[go: up one dir, main page]

JPS6342087B2 - - Google Patents

Info

Publication number
JPS6342087B2
JPS6342087B2 JP53155863A JP15586378A JPS6342087B2 JP S6342087 B2 JPS6342087 B2 JP S6342087B2 JP 53155863 A JP53155863 A JP 53155863A JP 15586378 A JP15586378 A JP 15586378A JP S6342087 B2 JPS6342087 B2 JP S6342087B2
Authority
JP
Japan
Prior art keywords
turbine
exhaust
internal combustion
combustion engine
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53155863A
Other languages
Japanese (ja)
Other versions
JPS5491606A (en
Inventor
Shutoriibitsuhi Herumuuto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dr Ing HCF Porsche AG
Original Assignee
Dr Ing HCF Porsche AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dr Ing HCF Porsche AG filed Critical Dr Ing HCF Porsche AG
Publication of JPS5491606A publication Critical patent/JPS5491606A/en
Publication of JPS6342087B2 publication Critical patent/JPS6342087B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C5/00Gas-turbine plants characterised by the working fluid being generated by intermittent combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • F02B41/02Engines with prolonged expansion
    • F02B41/10Engines with prolonged expansion in exhaust turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

【発明の詳細な説明】 本発明は、内燃機関と、内燃機関の排ガスによ
つて負荷される排気タービンを備えた廃熱タービ
ンユニツトとを有し、該廃熱タービンユニツトが
内燃機関の排ガスの運動エネルギを利用する他
に、この排ガス運動エネルギを利用した作業プロ
セスに重畳された熱的な作業プロセスで、内燃機
関の排ガスの熱エネルギを利用するようになつて
いる、特に自動車用の駆動装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The invention comprises an internal combustion engine and a waste heat turbine unit with an exhaust turbine loaded with the exhaust gases of the internal combustion engine, the waste heat turbine unit comprising an exhaust gas turbine loaded with the exhaust gases of the internal combustion engine. In addition to utilizing kinetic energy, drive systems, especially for automobiles, utilize the thermal energy of the exhaust gas of an internal combustion engine in a thermal work process that is superimposed on the work process that utilizes this exhaust gas kinetic energy. Regarding.

水冷式のオツト・内燃機関において、自動車に
おけるエネルギ分布に関して実験した結果、燃料
によつて内燃機関に供給されるエネルギのうちほ
ぼ35%が排ガスによつてかつほぼ20%が冷却水に
よつてかつほぼ20%が熱放射によつて失なわれ、
従つて内燃機関はクランク軸において25%の燃料
エネルギしか利用できないということが確認され
た(第1図、ボツシユ自動車技術工学ポケツトブ
ツク)。更に著しい燃料エネルギ損失は専ら排ガ
スによつて行なわれるのは明らかである。このば
あい排ガスによる前記損失は一面では運動エネル
ギ(排ガス流出速度)としてかつ他面では熱エネ
ルギ(高い排ガス温度)として生ずる。
As a result of experiments on the energy distribution in a car with a water-cooled internal combustion engine, it was found that approximately 35% of the energy supplied to the internal combustion engine by fuel comes from the exhaust gas, and approximately 20% from the cooling water. Almost 20% is lost to thermal radiation,
It has therefore been confirmed that an internal combustion engine can utilize only 25% of the fuel energy at the crankshaft (Fig. 1, Automotive Technology Pocketbook). It is clear that even more significant fuel energy losses occur exclusively through the exhaust gases. In this case, the losses due to the exhaust gas occur on the one hand as kinetic energy (exhaust gas exit velocity) and on the other hand as thermal energy (high exhaust gas temperature).

往復ピストン内燃機関における技術的に制限さ
れた不完全な膨張によつて、理論的に達成可能な
出力の一部が失なわれるのは公知である。前記損
失出力Lvは内燃機関の運転状態に応じて図示出
力Liの20%乃至40%である(第2図参照)。
It is known that due to the technically limited incomplete expansion in reciprocating piston internal combustion engines, a part of the theoretically achievable power is lost. The loss power L v is 20% to 40% of the indicated power L i depending on the operating state of the internal combustion engine (see FIG. 2).

前記エネルギを部分的に再び利用できるように
する方法は公知である。普及した利用例は排気タ
ービン過給器である。このばあい排ガスは過給器
と共に軸上に配置された排気タービンを駆動す
る。過給器は新鮮空気を吸込みかつ前記空気を圧
縮して内燃機関に供給する。別の方法は、排気タ
ービンによつて得ることのできる出力を部分的に
内燃機関の駆動軸にフイードバツクしひいては内
燃機関の効率を良くするのに役立ついわゆる複合
機構が行なう。しかしながら両方法のばあいには
排ガスの熱エネルギは利用されない。
Methods are known to make the energy partially available again. A popular application is in exhaust turbine superchargers. In this case, the exhaust gases together with the supercharger drive an exhaust turbine arranged on the shaft. The supercharger sucks in fresh air, compresses it and supplies it to the internal combustion engine. Another method is the use of so-called compound mechanisms which partially feed back the power obtainable by the exhaust turbine to the drive shaft of the internal combustion engine and thus serve to improve the efficiency of the internal combustion engine. However, in both methods the thermal energy of the exhaust gas is not utilized.

更に排ガスの熱エネルギを加熱目的のために
(ドイツ連邦共和国特許第873461号明細書)およ
び蒸気を発生させるために(ドイツ連邦共和国特
許出願公告第1157430号明細書)利用するのは公
知である。排ガスは簡単に利用される熱供給部材
でありかつ内燃機関の運転範囲以外で加熱目的の
ために利用される。しかしながら熱エネルギの前
記利用は内燃機関の効果的な効率には何等作用を
及ぼさない。排ガスの熱エネルギによつて生ぜし
められる蒸気は蒸気タービン又は蒸気機械に利用
されるがしかしながら、同様に内燃機関の効果的
な効率に何等作用を及ぼさない。
Furthermore, it is known to utilize the thermal energy of the exhaust gas for heating purposes (DE 873 461) and for generating steam (DE 1157 430). Exhaust gas is a readily available heat supply and is used for heating purposes outside the operating range of the internal combustion engine. However, said utilization of thermal energy has no effect on the effective efficiency of the internal combustion engine. The steam generated by the heat energy of the exhaust gas is utilized in a steam turbine or steam machine, but likewise has no effect on the effective efficiency of the internal combustion engine.

更に、排気タービン、蒸気発生器および蒸気力
機関と関連して内燃機関の損失エネルギを回収す
る方法において、内燃機関の排ガスの圧力をまず
排気タービン内で使用し、次いで排ガスの熱を冷
却媒体を加熱するのに利用することは、すでに公
知である(オーストリア国特許第138943号明細
書)。しかしながらこのばあい次のような欠点が
生ずる。即ち、排ガスの熱の利用によつて内燃機
関の効果的な効率には差程の影響が及ぼされずか
つ冷却水を加熱する際の排ガスの熱エネルギ量
が、内燃機関の直後で排ガスシステム内に進入す
る際に排ガスに内在する熱エネルギより著しくわ
ずかであるという欠点が生ずる。
Furthermore, in a method for recovering lost energy of an internal combustion engine in connection with an exhaust turbine, a steam generator, and a steam power engine, the pressure of the exhaust gases of the internal combustion engine is first used in the exhaust turbine, and then the heat of the exhaust gases is used to transfer the heat of the exhaust gases to a cooling medium. Its use for heating is already known (Austrian Patent No. 138,943). However, in this case, the following drawbacks occur. This means that the effective efficiency of the internal combustion engine is not significantly affected by the use of heat from the exhaust gases, and the amount of heat energy in the exhaust gases when heating the cooling water is transferred into the exhaust gas system immediately after the internal combustion engine. The disadvantage arises that the thermal energy that enters is significantly lower than the thermal energy present in the exhaust gas.

本発明の課題は、排ガスに内在するエネルギ量
およびエネルギ性質を、内燃機関の効果的な効率
が公知の駆動装置に較べて著しく高められるよう
に利用できる冒頭に述べた形式の駆動装置を提供
することにある。
It is an object of the invention to provide a drive device of the type mentioned at the outset, which makes it possible to utilize the energy content and energy properties inherent in the exhaust gas in such a way that the effective efficiency of the internal combustion engine is significantly increased compared to known drive devices. There is a particular thing.

前記課題は本発明によれば、排気タービンが、
廃熱タービンユニツトによつて利用される全エネ
ルギを排気タービン内で内燃機関の排ガスから取
り出すように構成されていてかつ排気タービン内
で前記エネルギの熱成分が重畳される熱的な作業
プロセスの作業媒体に伝達されるようになつてお
り、この際廃熱タービンユニツトが圧縮機と、二
次タービンと、排気タービンとを有しており、排
気タービンのタービン羽根が中空羽根によつて形
成されていて、該中空羽根を貫流して圧縮機によ
つて圧縮された作業媒体が流れ、この作業媒体が
排ガスから熱を吸収した後で、二次タービンにお
いて膨張して出力を放出するようになつているこ
とによつて解決された。排気タービンが熱交換器
として作用しかつ圧縮された作用媒体を加熱する
ので、排気タービンを介して直接排ガスの運動エ
ネルギを利用することによつておよび排気タービ
ンを介して間接的に排ガスの熱エネルギを利用す
ることによつて廃熱タービンユニツトにおいて著
しい出力再生が行なわれる。前記出力は内燃機関
に再び直接供給されるか又は前記出力によつて例
えば発電機が駆動され、このばあい前記発電機の
電気的なエネルギは内燃機関の負荷を軽減するた
めに種々の目的に、例えば補助装置の駆動に又は
加熱に利用される。
According to the present invention, the problem is solved by the exhaust turbine
Work in a thermal work process, which is designed to extract all the energy utilized by the waste heat turbine unit from the exhaust gas of the internal combustion engine in an exhaust turbine, and in which the thermal component of said energy is superimposed. The waste heat turbine unit has a compressor, a secondary turbine and an exhaust turbine, and the turbine blades of the exhaust turbine are formed by hollow blades. A working medium compressed by the compressor flows through the hollow blades and, after absorbing heat from the exhaust gas, expands in the secondary turbine to release power. It was solved by having Since the exhaust turbine acts as a heat exchanger and heats the compressed working medium, the heat energy of the exhaust gas can be transferred directly via the exhaust turbine by utilizing the kinetic energy of the exhaust gas and indirectly via the exhaust turbine. Significant power regeneration is achieved in the waste heat turbine unit by utilizing. The power can be directly supplied again to the internal combustion engine or it can drive, for example, a generator, the electrical energy of which can then be used for various purposes in order to reduce the load on the internal combustion engine. , for example for driving auxiliary equipment or for heating.

特にオーストリア国特許第138943号明細書で開
示されたものと較べて、作業媒体の改善された案
内形式が得られる、即ち、圧縮機と熱交換器とタ
ービンとの間に流れ損失を生ぜしめる偏向措置を
講せずに済む。更に排気タービンは中空羽根によ
つて集中的に内部冷却される。それというのも排
気タービンは同時に熱的な作業プロセスのための
熱交換器を成すからである。これによつて熱的な
強度に関する構造上の要求が著しく軽減され、こ
れによつて排気タービン用の高温度耐性の高価な
材料が省かれる。作業媒体は本発明によれば空
気、蒸気又は類似のものであつてかつ二次タービ
ンは単段又は多段の軸流タービン又は半径流ター
ビンによつて形成されている。更に廃熱タービン
ユニツトが統合された構成部材として構成されて
いると特に有利である。これによつて廃熱タービ
ンユニツトは、わずかな構造スペースに基づいて
自動車のばあい特に有利であるようなわずかでし
かもコンパクトな構造容積を有することになる。
In particular compared to that disclosed in Austrian Patent No. 138 943, an improved form of guiding of the working medium is obtained, i.e. a deflection which causes flow losses between the compressor, the heat exchanger and the turbine. There is no need to take any measures. Furthermore, the exhaust turbine is centrally cooled internally by means of hollow blades. This is because the exhaust turbine simultaneously forms a heat exchanger for the thermal work process. This significantly reduces the structural requirements with regard to thermal strength, and thus eliminates expensive materials resistant to high temperatures for the exhaust turbine. According to the invention, the working medium is air, steam or the like, and the secondary turbine is formed by a single-stage or multi-stage axial or radial turbine. Furthermore, it is particularly advantageous if the waste heat turbine unit is constructed as an integrated component. As a result, the waste heat turbine unit has a small and compact construction volume, which is particularly advantageous in motor vehicles because of the small construction space required.

次に図示の実施例につき本発明を説明する。 The invention will now be explained with reference to the illustrated embodiment.

第3図で略示図として図示された本発明の実施
例では符号1で内燃機関がかつ符号2で内燃機関
の排ガスによつて駆動される排気タービンが図示
されており、該排気タービン2は圧縮機3と二次
タービン4(二次タービンは単段又は多段の軸流
タービン又は半径タービンとして形成される)と
共に軸5上に配置されている。排気タービン2
と、圧縮機3と、二次タービン4とは熱交換器6
に作用接続されかつ該熱交換器6と共に廃熱ター
ビンユニツト7を形成している。内燃機関1から
排気タービン2に案内された排ガス導管は符号8
でかつ排気ガスタービン2から熱交換器6に案内
された排ガス導管は符号9で図示されている。吸
込み導管10を介して圧縮機3に媒体が供給さ
れ、該媒体は、空気導管11を介して熱交換器6
に供給される。媒体を供給するばあいには空気、
蒸気又は類似のものが使用され、このばあい以下
においては、吸込まれる媒体が空気であるという
ことから出発している。排ガスと圧縮された空気
とは熱交換器6を貫流し、このばあい熱交換器6
から空気が空気導管12を介して二次タービン4
にかつ二次タービン4から空気導管13を介して
排ガス導管14に供給される。
In the exemplary embodiment of the invention shown schematically in FIG. 3, reference numeral 1 indicates an internal combustion engine and reference numeral 2 an exhaust turbine driven by the exhaust gases of the internal combustion engine. A compressor 3 and a secondary turbine 4 (the secondary turbine is configured as a single-stage or multi-stage axial or radial turbine) are arranged on a shaft 5. exhaust turbine 2
, the compressor 3 and the secondary turbine 4 are connected to a heat exchanger 6
It is operatively connected to the heat exchanger 6 and together with the heat exchanger 6 forms a waste heat turbine unit 7. The exhaust gas conduit guided from the internal combustion engine 1 to the exhaust turbine 2 is designated by 8
The exhaust gas line leading from the exhaust gas turbine 2 to the heat exchanger 6 is designated by 9. A medium is supplied to the compressor 3 via a suction conduit 10, which is transferred via an air conduit 11 to a heat exchanger 6.
supplied to Air when supplying the medium;
Steam or the like is used; in the following it is assumed that the medium to be sucked in is air. The exhaust gas and the compressed air flow through the heat exchanger 6, in this case the heat exchanger 6
Air from the secondary turbine 4 is passed through the air conduit 12 to the secondary turbine 4.
It is then supplied from the secondary turbine 4 via an air line 13 to an exhaust gas line 14 .

本発明の原則的な作用は次の通りである。 The basic operation of the present invention is as follows.

内燃機関1を始動した後で内燃機関1の排ガス
が排気タービン2を駆動しかつ排気タービン2が
圧縮機3を駆動する。圧縮機3によつて吸込まれ
かつ圧縮された空気は空気導管11を介してかつ
排ガスは排ガス導管9を介して熱交換器6に供給
される。熱交換器6内では加熱された排ガスと圧
縮された空気との間で熱交換が行なわれる。熱交
換器6内で加熱された空気は空気導管12を介し
て二次タービン4に達し、該二次タービン4にお
いて膨張して出力を放出しかつ二次タービン4か
ら空気導管13を介して排ガス導管14に供給さ
れ、該排ガス導管14を介して空気と排ガスとは
大気中に導かれる。
After starting the internal combustion engine 1, the exhaust gases of the internal combustion engine 1 drive an exhaust turbine 2, which in turn drives a compressor 3. The air sucked in and compressed by the compressor 3 is supplied to the heat exchanger 6 via the air line 11 and the exhaust gas via the exhaust gas line 9. Heat exchange takes place in the heat exchanger 6 between the heated exhaust gas and compressed air. The air heated in the heat exchanger 6 reaches the secondary turbine 4 via an air conduit 12, expands in the secondary turbine 4 to release power, and is discharged from the secondary turbine 4 via an air conduit 13 to exhaust gas. The air and exhaust gases are fed into a conduit 14 via which the air and exhaust gases are conducted into the atmosphere.

第4図、第5図、第6図では統合された構造形
式の本発明の実施例が図示されている。このばあ
い排気タービン15と、圧縮機16と、二次ター
ビン17とが一緒に、内燃機関18にフランジ結
合されたケーシング19内に配置されかつ協働し
て廃熱タービンユニツト20を形成している。廃
熱タービンユニツト20は中心管21を有し、該
中心管21は中空羽根として形成された排気ター
ビン15のタービン羽根22と、圧縮機16と、
二次タービン17とに固定的に結合されかつ回転
可能にケーシング19内に支承されている。ケー
シング19内の排ガス取入れ管片は符号23でか
つ中心管21内の開口は符号24で図示されてい
る。ケーシング19の端部25,26は中心管2
1用の支承個所は成し、このばあい端壁26はタ
ービン羽根22の範囲に開口27を有している。
圧縮機16の左側部分28は空気を吸込むための
開口29を有し、かつケーシング19の前記部分
28とは反対側は排ガスを排出するための開口3
0を有している。二次タービン17と排気タービ
ン15とから得られた出力は駆動装置31によつ
て直接内燃機関18に供給されるか又は補助装置
を駆動するために利用されるか又は例えば発電機
を駆動するために利用される。
4, 5 and 6 show embodiments of the invention in integrated construction. In this case, the exhaust turbine 15 , the compressor 16 and the secondary turbine 17 are arranged together in a casing 19 which is flanged to the internal combustion engine 18 and together form a waste heat turbine unit 20 . There is. The waste heat turbine unit 20 has a central pipe 21 which is connected to the turbine blades 22 of the exhaust turbine 15, which are formed as hollow blades, and to the compressor 16.
It is fixedly coupled to the secondary turbine 17 and rotatably supported within the casing 19. The exhaust gas intake tube in the casing 19 is designated 23 and the opening in the central tube 21 is designated 24. The ends 25 and 26 of the casing 19 are connected to the center tube 2.
1, the end wall 26 in this case has an opening 27 in the region of the turbine blade 22.
The left part 28 of the compressor 16 has an opening 29 for sucking in air, and the side of the casing 19 opposite to said part 28 has an opening 3 for discharging exhaust gas.
It has 0. The power obtained from the secondary turbine 17 and the exhaust turbine 15 is supplied by the drive 31 directly to the internal combustion engine 18 or is used to drive auxiliary equipment or for example to drive a generator. used for.

第4図、第5図、第6図の本発明による実施例
の作用は次の通りである。
The operation of the embodiment according to the invention shown in FIGS. 4, 5 and 6 is as follows.

内燃機関を始動させた後で内燃機関18の排ガ
スが排気タービン15を駆動するために排ガス取
入れ管片23を介して排気タービン15に供給さ
れる。排気タービン15は圧縮機16を駆動し、
該圧縮機16は空気を吸込みかつ圧縮してタービ
ン羽根22を介して二次タービン17に供給す
る。加熱された排ガスによつて負荷されるタービ
ン羽根22を介して空気が貫流している間に排ガ
スと空気との間で熱交換が行なわれ、このばあい
圧縮された空気が加熱される。この空気は二次タ
ービン17内で膨張して出力を放出し、これによ
つて廃熱タービンユニツトの出力が著しく高めら
れる。
After starting the internal combustion engine, the exhaust gases of the internal combustion engine 18 are fed to the exhaust turbine 15 via the exhaust gas intake piece 23 in order to drive the exhaust turbine 15 . The exhaust turbine 15 drives the compressor 16,
The compressor 16 sucks in air, compresses it, and supplies it to the secondary turbine 17 via turbine blades 22 . While the air flows through the turbine blades 22 loaded with heated exhaust gas, a heat exchange takes place between the exhaust gas and the air, in which case the compressed air is heated. This air expands in the secondary turbine 17 and releases power, thereby significantly increasing the power output of the waste heat turbine unit.

本発明の別の実施例では圧縮機16によつて吸
込まれる空気を予じめ圧縮することができる。
In another embodiment of the invention, the air drawn in by compressor 16 can be precompressed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は水冷式のオツト・内燃機関のエネルギ
分布を示した図、第2図はインジケータ線図、第
3図は原則的な略示図に基づいて駆動装置を示し
た図、第4図は統合された構造形式の廃熱タービ
ンユニツトを概略的に示した図、第5図は廃熱タ
ービンユニツトの縦断面図、第6図は第5図−
線に沿つた廃熱タービンユニツトの断面図であ
る。 1,18……内燃機関、2,15……排気ター
ビン、3,16……圧縮機、4,17……二次タ
ービン、5……軸、6……熱交換器、7,20…
…廃熱タービンユニツト、8,9,14……排ガ
ス導管、10……吸込み導管、11,12,13
……空気導管、19……ケーシング、21……中
心管、22……タービン羽根、23……排ガス取
入れ管片、24,27,29,30……開口、2
5,26……端壁、28……部分、31……駆動
部材。
Figure 1 is a diagram showing the energy distribution of a water-cooled engine/internal combustion engine, Figure 2 is an indicator diagram, Figure 3 is a diagram showing the drive system based on the basic schematic diagram, Figure 4 5 schematically shows a waste heat turbine unit with an integrated structure, FIG. 5 is a longitudinal sectional view of the waste heat turbine unit, and FIG.
3 is a cross-sectional view of the waste heat turbine unit along a line; FIG. 1, 18... Internal combustion engine, 2, 15... Exhaust turbine, 3, 16... Compressor, 4, 17... Secondary turbine, 5... Shaft, 6... Heat exchanger, 7, 20...
...Waste heat turbine unit, 8, 9, 14... Exhaust gas pipe, 10... Suction pipe, 11, 12, 13
... Air conduit, 19 ... Casing, 21 ... Center pipe, 22 ... Turbine blade, 23 ... Exhaust gas intake pipe piece, 24, 27, 29, 30 ... Opening, 2
5, 26... End wall, 28... Portion, 31... Drive member.

Claims (1)

【特許請求の範囲】 1 内燃機関と、内燃機関の排ガスによつて負荷
される排気タービンを備えた廃熱タービンユニツ
トとを有し、該廃熱タービンユニツトが内燃機関
の排ガスの運動エネルギを利用する他に、この排
ガス運動エネルギを利用した作業プロセスに重畳
された熱的な作業プロセスで、内燃機関の排ガス
の熱エネルギを利用するようになつている駆動装
置において、前記排気タービン2,15が、廃熱
タービンユニツト7,20によつて利用される全
エネルギを排気タービン内で内燃機関1の排ガス
から取り出すように、構成されていてかつ排気タ
ービン内で前記エネルギの熱成分が重畳される熱
的な作業プロセスの作業媒体に伝達されるように
なつており、この際廃熱タービンユニツト7,2
0が圧縮機3,16と、二次タービン4,17
と、排気タービン2,15とを有しており、排気
タービン15のタービン羽根22が中空羽根によ
つて形成されていて、該中空羽根を貫流して圧縮
機16によつて圧縮された作業媒体が流れ、この
作業媒体が排ガスから熱を吸収した後で、二次タ
ービン17において膨張して出力を放出するよう
になつていることを特徴とする駆動装置。 2 前記作業媒体が空気である特許請求の範囲第
1項記載の駆動装置。 3 前記作業媒体が蒸気である特許請求の範囲第
1項記載の駆動装置。 4 前記二次タービン4,17が単段又は多段の
軸流タービン又は半径流タービンによつて構成さ
れている特許請求の範囲第1項記載の駆動装置。 5 前記廃熱タービンユニツト20が統合された
構成部材として構成されている特許請求の範囲第
1項記載の駆動装置。
[Scope of Claims] 1. A waste heat turbine unit comprising an internal combustion engine and an exhaust turbine loaded with exhaust gas of the internal combustion engine, and the waste heat turbine unit utilizes the kinetic energy of the exhaust gas of the internal combustion engine. In addition, in a drive device that utilizes the thermal energy of the exhaust gas of an internal combustion engine in a thermal work process superimposed on the work process that utilizes the exhaust gas kinetic energy, the exhaust turbines 2 and 15 , which is configured such that all the energy utilized by the waste heat turbine units 7, 20 is extracted from the exhaust gas of the internal combustion engine 1 in the exhaust turbine and the heat component of said energy is superimposed in the exhaust turbine. The waste heat is transmitted to the working medium of the working process, and in this case, the waste heat turbine units 7, 2
0 is the compressor 3, 16 and the secondary turbine 4, 17
and exhaust turbines 2 and 15, the turbine blades 22 of the exhaust turbine 15 are formed by hollow blades, and the working medium flows through the hollow blades and is compressed by the compressor 16. A drive device characterized in that, after the working medium has absorbed heat from the exhaust gases, it expands in a secondary turbine 17 and releases power. 2. The drive device according to claim 1, wherein the working medium is air. 3. The drive device according to claim 1, wherein the working medium is steam. 4. The drive device according to claim 1, wherein the secondary turbines 4, 17 are constituted by single-stage or multi-stage axial flow turbines or radial flow turbines. 5. The drive device according to claim 1, wherein the waste heat turbine unit 20 is constructed as an integrated component.
JP15586378A 1977-12-22 1978-12-19 Drive gear Granted JPS5491606A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2757236A DE2757236C3 (en) 1977-12-22 1977-12-22 Drive unit, in particular for motor vehicles

Publications (2)

Publication Number Publication Date
JPS5491606A JPS5491606A (en) 1979-07-20
JPS6342087B2 true JPS6342087B2 (en) 1988-08-22

Family

ID=6026854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15586378A Granted JPS5491606A (en) 1977-12-22 1978-12-19 Drive gear

Country Status (10)

Country Link
US (1) US4294074A (en)
JP (1) JPS5491606A (en)
AR (1) AR219143A1 (en)
BR (1) BR7808348A (en)
CH (1) CH635896A5 (en)
DE (1) DE2757236C3 (en)
FR (1) FR2412696A1 (en)
GB (1) GB2010970B (en)
IT (1) IT1100743B (en)
SE (1) SE443832B (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2463858A1 (en) * 1979-08-17 1981-02-27 Jardinier Jean Waste heat recovery system for heat engines - uses exhaust gases to drive turbine to circulate working fluid and drive heat pump compressor
FR2478736A1 (en) * 1980-03-21 1981-09-25 Semt METHOD AND SYSTEM FOR POWER GENERATION BY SUPERIOR INTERNAL COMBUSTION ENGINE
IT1137555B (en) * 1980-04-26 1986-09-10 Porsche Ag DRIVE GROUP, IN PARTICULAR FOR VEHICLES
JPS5797020A (en) * 1980-12-09 1982-06-16 Jinichi Nishiwaki Exhaust gas energy recovery device for internal combustion engine
DE3326992C1 (en) * 1983-07-27 1984-12-13 Dr.Ing.H.C. F. Porsche Ag, 7000 Stuttgart Drive unit, in particular for motor vehicles
DE3629494C1 (en) * 1986-08-29 1988-02-11 Porsche Ag Waste turbine unit
US4820140A (en) * 1987-10-26 1989-04-11 Sigma-Tek, Inc. Self-lubricating rotary vane pump
HU213242B (en) * 1995-07-17 1997-05-28 Soos Adiabatic, tangetial driving hydrogen engine
DE19960762A1 (en) * 1999-12-16 2001-06-28 Daimler Chrysler Ag Energy recovery system of turbine and compressor links these by power line with compressor downstream of included heat exchanger and turbine downstream plus fresh air input to compressor.
PL341185A1 (en) * 2000-07-03 2001-09-24 Stanislaw Stanaszek Silencer
ITBI20030003U1 (en) * 2003-11-28 2005-05-29 Armando Bianco MECHANISM FOR FUEL SAVING
ITMI20062046A1 (en) 2006-10-24 2008-04-25 Iveco Motorenforschung Ag MOTOR SYSTEM WITH HEAT RECOVERY SYSTEM AND RELATIVE HEAT RECOVERY METHOD
DE112008003879A5 (en) * 2008-07-03 2011-05-05 Fev Motorentechnik Gmbh Exhaust gas energy utilization by open gas turbine process
US20100071878A1 (en) * 2008-09-19 2010-03-25 General Electric Company System and method for cooling using system exhaust
US20120039701A1 (en) * 2010-08-12 2012-02-16 Nuovo Pignone S.P.A. Closed Cycle Brayton Cycle System and Method
US10710738B2 (en) 2015-06-25 2020-07-14 Pratt & Whitney Canada Corp. Auxiliary power unit with intercooler
US9771165B2 (en) 2015-06-25 2017-09-26 Pratt & Whitney Canada Corp. Compound engine assembly with direct drive of generator
US10696417B2 (en) 2015-06-25 2020-06-30 Pratt & Whitney Canada Corp. Auxiliary power unit with excess air recovery
US10590842B2 (en) 2015-06-25 2020-03-17 Pratt & Whitney Canada Corp. Compound engine assembly with bleed air
DE102020117321B4 (en) * 2020-07-01 2022-05-19 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Exhaust gas turbocharger and motor vehicle

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR679672A (en) * 1928-08-02 1930-04-16 Patiag Patentverwertungs Und I pneumatic control
AT138943B (en) * 1930-12-15 1934-10-10 Emil Sahli-Kummer Method for recovering the lost energy from internal combustion engines.
US2109237A (en) * 1934-06-25 1938-02-22 Lustig Ludwig Power plant
DE657608C (en) * 1935-09-14 1938-03-08 Rheinmetall Borsig Akt Ges Wer Process for generating energy from the exhaust gases of internal combustion engines
US2283176A (en) * 1937-11-29 1942-05-19 Turbo Engineering Corp Elastic fluid mechanism
US2443717A (en) * 1942-05-02 1948-06-22 Turbo Engineering Corp Exhaust gas and hot air turbine system
GB586912A (en) * 1942-05-02 1947-04-08 Turbo Engineering Turbine system
DE873461C (en) * 1950-05-07 1953-04-13 Gotthilf Schulin Hydraulic power transmission system with waste heat recovery for internal combustion engines
DE1157430B (en) * 1958-11-10 1963-11-14 Bp Tanker Company Ltd Method and device for extracting heat from the hot exhaust gases of an internal combustion engine
DE1210254B (en) * 1962-03-26 1966-02-03 Rolls Royce Gas turbine engine with cooled turbine blades
CH457038A (en) * 1966-04-28 1968-05-31 Sulzer Ag Plant for the utilization of waste heat from a reciprocating internal combustion engine to drive ships
DD96753A1 (en) * 1972-01-05 1973-04-12
DE2453477A1 (en) * 1974-11-12 1976-05-13 Stache Knut Fuel saving arrangement for internal combustion engines - has exhaust driven heat pump for cooling and generation of electricity
CH611979A5 (en) * 1976-04-02 1979-06-29 Sulzer Ag Two-stroke piston internal combustion engine with a steam turbine utilising the exhaust heat of the supercharger turbine

Also Published As

Publication number Publication date
FR2412696A1 (en) 1979-07-20
GB2010970A (en) 1979-07-04
SE443832B (en) 1986-03-10
AR219143A1 (en) 1980-07-31
JPS5491606A (en) 1979-07-20
IT1100743B (en) 1985-09-28
SE7813115L (en) 1979-06-23
DE2757236A1 (en) 1979-06-28
FR2412696B1 (en) 1982-12-31
IT7830971A0 (en) 1978-12-18
DE2757236B2 (en) 1979-10-25
US4294074A (en) 1981-10-13
DE2757236C3 (en) 1982-02-25
CH635896A5 (en) 1983-04-29
BR7808348A (en) 1979-08-07
GB2010970B (en) 1982-03-31

Similar Documents

Publication Publication Date Title
JPS6342087B2 (en)
US7454911B2 (en) Energy recovery system in an engine
JP2904931B2 (en) Engine assembly with internal combustion engine and steam engine
US4333309A (en) Steam assisted gas turbine engine
CN104220715B (en) Utilize the method for the CO2 compressor of the waste heat driven CO2 trapping systems from internal combustion engine
JP5221541B2 (en) Supercharger
KR840002482B1 (en) Power generation method of supercharged internal combustion engine
US10012136B2 (en) System and method for recovering thermal energy for an internal combustion engine
US4735061A (en) Energy-saving system for an engine-driving air conditioning system
US4062188A (en) Turbocharger system for an internal combustion engine
JPS6396449A (en) Waste-heat utilizing device for internal combustion engine
JP2001132442A (en) Engine provided with energy recovering device
US4301649A (en) Single rotor engine with turbine exhausting to subatmospheric pressure
CN103388524B (en) Diesel engine and the method for improving diesel engine acc power
JP2001132538A (en) Engine provided with energy recovery device
US11035270B2 (en) Internal combustion engine having an exhaust heat recovery system as well as a method for recovering exhaust heat
JPH0771242A (en) Method and equipment for compressing gaseous medium
JP5612187B2 (en) Turbocharged large low-speed two-stroke uniflow internal combustion engine with crosshead and steam turbine
JPS5888409A (en) Ranking bottoming device of diesel engine
EP0779419B1 (en) Improvements made in the engine assembly of automotive vehicles
CN111570089B (en) Tail heat power generation device and method
WO2008035108A1 (en) Engine assemblies
JPH10299574A (en) Ceramic engine driving compressor by exhaust heat recovery energy
JP2001073753A (en) Exhaust gas energy recovery system made from steam turbine
SU1537865A1 (en) Power plant