻り管18
を経て弁8を通り蒸発器4に還る。さらに前記低
温発生器2を出た濃溶液は、配管16を経て低温
熱交換器6で稀溶液と熱交換をして、吸収器5に
入り内部に冷却水の通る伝熱管の吸収器チユーブ
5′群にスプレーされる。スプレーされた濃溶液
は、冷却水によつて冷却されると共に、蒸発器4
にて蒸発した冷媒蒸気を吸収して稀溶液となり、
この蒸発器4では冷水は冷媒の蒸発により熱を奪
われて低温となる。稀溶液は前述のようにして、
低温熱交換器6、高温熱交換器7を経て高温発生
器1に送りこまれ冷房サイクルを行なう。
On the other hand, the refrigerant vapor generated in the low temperature generator 2 enters the condenser 3, where it is cooled by cooling water and condensed.
Further, the refrigerant vapor generated in the high temperature generator 1 is also condensed by heat exchange with the solution in the low temperature generator 2 and enters the condenser 3. The refrigerant accumulated in the condenser 3 is transferred to the condensate return pipe 18
The water passes through the valve 8 and returns to the evaporator 4. Further, the concentrated solution leaving the low temperature generator 2 passes through a pipe 16, exchanges heat with the dilute solution in a low temperature heat exchanger 6, enters an absorber 5, and enters an absorber tube 5, which is a heat transfer tube through which cooling water passes. ’ group is sprayed. The sprayed concentrated solution is cooled by cooling water and passed through the evaporator 4.
It absorbs the evaporated refrigerant vapor and becomes a dilute solution.
In this evaporator 4, heat is removed from the cold water by evaporation of the refrigerant, and the temperature becomes low. The dilute solution was prepared as described above.
It is sent to the high temperature generator 1 via the low temperature heat exchanger 6 and the high temperature heat exchanger 7, and performs a cooling cycle.

更に暖房サイクル時においては、前記弁8を
閉、弁9を開とし、凝縮器3に溜つた冷媒液を低
温発生器2に入れる。低温発生器2を出た溶液は
低温熱交換器6を経て吸収器5に入つて冷却水
(温水)に熱を与える。こうすると、低温発生器
2の溶液濃度は低くなり、濃度低下のために発生
蒸気圧は高くなり、凝縮温度が上昇する。従つて
凝縮器3を出てくる冷却水(温水)の温度は高く
なり暖房等に使用できるようになる。
Further, during the heating cycle, the valve 8 is closed, the valve 9 is opened, and the refrigerant liquid accumulated in the condenser 3 is introduced into the low temperature generator 2. The solution leaving the low temperature generator 2 passes through the low temperature heat exchanger 6 and enters the absorber 5, giving heat to the cooling water (hot water). In this case, the solution concentration in the low temperature generator 2 becomes low, and due to the decrease in concentration, the generated vapor pressure becomes high, and the condensation temperature increases. Therefore, the temperature of the cooling water (hot water) coming out of the condenser 3 becomes high and can be used for heating or the like.

本発明の装置では第1図に示すように、暖房サ
イクル時に前記高温発生器1に出入する溶液量を
冷房時の溶液流量よりも多くするため高温発生器
1の流入側の溶液配管10で高温熱交換器7に接
続された溶液路に前記高温発生器1の液面変動に
よつて作動されるフロート弁12を設けると共
に、前記高温発生器1から流出して低温発生器2
に導かれる溶液戻り配管11と、この溶液戻り配
管11に設けられた絞り装置13と、該絞り装置
13をバイパスさせ、そのバイパス溶液が高温発
生器1から吸収器5に至る溶液系路に導かれるバ
イパス配管15とを備えさらに前記バイパス配管
15に流量調節弁14を配備してあるので、フロ
ート弁12で高温発生器1の液面をほぼ一定に保
つ形態でも例えばバイパス配管15の弁14を開
とすることで高温発生器1に送り込まれる溶液量
を冷房時より多くでき高温発生器1の溶液量を多
くし、高温発生器1内の濃度巾を小さくして、冷
媒を溶液中に混入する方式をとつても高温発生器
1出口で結晶の心配は皆無となる。
In the apparatus of the present invention, as shown in FIG. 1, in order to make the amount of solution flowing in and out of the high temperature generator 1 during the heating cycle larger than the solution flow rate during cooling, the solution pipe 10 on the inflow side of the high temperature generator 1 is heated. A float valve 12 is provided in the solution path connected to the heat exchanger 7, which is operated by fluctuations in the liquid level in the high temperature generator 1, and the solution flows out from the high temperature generator 1 and flows into the low temperature generator 2.
The solution return pipe 11 guided to the solution return pipe 11, the throttle device 13 provided on the solution return pipe 11, and the throttle device 13 are bypassed, and the bypass solution is guided to the solution system path from the high temperature generator 1 to the absorber 5. Furthermore, since the bypass pipe 15 is provided with a flow control valve 14, even if the float valve 12 is used to maintain the liquid level of the high temperature generator 1 at a substantially constant level, for example, the valve 14 of the bypass pipe 15 can be By opening it, the amount of solution sent to the high temperature generator 1 can be increased compared to when cooling, increasing the amount of solution in the high temperature generator 1, reducing the concentration range in the high temperature generator 1, and mixing the refrigerant into the solution. Even with this method, there is no need to worry about crystals since there is only one outlet from the high temperature generator.

なお前記バイパス配管15、の弁14、の操作
は暖房時に全開とするが開きぎみでも可能であり
一方冷房時には全閉とするか閉りぎみでも可能で
ある。
The valve 14 of the bypass pipe 15 is fully opened during heating, but it can also be slightly opened, while it can be fully closed or slightly closed during cooling.

第1図の実施例では高温発生器1の溶液戻り配
管11の絞り装置13としては例えばオリフイス
若しくは調節オリフイス又は調節弁が用いられこ
れをバイパスしてバイパス配管15が設けられて
いるが、その連結位置はフロート弁12のフロー
ト部12′より下部でまたその終点は前記絞り装
置13の下流側にするのがよく点線でも示すよう
に低温発生器2又は低温発生器の前後の溶液配管
に選んで接続することができ、いずれにしても前
記高温発生器1に出入する溶液流量を増加させ効
果的な運転が可能なるようになつている。
In the embodiment shown in FIG. 1, for example, an orifice, a regulating orifice, or a regulating valve is used as the throttle device 13 of the solution return pipe 11 of the high temperature generator 1, and a bypass pipe 15 is provided to bypass this. The position is preferably below the float part 12' of the float valve 12, and its end point is on the downstream side of the throttle device 13, as shown by the dotted line, in the low temperature generator 2 or in the solution piping before and after the low temperature generator. In any case, the flow rate of solution into and out of the high temperature generator 1 can be increased to enable effective operation.

なお前記バイパス配管15は高温熱交換器7の
加熱側、低温熱交換器6の加熱側のいずれをもバ
イパスさせたり、又はその一方をバイパスさせる
こともでき、以下各実施例でも示すように適宜有
効な個所へ連結させることもできる。
The bypass piping 15 can bypass both the heating side of the high temperature heat exchanger 7 and the heating side of the low temperature heat exchanger 6, or can bypass either one of them, as appropriate, as shown in each embodiment below. It can also be linked to a valid location.

また暖房サイクルのために冷媒を溶液中に混入
する構成を弁8,9、配管18,19で示してあ
るが、他の連結構成とすることも選んでできる
し、混入しない形態とすることも可能である。
Also, although a configuration in which the refrigerant is mixed into the solution for the heating cycle is shown using valves 8, 9 and piping 18, 19, other connection configurations can be selected, or a configuration in which the refrigerant is not mixed in is also possible. It is possible.

図中1′,2′は発生器チユーブ、3′は凝縮器
チユーブ、4′は蒸発器チユーブ、5′は吸収器チ
ユーブ、12′はフロート、17は溶液溜、20
は低温発生器2に吸収器5からの稀溶液を導く配
管21は弁で暖房時に閉め又は閉りぎみにする。
24は冷媒ポンプである。
In the figure, 1' and 2' are generator tubes, 3' is a condenser tube, 4' is an evaporator tube, 5' is an absorber tube, 12' is a float, 17 is a solution reservoir, and 20
The pipe 21 that leads the dilute solution from the absorber 5 to the low temperature generator 2 is closed or nearly closed with a valve during heating.
24 is a refrigerant pump.

第2図の具体例では並列フローサイクルの例で
はあるが、溶液送給配管10に高温発生器1へ流
入する流量を制限しているオリフイスなどの絞り
装置22をフロート弁12のほかに設け、バイパ
ス配管15は溶液戻り配管11中にある絞り装置
13のみをバイパスするようにし、且つ前記溶液
送給配管10中の絞り装置22と低温熱交換器6
との間から低温発生器2又は低温発生器2に入る
配管11に稀溶液を導く配管20を設け、この配
管20に必要に応じ弁21を設け暖房時に絞つて
用いられ、並列フローサイクルとなるようにして
ある。
Although the specific example in FIG. 2 is an example of a parallel flow cycle, a throttle device 22 such as an orifice that restricts the flow rate flowing into the high temperature generator 1 is provided in the solution supply piping 10 in addition to the float valve 12. The bypass pipe 15 bypasses only the throttle device 13 in the solution return pipe 11 and bypasses the throttle device 22 in the solution supply pipe 10 and the low-temperature heat exchanger 6.
A pipe 20 is provided to guide the dilute solution to the low temperature generator 2 or the pipe 11 that enters the low temperature generator 2 from between the pipe 20 and the pipe 20 is provided with a valve 21 as necessary, and is used to throttle during heating, resulting in a parallel flow cycle. It's like this.

なお並列フローサイクルで高温発生器1に導く
溶液量を増加させた場合に溶液ポンプ25の流量
が増加してキヤビテーシヨンを起すおそれもある
が低温発生器2に導く稀溶液のライン即ち配管2
0に弁21を設け暖房時に絞つたり全閉とするこ
とで適確にこの支障を防止することが可能であ
る。
Note that when the amount of solution introduced to the high temperature generator 1 is increased in a parallel flow cycle, the flow rate of the solution pump 25 may increase and cavitation may occur.
By providing a valve 21 at 0 and closing or closing the valve completely during heating, it is possible to prevent this problem accurately.

第3図の実施例では、前記フロート弁12のほ
かに高温発生器1への稀溶液流量を制限している
絞り装置22(例えば手動弁、自動弁又はオリフ
イス)と、少なくとも、高温熱交換器7、低温熱
交換器6のいずれかをバイパスする弁23のある
バイパス配管10′とを溶液送給配管10に設け
て用いた例で、冷房時に弁23が閉で暖房時に弁
23を開とすると冷房時の流量と弁23を通る流
量が高温発生器1への流入量となり有効に作用す
る。
In addition to the float valve 12, the embodiment of FIG. 7. This is an example in which a bypass pipe 10' with a valve 23 that bypasses one of the low-temperature heat exchangers 6 is provided in the solution supply pipe 10, and the valve 23 is closed during cooling and is opened during heating. Then, the flow rate during cooling and the flow rate passing through the valve 23 become the inflow amount to the high temperature generator 1 and act effectively.

この場合、前記熱交換器6,7は通常、冷房時
の熱回収の目的で用いられているものであり、冷
房サイクル時の流量で設計されているので暖房時
流量を多くすると流速が速くなり、熱交換器の圧
力損失増加や腐蝕もしやすくなるので、多くする
分をバイパスすることが考慮されている。このこ
とは熱交換器の加熱側にも言えることで、図のよ
うにバイパス配管15は高温熱交換器7をバイパ
スさせても良く、この熱交換器バイパスは特に並
列フローサイクル、即ち冷房サイクル時に吸収器
5からの稀溶液を高温発生器1と低温発生器2に
導くために絞り装置21のある配管20を附加し
た構成に有効である。
In this case, the heat exchangers 6 and 7 are usually used for the purpose of recovering heat during cooling, and are designed with a flow rate during the cooling cycle, so increasing the flow rate during heating increases the flow velocity. Since this increases the pressure loss of the heat exchanger and makes it more susceptible to corrosion, consideration is being given to bypassing a large amount of the heat exchanger. This also applies to the heating side of the heat exchanger, and as shown in the figure, the bypass piping 15 may bypass the high temperature heat exchanger 7, and this heat exchanger bypass is used especially during the parallel flow cycle, that is, the cooling cycle. This is effective in a configuration in which a pipe 20 with a throttle device 21 is added to guide the dilute solution from the absorber 5 to the high temperature generator 1 and the low temperature generator 2.

しかも高温発生器1入口への流入溶液が熱交換
器をバイパスすると、高温発生器1に入る液温は
低くなり高温発生器熱源からの熱量の多くを顕熱
の形でもらうことにもなつて濃度巾(暖房熱量≒
高温発生器への入熱量)を大きくしすぎないよう
に働くのにも役立ち有意義なものである。
Moreover, when the solution flowing into the inlet of high temperature generator 1 bypasses the heat exchanger, the temperature of the liquid entering high temperature generator 1 becomes lower and most of the heat from the high temperature generator heat source is obtained in the form of sensible heat. Concentration width (heating amount ≒
It is also useful in preventing the amount of heat input into the high temperature generator from becoming too large.

また第4図例では、冷房サイクル時に、吸収器
からの稀溶液を高温発生器と低温発生器に導く吸
収式冷暖房装置において高温発生器1に流入され
る溶液がフロート弁12及び高温熱交換器7をバ
イパスさせる方法として低温熱交換器6と高温熱
交換器7との間から低温発生器2へバイパスさせ
た流量調節弁21′のある配管20のラインより
高温発生器1に導くバイパス配管10′を設けた
もので、該バイパス配管10′中の弁23で操作
できるようにしてある。
In addition, in the example shown in FIG. 4, in an absorption air conditioning system in which a dilute solution from an absorber is guided to a high temperature generator and a low temperature generator during the cooling cycle, the solution flowing into the high temperature generator 1 is passed through the float valve 12 and the high temperature heat exchanger. 7 is bypassed from between the low-temperature heat exchanger 6 and the high-temperature heat exchanger 7 to the low-temperature generator 2 by bypass piping 10 that leads to the high-temperature generator 1 from the line of the piping 20 with the flow rate control valve 21' bypassed to the low-temperature generator 2. ', and can be operated by a valve 23 in the bypass piping 10'.

この場合高温発生器1の出口のバイパスとして
のバイパス配管15は図のように、高温発生器1
より、高温熱交換器7及び絞り装置13をバイパ
スするように結んでもよく、必要に応じ通常の高
温発生器1の液面より上部又は液面下部で接続で
き、いずれにしてもバイパス配管15を流れる流
体は蒸気、液体又は気液二相の場合いずれでも用
いることができる。
In this case, the bypass pipe 15 as a bypass at the outlet of the high temperature generator 1 is connected to the high temperature generator 1 as shown in the figure.
Therefore, the high-temperature heat exchanger 7 and the expansion device 13 may be connected in a bypass manner, and if necessary, they can be connected above or below the liquid level of the normal high-temperature generator 1. In any case, the bypass piping 15 The flowing fluid can be vapor, liquid, or gas-liquid two-phase.

さらにこの実施例では、第3図例と同様にバイ
パス配管15は高温発生器1と吸収器5とを結ぶ
溶液配管例えば吸収器5への戻り配管16或いは
吸収器5低温発生器2に直接連結することもでき
るし、低温発生器2から吸収器へのJ型ライン2
6に連結することもできる。そしてこのJ型ライ
ン26に連結する例では、絞り機構13、高温熱
交換器7及び低温熱交換器6すべてをバイパスす
ることとなり、効果的な構成となる。
Furthermore, in this embodiment, as in the example shown in FIG. J type line 2 from low temperature generator 2 to absorber
It can also be connected to 6. In this example of connecting to the J-type line 26, the throttle mechanism 13, high-temperature heat exchanger 7, and low-temperature heat exchanger 6 are all bypassed, resulting in an effective configuration.

なお前記各実施例での、暖房サイクル時の冷却
水(温水)の流し方は、吸収器5を経て凝縮器3
に導く方法の他に、凝縮器3を先にしてもよく、
また二系統の温水を得るため、吸収器5を通すも
のと凝縮器3を通すものと分けてもよい。特に凝
縮器3の方を先に通しその後吸収器5に通す方法
を採用すると、凝縮器3と吸収器5との圧力差を
小さくすることができると共に、凝縮器3の潜熱
を利用して温度を上昇させ、吸収器5の顕熱でさ
らに温度を上昇させることができて便利である。
In each of the above embodiments, the cooling water (hot water) flows through the absorber 5 and then into the condenser 3 during the heating cycle.
In addition to the method of leading to , the condenser 3 may be placed first,
Furthermore, in order to obtain two systems of hot water, one system may be divided into one through the absorber 5 and one through the condenser 3. In particular, if a method is adopted in which the condenser 3 is passed first and then passed through the absorber 5, the pressure difference between the condenser 3 and the absorber 5 can be reduced, and the latent heat of the condenser 3 can be used to increase the temperature. It is convenient to be able to raise the temperature further by using the sensible heat of the absorber 5.

前記弁8及び9等は三方弁一個で切替えが行な
える構成とすることもできるし、手動操作又は電
磁弁などで自動的操作できるものを任意に選べる
し、また冷媒液の全部に限らずその一部を濃溶液
中に混入したり、この混入場所も発生器本体中に
限らず循環系路の有効な個所を選んで構成するこ
ともできるほか、暖房サイクル時の冷媒の混入も
冷媒と溶液を蒸発器内で混ぜその後溶液中に混入
することもできる。
The valves 8 and 9 can be configured to be switched by a single three-way valve, or can be manually operated or automatically operated by a solenoid valve or the like. A part of the mixture can be mixed into the concentrated solution, and the location of the mixture can be selected not only in the generator body but also at an effective location in the circulation path. can also be mixed in the evaporator and then mixed into the solution.

本発明は、吸収式冷凍装置で、冷房サイクルと
暖房サイクルとを行うもの特に冷房時に二重効用
サイクルを行う吸収式冷房装置において、暖房時
に高温発生器に出入する溶液量を、冷房時の溶液
流量よりも多くするようにしたことで高温発生器
での溶液濃度巾を小さくし、結晶による支障をな
くすことが容易にできて高効率に運転することを
可能にすると共に冷房または暖房運転を簡単な操
作で切換えることができ、しかも極めて安定した
運転を確保すると共に、その保守保安もらくで取
扱上の不便もなく、構成上でも冷房専用の吸収冷
凍機を用いて暖房サイクルを効率よく行わせるこ
とが可能となり、そのために高価な設備を要する
ことなく、また二重効用式の冷凍機で低温発生器
が休止することに生じやすい結晶による支障も低
温発生器を冬期に動作サイクルに含めたことで暖
房サイクル中のこの部分の溶液の停止による結晶
を適確に防止でき、常に安全に切換運転操作する
ことが保証され得て、更に既存装置においても容
易に利用することができ著しく汎用性に富み装置
の設備費並びに運転経費の節減に役立つ有用性が
ある。
The present invention relates to an absorption refrigeration system that performs both a cooling cycle and a heating cycle. In particular, in an absorption refrigeration system that performs a dual-effect cycle during cooling, the amount of solution flowing in and out of a high temperature generator during heating is adjusted to By setting the flow rate to be higher than the flow rate, the solution concentration width in the high temperature generator can be reduced, making it easy to eliminate problems caused by crystals, making it possible to operate with high efficiency, and making cooling or heating operations easier. It can be switched with a simple operation, ensures extremely stable operation, is easy to maintain, has no inconvenience in handling, and uses an absorption refrigerator exclusively for cooling to perform the heating cycle efficiently. This makes it possible to do this without requiring expensive equipment, and by including the low-temperature generator in the operating cycle during the winter, it eliminates problems caused by crystals that are likely to occur when the low-temperature generator is stopped in a dual-effect refrigerator. It can accurately prevent crystallization due to solution stoppage in this part during the heating cycle, guarantee safe switching operation at all times, and can be easily used in existing equipment, making it extremely versatile. It is useful in reducing the equipment cost and operating cost of the enrichment device.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示し、第1図は系統説
明図、第2図乃至第4図は他の実施例の系統説明
図である。 1…高温発生器、2…低温発生器、1′,2′…
発生器チユーブ、3…凝縮器、3′…凝縮器チユ
ーブ、4…蒸発器、4′…蒸発器チユーブ、5…
吸収器、5′…吸収器チユーブ、6…低温熱交換
器、7…高温熱交換器、8,9…冷暖房切換機
構、10…溶液送給配管、10′…バイパス配管、
11…溶液戻り配管、12…フロート弁、13…
絞り機構、14…弁、15…バイパス配管、16
…配管、17…溶液溜、18,19…配管、20
…配管、21,22…絞り機構、23…流量調節
弁、24…冷媒ポンプ、25…溶液ポンプ、26
…J型配管。
The drawings show embodiments of the present invention, with FIG. 1 being a system explanatory diagram, and FIGS. 2 to 4 being system explanatory diagrams of other embodiments. 1...High temperature generator, 2...Low temperature generator, 1', 2'...
Generator tube, 3... Condenser, 3'... Condenser tube, 4... Evaporator, 4'... Evaporator tube, 5...
Absorber, 5'...Absorber tube, 6...Low temperature heat exchanger, 7...High temperature heat exchanger, 8, 9...Air conditioning switching mechanism, 10...Solution supply piping, 10'...Bypass piping,
11...Solution return piping, 12...Float valve, 13...
Throttle mechanism, 14...Valve, 15...Bypass piping, 16
... Piping, 17... Solution reservoir, 18, 19... Piping, 20
...Piping, 21, 22... Throttle mechanism, 23... Flow rate control valve, 24... Refrigerant pump, 25... Solution pump, 26
...J type piping.

Claims (1)

【特許請求の範囲】 1 高温発生器、低温発生器、凝縮器、蒸発器、
吸収器、低温熱交換器、高温熱交換器を配管接続
して吸収冷凍サイクルを構成する機構と、前記配
管中に冷暖房切換機構とを備えて冷房サイクルと
暖房サイクルとを行う装置において、暖房サイク
ル時に前記高温発生器に出入する溶液量を冷房時
の溶液流量よりも多くするため高温発生器の流入
側の溶液配管路に前記高温発生器の液面変動によ
つて作動されるフロート弁を設けると共に、前記
高温発生器から流出して低温発生器又は低温熱交
換器加熱側に導かれる溶液配管と、この溶液配管
に設けられた絞り装置と、該絞り装置をバイパス
させ、そのバイパス溶液が高温発生器から低温発
生器を経て吸収器に至る溶液系路に導かれるバイ
パス配管とを備え、さらに前記バイパス配管に流
量調節弁を配備したことを特徴とする吸収式冷暖
房装置。 2 前記バイパス配管が、その始点をフロート弁
のフロート部より下部の高温発生器から流出する
溶液配管又は高温発生器出口部に接続されている
ものである特許請求の範囲第1項記載の吸収式冷
暖房装置。 3 前記バイパス配管が、その始点を前記高温熱
交換器を出た後の溶液戻り配管に接続されている
ものである特許請求の範囲第1項又は第2項記載
の吸収式冷暖房装置。 4 前記バイパス配管が、前記高温発生器から出
る溶液の流量を制限している絞り機構をバイパス
させたものであつて、そのバイパスさせた溶液を
前記低温発生器に導く配管である特許請求の範囲
第1項第2項又は第3項記載の吸収式冷暖房装
置。 5 前記バイパス配管が、前記高温発生器から出
る溶液の流量を制限している溶液流量制御機構を
バイパスさせたものであつて、そのバイパスさせ
た溶液を前記吸収器に導く配管である特許請求の
範囲第1項、第2項又は第3項記載の吸収式冷暖
房装置。 6 前記バイパス配管が、前記高温発生器から出
る溶液の流量を制限している溶液流量制御機構を
バイパスさせたものであつて、そのバイパスさせ
た溶液の一部又は全部を前記低温発生器から吸収
器への溶液配管系に導く配管である特許請求の範
囲第1項、第2項、第3項又は第4項記載の吸収
式冷暖房装置。 7 前記バイパス配管が、前記高温発生器から出
る溶液の流量を制限している溶液流量制御機構を
バイパスさせたものであつて、そのバイパスさせ
た溶液を前記低温発生器と吸収器との両者へ分配
する配管である特許請求の範囲第1項、第2項又
は第3項記載の吸収式冷暖房装置。 8 高温発生器、低温発生器、凝縮器、蒸発器、
吸収器、低温熱交換器、高温熱交換器を配管接続
して吸収冷凍サイクルを構成する機構と、前記の
配管中に冷暖房切換機構とを備えて冷房サイクル
と暖房サイクルとを行う装置において、暖房サイ
クル時に前記高温発生器に出入する溶液量を冷房
時の溶液流量よりも多くするため流入側の溶液配
管路に前記高温発生器の液面変動によつて作動さ
れるフロート弁を設けると共に、前記高温発生器
から流出して低温発生器又は低温熱交換器加熱側
に導かれる溶液配管と、この溶液配管に設けられ
た絞り装置と、該絞り装置をバイパスさせ、その
バイパス溶液が高温発生器から低温発生器を経て
吸収器に至る溶液系路に導かれるバイパス配管と
を備え、さらに前記バイパス配管に流量調節弁を
配備すると共に、前記バイパス配管のほかにさら
に暖房時に開けられる弁を設けた補助バイパス配
管を前記フロート弁をバイパスさせて溶液送給配
管にある絞り装置の前と、高温発生器又はこれに
流入する溶液配管とに連結して設けたことを特徴
とする吸収式冷暖房装置。 9 前記補助バイパス配管が、低温熱交換器又は
高温熱交換器の被加熱側の少なくとも一方から送
給溶液の一部を高温発生器に導いた配管である特
許請求の範囲第8項記載の吸収式冷暖房装置。 10 前記補助バイパス配管が、前記高温熱交換
器の被加熱側の稀溶液を低温発生器と高温発生器
との両者に分配する配管である特許請求の範囲第
8項又は第9項記載の吸収式冷暖房装置。
[Claims] 1. High temperature generator, low temperature generator, condenser, evaporator,
In an apparatus that performs a cooling cycle and a heating cycle, the apparatus includes a mechanism that connects an absorber, a low-temperature heat exchanger, and a high-temperature heat exchanger to form an absorption refrigeration cycle, and an air-conditioning/heating switching mechanism in the piping to perform a cooling cycle and a heating cycle. In order to make the amount of solution flowing in and out of the high-temperature generator larger than the solution flow rate during cooling, a float valve is provided in the solution piping on the inflow side of the high-temperature generator, which is activated by fluctuations in the liquid level of the high-temperature generator. At the same time, a solution pipe that flows out from the high temperature generator and is guided to the low temperature generator or the low temperature heat exchanger heating side, a throttle device installed in this solution pipe, and a throttle device are bypassed, and the bypass solution is heated to a high temperature. 1. An absorption heating and cooling device comprising: a bypass pipe leading to a solution line from a generator to an absorber via a low-temperature generator; and further comprising a flow control valve disposed in the bypass pipe. 2. The absorption type according to claim 1, wherein the bypass pipe has a starting point connected to a solution pipe flowing out from a high temperature generator below the float part of the float valve or to an outlet part of the high temperature generator. Air conditioning equipment. 3. The absorption air-conditioning apparatus according to claim 1 or 2, wherein the bypass pipe has a starting point connected to a solution return pipe after exiting the high-temperature heat exchanger. 4 Claims in which the bypass piping is a piping that bypasses a throttling mechanism that limits the flow rate of the solution coming out of the high temperature generator, and is a piping that guides the bypassed solution to the low temperature generator. The absorption air-conditioning device according to item 1, item 2 or 3. 5. The bypass pipe is a pipe that bypasses a solution flow rate control mechanism that limits the flow rate of the solution coming out of the high temperature generator, and is a pipe that guides the bypassed solution to the absorber. Absorption type air-conditioning device according to the first, second, or third scope. 6. The bypass piping bypasses a solution flow rate control mechanism that limits the flow rate of the solution coming out of the high temperature generator, and absorbs some or all of the bypassed solution from the low temperature generator. The absorption type air-conditioning device according to claim 1, 2, 3, or 4, which is a pipe leading to a solution piping system to a container. 7. The bypass piping bypasses a solution flow rate control mechanism that limits the flow rate of the solution coming out of the high temperature generator, and allows the bypassed solution to flow into both the low temperature generator and the absorber. The absorption type air-conditioning device according to claim 1, 2, or 3, which is a distribution pipe. 8 High temperature generator, low temperature generator, condenser, evaporator,
A device that performs a cooling cycle and a heating cycle by comprising a mechanism that connects an absorber, a low-temperature heat exchanger, and a high-temperature heat exchanger to form an absorption refrigeration cycle through piping, and an air-conditioning/heating switching mechanism in the piping, which performs a cooling cycle and a heating cycle. In order to make the amount of solution flowing in and out of the high temperature generator during the cycle larger than the solution flow rate during cooling, a float valve that is operated by fluctuations in the liquid level of the high temperature generator is provided in the solution piping path on the inflow side, and the A solution pipe that flows out from the high temperature generator and is guided to the low temperature generator or low temperature heat exchanger heating side, a throttle device installed in this solution pipe, and a throttle device that is bypassed so that the bypass solution flows from the high temperature generator. The auxiliary system is equipped with a bypass pipe that leads to a solution system path that passes through a low-temperature generator and reaches an absorber, and further includes a flow rate control valve in the bypass pipe, and a valve that can be opened during heating in addition to the bypass pipe. An absorption air-conditioning system characterized in that a bypass pipe is provided in front of the throttle device in the solution supply pipe by bypassing the float valve and connected to the high temperature generator or the solution pipe flowing into the high temperature generator. 9. The absorber according to claim 8, wherein the auxiliary bypass pipe is a pipe that guides a part of the feed solution from at least one of the heated side of the low-temperature heat exchanger or the high-temperature heat exchanger to the high-temperature generator. type air conditioning system. 10. The absorber according to claim 8 or 9, wherein the auxiliary bypass pipe is a pipe that distributes the dilute solution on the heated side of the high-temperature heat exchanger to both a low-temperature generator and a high-temperature generator. type air conditioning system.
JP12423976A 1976-10-16 1976-10-16 Absorption cooler-heater Granted JPS5349359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12423976A JPS5349359A (en) 1976-10-16 1976-10-16 Absorption cooler-heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12423976A JPS5349359A (en) 1976-10-16 1976-10-16 Absorption cooler-heater

Publications (2)

Publication Number Publication Date
JPS5349359A JPS5349359A (en) 1978-05-04
JPS6342181B2 true JPS6342181B2 (en) 1988-08-22

Family

ID=14880401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12423976A Granted JPS5349359A (en) 1976-10-16 1976-10-16 Absorption cooler-heater

Country Status (1)

Country Link
JP (1) JPS5349359A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5687762A (en) * 1979-12-20 1981-07-16 Ebara Mfg Method of preventing crystallization in water cooling and heating machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5143218B2 (en) * 1972-01-07 1976-11-20

Also Published As

Publication number Publication date
JPS5349359A (en) 1978-05-04

Similar Documents

Publication Publication Date Title
NO139258B (en) PROCEDURE FOR THE MANUFACTURE OF FILM ARTICLES OF THERMOPLASTIC MATERIALS THAT ADHESIVE AT LOW TEMPERATURES
US3053055A (en) Absorption refrigeration systems and control arrangements therefor
JP2782555B2 (en) Absorption heat pump
US3054272A (en) Absorption refrigeration systems and method of operating the same
JPS6342181B2 (en)
JP2985513B2 (en) Absorption cooling and heating system and its control method
JPS62186178A (en) Absorption refrigerator
JPS5924770B2 (en) Absorption heating and cooling equipment
JPH0621736B2 (en) Absorption refrigerator
JPS5936174B2 (en) Absorption heating and cooling equipment
JPH07849Y2 (en) Air-cooled absorption chiller / heater
CN1111695C (en) Device for distributing liquid coolant in absorption cooling system
JPH05312429A (en) Absorption water cooling/heating apparatus
JPS599037B2 (en) Absorption heating and cooling equipment
JP3710907B2 (en) Absorption refrigeration system
JPH0443264A (en) Absorption type heat source device
JPH0754209B2 (en) Absorption cold / hot water device and its operating method
JP3880333B2 (en) Absorption refrigeration equipment
JPS6215736Y2 (en)
JPS6014987B2 (en) Dual effect absorption heating and cooling equipment
JPS5817390B2 (en) Heat recovery type absorption chiller/heater
JPS6222056B2 (en)
JPH0577947B2 (en)
JPH0317474A (en) Absorption refrigerator
JPH0446341B2 (en)