JPS634139B2 - - Google Patents
Info
- Publication number
- JPS634139B2 JPS634139B2 JP54066652A JP6665279A JPS634139B2 JP S634139 B2 JPS634139 B2 JP S634139B2 JP 54066652 A JP54066652 A JP 54066652A JP 6665279 A JP6665279 A JP 6665279A JP S634139 B2 JPS634139 B2 JP S634139B2
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen chloride
- gas
- exhaust gas
- absorption liquid
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
Description
【発明の詳細な説明】
本発明は産業廃棄物等の焼却の際に発生する排
ガス中の塩化水素の濃度を測定する塩化水素測定
装置の改良に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a hydrogen chloride measuring device that measures the concentration of hydrogen chloride in exhaust gas generated during the incineration of industrial waste.
近年化学工業の発展に伴い産業廃棄物等の焼却
の際に発生する排ガス中の塩化水素ガスの濃度が
増大し、特に塩化ビニルの使用量の増大に伴ない
その傾向が顕著であり、焼却炉材の腐蝕及び大気
汚染の見地からその濃度を長期間に亘り連続的に
測定する必要がある。従来も排ガス中の塩化水素
の濃度の測定方法として塩化水素ガスが非常に水
に溶解し易い性質を有することを利用するものが
ある。すなわち、排ガスを連続的に水を主成分と
する吸収液に接触させて排ガス中の塩化水素ガス
を吸収液に吸収させ、塩素イオン電極によりこの
吸収液中に生じた塩素イオン濃度を分析すること
により排ガス中の塩化水素ガス濃度を連続的に測
定する方法である。そしてこの場合、前記吸収液
には塩素イオン電極と組合せて使用する比較電極
のジヤンクシヨンポテンシヤルを少なくし、電極
電位を安定化させるために、前記吸収液にあらか
じめPH緩衝試薬又は中性塩等を若干溶解させて使
用している。しかし、PH緩衝試薬等を含む吸収液
を用いた場合排ガス中の塩化水素測定装置の連続
運転のためにこのような吸収液を塩素イオンの混
入、汚染を完全に防止した状態で長期間多量にス
トツクすることは実際上困難なので、従来はせい
ぜい1〜2週間程度の自動連続運転しかできず、
その保守、点検に多大の労力を要する等の問題点
を有していた。 In recent years, with the development of the chemical industry, the concentration of hydrogen chloride gas in the exhaust gas generated when industrial waste is incinerated has increased, and this trend is particularly noticeable with the increase in the amount of vinyl chloride used. From the viewpoint of material corrosion and air pollution, it is necessary to measure the concentration continuously over a long period of time. Conventionally, there are methods for measuring the concentration of hydrogen chloride in exhaust gas that utilize the fact that hydrogen chloride gas is highly soluble in water. In other words, exhaust gas is continuously brought into contact with an absorption liquid whose main component is water, hydrogen chloride gas in the exhaust gas is absorbed by the absorption liquid, and the concentration of chlorine ions produced in this absorption liquid is analyzed using a chlorine ion electrode. This method continuously measures the concentration of hydrogen chloride gas in exhaust gas. In this case, in order to reduce the juncture potential of the reference electrode used in combination with the chloride ion electrode and stabilize the electrode potential, a PH buffer reagent or a neutral salt, etc. is added to the absorption solution in advance. It is used after being slightly dissolved. However, when using an absorption liquid containing a PH buffer reagent, etc., it is necessary to use a large amount of such absorption liquid for a long period of time while completely preventing chlorine ion contamination and contamination due to the continuous operation of a device for measuring hydrogen chloride in exhaust gas. Since it is practically difficult to carry out continuous automatic operation for one to two weeks at most,
It has had problems such as requiring a great deal of effort to maintain and inspect it.
本発明者らはこれらの問題点を解決するため種
種検討した結果、吸収液としてPH緩衝試薬又は中
性塩等を溶解していないイオン交換水を用いて排
ガス中の塩化水素測定を行なつた場合、排ガス中
の炭酸ガス、亜硫酸ガス、窒素酸化物等の多量の
共存ガス(たとえば、煙道排ガス中には通常炭酸
ガスは約10%程度、亜硫酸ガス及び窒素酸化物は
10ppm程度含有する。)が吸収液に塩化水素とと
もに吸収溶解され、炭酸イオン、亜硫酸イオン、
亜硝酸イオン等の各種のイオンを生ずるため導電
率が高くなり、PH緩衝試薬等を用いずとも安定か
つ正確に塩素イオン電極が作動し、良好に塩素イ
オン濃度を検出することができると共に、濃度測
定後の吸収液を脱イオン化し、これに再度排ガス
を吸収させて循環使用することができることを知
得して本発明を完成するに至つたもので、その目
的とするところは数箇月もの長期間連続自動運転
が可能な排ガス中塩化水素測定装置を提供するこ
とにある。 As a result of various studies to solve these problems, the present inventors measured hydrogen chloride in exhaust gas using ion-exchanged water in which no pH buffer reagent or neutral salts were dissolved as an absorption liquid. If there are large amounts of coexisting gases such as carbon dioxide, sulfur dioxide, and nitrogen oxides in the flue gas (for example, flue gas usually contains about 10% carbon dioxide, and sulfur dioxide and nitrogen oxides).
Contains about 10ppm. ) is absorbed and dissolved in the absorption liquid together with hydrogen chloride, and carbonate ions, sulfite ions,
Since various ions such as nitrite ions are generated, the conductivity is high, and the chloride ion electrode operates stably and accurately without using a PH buffer reagent, allowing for good detection of chloride ion concentration. The present invention was completed by learning that it is possible to deionize the absorption liquid after measurement, make it absorb exhaust gas again, and use it for circulation. An object of the present invention is to provide a device for measuring hydrogen chloride in exhaust gas that is capable of continuous automatic operation for a period of time.
以下、本発明の一実施例につき図面を参照して
説明する。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings.
図中1は煙突で、その一側壁を開口して煙道内
の排ガスを取り出すための加熱プローブ2が挿入
されており、このプローブ2は加熱サンプリング
チユーブ3を介して吸収管4の排ガス入口部4a
に接続している。なお、5,6はそれぞれ温調器
で、これら加熱プローブ2から吸収管4に至る部
分の内部を知る煙道ガスが冷却されて露点以下と
ならないように区域A,Bがそれぞれ温調器5,
6で加熱される。また、チユーブ3内の末端側に
は温度計7が挿入されている。 In the figure, reference numeral 1 denotes a chimney, into which a heating probe 2 is inserted to open one side wall of the chimney and take out the exhaust gas in the flue.
is connected to. Note that 5 and 6 are temperature controllers, respectively, and areas A and B are temperature controllers 5 to ensure that the flue gas inside the area from the heating probe 2 to the absorption tube 4 is cooled and does not drop below the dew point. ,
Heated at 6. Further, a thermometer 7 is inserted into the tube 3 at its distal end.
前記吸収管4の吸収液出口部4bは反応管8を
介して気液分離器9に接続していると共に、この
分離器9の下端はテフロン(登録商標名)コイル
10を介して塩素電極11及び比較電極12が配
設された測定装置13の試料入口部13aと接続
し、前記分離器9で気体と分離された吸収液が測
定装置13内に導入され、その中の塩素イオン濃
度が測定される。その測定値は電気的にアンプ1
4で増幅され、レコーダ15に表示される。ま
た、前記測定装置13の試料出口部13bは、排
液ポンプ16、液計量器17、バルブ18を介し
て吸収液タンク19に接続している。なお、排液
ポンプ16は煙道の圧力変動があつても測定セル
13を流れる吸収液の流量が一定となるようにす
るためのものである。 The absorption liquid outlet 4b of the absorption tube 4 is connected to a gas-liquid separator 9 via a reaction tube 8, and the lower end of this separator 9 is connected to a chlorine electrode 11 via a Teflon (registered trademark) coil 10. and the sample inlet 13a of the measuring device 13 in which the reference electrode 12 is disposed, and the absorption liquid separated from the gas by the separator 9 is introduced into the measuring device 13, and the chloride ion concentration therein is measured. be done. The measured value is electrically amp 1
4 and displayed on the recorder 15. Further, the sample outlet section 13b of the measuring device 13 is connected to an absorption liquid tank 19 via a drain pump 16, a liquid meter 17, and a valve 18. The drain pump 16 is provided to ensure that the flow rate of the absorption liquid flowing through the measurement cell 13 remains constant even if the flue pressure fluctuates.
前記タンク19は陰もしくは陰、陽の両イオン
交換樹脂が充填された再生器20に接続し、タン
ク19から再生器20に送給された吸収液が脱イ
オン化され、イオン交換水(脱イオン水)が得ら
れるようになつている。前記再生器20はトラツ
プ21、3方コツク22、送液ポンプ23を介し
て前記吸収管4の吸収液入口部4cに接続してい
る。なお、前記タンク19には必要によりタンク
19内に水道水を送給するためのバルブ24を介
装する水道水導入管25が接続しており、また2
6は3方コツク20に接続する等価液容器であ
る。 The tank 19 is connected to a regenerator 20 filled with negative or both negative and positive ion exchange resin, and the absorption liquid sent from the tank 19 to the regenerator 20 is deionized and converted into ion exchange water (deionized water). ) is now available. The regenerator 20 is connected to the absorption liquid inlet portion 4c of the absorption pipe 4 via a trap 21, a three-way tank 22, and a liquid feed pump 23. Incidentally, a tap water inlet pipe 25 is connected to the tank 19 and has a valve 24 interposed therein for feeding tap water into the tank 19 if necessary.
6 is an equivalent liquid container connected to the three-way pot 20.
また、前記気液分離器9の上側部は電子除湿器
27に接続し、分離器9で吸収液と分離された気
体成分がこの除湿器27に流入し、乾燥されるよ
うになつており、乾燥された気体成分は次いでフ
イルター28、流量計29、吐出量を一定とした
ガス吸引ポンプ30を通り、排気口31から排出
される。この場合、排ガスの吸引量は流量計29
に配設した流量検出器(図示せず)からの信号に
より流量制御回路32及び可逆電動機33が動作
して流量調整弁34を開閉し、大気吸入口35か
らフイルター36を介して吸入する大気量を増減
することによつて自動制御している。また、前記
電子除湿器27内に凝集した水はドレイントラツ
プ37に一時集められた後、一定時間の経過毎に
タイマ38の指示でバルブ39、ピンチバルブ4
0が開き、排液口41より排出される。なお、こ
の排液口41はバルブ42を介して前記吸収液タ
ンク19に連通している。また、図面において、
吸収管4、反応管8、テフロンコイル10、測定
セル13、トラツプ21、及び流量計29を含む
一点鎖線でかこんだ区域Cは温調器43が配設さ
れて所定温度に加温されるようになつており、図
中太線は液体の流路、細線は気体の流路、鎖線は
電気的接続を示す。 Further, the upper side of the gas-liquid separator 9 is connected to an electronic dehumidifier 27, and the gas component separated from the absorption liquid in the separator 9 flows into the dehumidifier 27 and is dried. The dried gas component then passes through a filter 28, a flow meter 29, a gas suction pump 30 whose discharge amount is constant, and is discharged from an exhaust port 31. In this case, the amount of exhaust gas suction is determined by the flowmeter 29.
The flow rate control circuit 32 and reversible electric motor 33 are operated by a signal from a flow rate detector (not shown) disposed in the flow rate control valve 34 to open and close the flow rate adjustment valve 34, thereby controlling the amount of atmospheric air sucked from the atmospheric air intake port 35 through the filter 36. It is automatically controlled by increasing and decreasing. Further, the water condensed in the electronic dehumidifier 27 is temporarily collected in the drain trap 37, and then the valve 39 and the pinch valve 4 are
0 opens and the liquid is discharged from the drain port 41. Note that this drain port 41 communicates with the absorption liquid tank 19 via a valve 42. Also, in the drawings,
A temperature controller 43 is installed in an area C surrounded by a dashed line, which includes the absorption tube 4, the reaction tube 8, the Teflon coil 10, the measurement cell 13, the trap 21, and the flowmeter 29, so as to be heated to a predetermined temperature. In the figure, thick lines indicate liquid flow paths, thin lines indicate gas flow paths, and dashed lines indicate electrical connections.
次に、上記のように構成した排ガス中の塩化水
素濃度の測定装置を用いて煙道中の排ガスに含ま
れる塩化水素濃度を測定する場合について説明す
ると、まずガス吸引ポンプ30を作動させ、煙道
中の排ガスを加熱プローブ2内に導入する。な
お、排ガスの導入量(吸引量)は上述した記載の
通り自動制御される。加熱プローブ2に流入した
排ガスは次いで加熱サンプリングチユーブ3を通
つた後、吸収管4内に流入する。この間、排ガス
は高温、例えば120℃以上に保たれ、水分の凝結
が防止される。 Next, to explain the case of measuring the hydrogen chloride concentration contained in the flue gas in the flue using the device for measuring the hydrogen chloride concentration in the flue configured as described above, first, the gas suction pump 30 is activated, and the hydrogen chloride concentration in the flue is of exhaust gas is introduced into the heating probe 2. Note that the amount of introduced exhaust gas (amount of suction) is automatically controlled as described above. The exhaust gas that has entered the heating probe 2 then passes through a heating sampling tube 3 and then into an absorption tube 4. During this time, the exhaust gas is kept at a high temperature, for example 120°C or higher, to prevent moisture from condensing.
一方、送液ポンプ23を作動させ、吸収液タン
ク19内から再生器20に流れ、ここで脱イオン
化された後、トラツプ21、3方コツク22を通
つて流れるイオン交換水(脱イオン水)を前記吸
収管4に導入し、前記排ガスと混合する。イオン
交換水と混合された排ガスは次いで反応管8を通
つた後、気液分離器9に流入するが、吸収管4よ
り反応管8を通る際、十分に気液接触が行われ、
排ガス中の塩化水素及びCO2、SOx、NOx等が
イオン交換水に吸収される。 On the other hand, the liquid sending pump 23 is activated to cause ion-exchanged water (deionized water) to flow from the absorption liquid tank 19 to the regenerator 20, where it is deionized, and then flows through the trap 21 and the three-way tank 22. The gas is introduced into the absorption tube 4 and mixed with the exhaust gas. The exhaust gas mixed with ion-exchanged water then passes through the reaction tube 8 and then flows into the gas-liquid separator 9, but when passing through the reaction tube 8 from the absorption tube 4, sufficient gas-liquid contact is made.
Hydrogen chloride, CO 2 , SOx, NOx, etc. in the exhaust gas are absorbed by ion exchange water.
次に、気液分離器9で気体が分離された吸収液
は、テフロンコイル10を通つて測定装置13内
に流れ、ここで塩素電極11によりCl-イオンが
検出され、この検出値はアンプ14で増幅され、
レコーダ15に記録される。なお、前記装置13
内の吸収液の流量は排液ポンプ16により一定と
され、測定値の正確さが保障される。吸収液は次
いで前記ポンプ16、液計量器17、バルブ18
を経て吸収液タンク19内に入り、貯えられる。
このタンク19内の吸収液は再生器20で各種イ
オン(煙道ガスに基づく炭酸、亜硫酸、亜硝酸等
及び塩素イオン)が除去され、脱イオン水となつ
てトラツプ21に入り、泡抜きをした後、3方コ
ツク22を介して送液ポンプ23に送られ、吸収
管4に流入し、上述した経路を循環する。 Next, the absorption liquid from which the gas has been separated by the gas-liquid separator 9 flows through the Teflon coil 10 into the measuring device 13, where Cl - ions are detected by the chlorine electrode 11, and this detected value is transferred to the amplifier 14. is amplified by
It is recorded on the recorder 15. Note that the device 13
The flow rate of the absorption liquid in the chamber is kept constant by the drain pump 16, ensuring the accuracy of the measured values. The absorption liquid is then pumped through the pump 16, liquid meter 17, and valve 18.
The absorbent liquid enters the absorption liquid tank 19 through the passageway and is stored therein.
Various ions (carbonic acid, sulfurous acid, nitrous acid, etc. and chlorine ions based on flue gas) are removed from the absorbent liquid in the tank 19 in the regenerator 20, and it becomes deionized water and enters the trap 21 to remove bubbles. Thereafter, the liquid is sent to the liquid feeding pump 23 via the three-way tank 22, flows into the absorption tube 4, and circulates through the above-mentioned route.
他方、気液分離器9で分離された気体は、電子
除湿器27、フイルター28、流量計29、ガス
吸引ポンプ30を経て、排気口31から系外に排
出される。 On the other hand, the gas separated by the gas-liquid separator 9 passes through an electronic dehumidifier 27, a filter 28, a flow meter 29, and a gas suction pump 30, and is discharged to the outside of the system from an exhaust port 31.
而して、上述した排ガス中の塩化水素ガス濃度
の測定において、測定装置13内を流れる吸収液
はイオン交換水に排ガスを接触させ、塩化水素及
び共存するCO2、SOx、NOxガスを吸収したも
ので、吸収液はH+、CO3 2-、SO3 2-、NO- 2等のイ
オンによりかなりの導電率を示すことになり、こ
れらの各イオンが共存する水溶液であるから、
Cl-イオン濃度を塩素イオン電極11と比較電極
12の組合せによつて測定する場合、上記共存ガ
スの吸収による各イオンの存在と、これによる水
溶液の導電率によつて電極電位が安定し、良好に
Cl-イオンを検出することができる。従つて、吸
収液としてアルカリ溶液、緩衝溶液等を用いる必
要がなく、吸収管4に吸収液としてイオン交換水
(脱イオン水)を導入するだけで排ガス中の塩化
水素ガスは十分に捕集され、かつ塩素イオン電極
11によるCl-イオンの測定も電極電位が安定化
するので正確に行われる。更に、Cl-イオン濃度
が測定された吸収液は再生器20で脱イオン化さ
れ、イオンを含まない状態で吸収管4に送ること
ができ、循環使用されるので、吸収液を補給、交
換することなく、長期間の連続運転、連続測定が
できる。例えば、従来の吸収液としてPH緩衝試
薬、中性塩等を加えたものを用いている装置の場
合は自動連続運転期間が吸収液ストツクの関係か
らせいぜい1〜2週間程度であつたが、上述した
如き装置において、2の再生器、10の吸収液
タンクを用い、200〜300ppm程度の高濃度の塩化
水素の測定を行つた場合、吸収液のメンテナンス
を行うことなく5ケ月以上の自動連続運転が可能
であつた。また、上述した装置によれば再生器2
0内のイオン交換樹脂の寿命は色の変化で表示さ
れるので交換の時期を容易に知ることができると
共に、イオン交換樹脂は再生再使用ができるの
で、装置の維持管理コストが低減される。 Therefore, in the above-described measurement of the hydrogen chloride gas concentration in the exhaust gas, the absorption liquid flowing inside the measuring device 13 brought the exhaust gas into contact with ion-exchanged water and absorbed hydrogen chloride and the coexisting CO 2 , SOx, and NOx gases. The absorption liquid exhibits considerable electrical conductivity due to ions such as H + , CO 3 2- , SO 3 2- , NO - 2, etc., and since it is an aqueous solution in which each of these ions coexists,
When measuring the Cl - ion concentration using a combination of the chlorine ion electrode 11 and the comparison electrode 12, the electrode potential is stabilized and good due to the presence of each ion due to absorption of the coexisting gas and the resulting conductivity of the aqueous solution. to
Cl - ions can be detected. Therefore, there is no need to use an alkaline solution, a buffer solution, etc. as an absorption liquid, and the hydrogen chloride gas in the exhaust gas can be sufficiently collected by simply introducing ion-exchanged water (deionized water) as an absorption liquid into the absorption tube 4. , and the measurement of Cl - ions by the chlorine ion electrode 11 is also performed accurately because the electrode potential is stabilized. Furthermore, the absorption liquid whose Cl - ion concentration has been measured is deionized in the regenerator 20 and can be sent to the absorption tube 4 in an ion-free state and used for circulation, so the absorption liquid cannot be replenished or replaced. long-term continuous operation and continuous measurement. For example, in the case of a conventional device that uses a PH buffer reagent, neutral salt, etc. as an absorption liquid, the automatic continuous operation period is at most one to two weeks due to the absorption liquid stock. When measuring hydrogen chloride at a high concentration of about 200 to 300 ppm using 2 regenerators and 10 absorption liquid tanks, such a device can be automatically operated continuously for more than 5 months without maintenance of the absorption liquid. was possible. Further, according to the above-mentioned device, the regenerator 2
Since the lifespan of the ion exchange resin in 0 is displayed by a change in color, it is easy to know when it is time to replace it, and since the ion exchange resin can be recycled and reused, the cost of maintaining and managing the equipment is reduced.
以上説明したように、本発明によれば吸収液と
してPH緩衝試薬、中性塩等を溶解していない脱イ
オン水を用いて塩化水素ガスを吸収しても、同時
に他の共存ガスも吸収され、液の導電率が上がる
ので、正確に塩化水素ガス濃度を測定でき、また
吸収液を循環使用することができて長期間に亘り
吸収液のメンテナンスを行うことなく連続自動運
転ができ、産業廃棄物等の焼却の際に発生する排
ガス中の塩化水素ガスの濃度を連続して測定でき
るなどの特長を有する。 As explained above, according to the present invention, even if hydrogen chloride gas is absorbed using deionized water in which PH buffer reagents, neutral salts, etc. are not dissolved as the absorption liquid, other coexisting gases are also absorbed at the same time. Since the conductivity of the liquid increases, it is possible to accurately measure the concentration of hydrogen chloride gas, and the absorption liquid can be used in circulation, allowing continuous automatic operation over a long period of time without maintenance of the absorption liquid, reducing industrial waste. It has the advantage of being able to continuously measure the concentration of hydrogen chloride gas in the exhaust gas generated when incinerating materials.
なお、排ガス中の種々共存ガスを吸収した吸収
液にイオン交換樹脂を非常に劣化させるものがあ
る場合などには、吸収液を循環させる代りに水道
水等を吸収液タンクに供給し、これを再生器を通
して脱イオン化した後、吸収液として吸収管に送
液する一方、イオン交換樹脂を非常に劣化させる
成分を含む吸収液はCl-イオンの測定後系外に排
出させることもでき、これによつても長期間吸収
液のメンテナンスをすることなく測定を続けるこ
とができるものである。 In addition, if the absorption liquid that has absorbed various coexisting gases in the exhaust gas contains substances that seriously degrade the ion exchange resin, tap water or the like can be supplied to the absorption liquid tank instead of circulating the absorption liquid. After being deionized through a regenerator, it is sent to the absorption tube as an absorption liquid, while the absorption liquid containing components that seriously degrade the ion exchange resin can also be discharged outside the system after measuring Cl - ions. However, measurements can be continued for a long period of time without maintenance of the absorption liquid.
図面は本発明の一実施例を示すフローシートで
ある。
1……煙突、2……加熱プローブ、4……吸収
管、13……測定装置、20……再生装置。
The drawing is a flow sheet showing one embodiment of the present invention. 1... Chimney, 2... Heating probe, 4... Absorption tube, 13... Measuring device, 20... Regeneration device.
Claims (1)
ガス中の塩化水素及び共存ガスを吸収する脱イオ
ン水とが供給される吸収管と、塩素イオン電極及
び比較電極を備え、これら塩素イオン電極及び比
較電極で前記塩化水素及び共存ガスを吸収した脱
イオン水中の塩化水素濃度を測定する測定装置
と、塩化水素濃度が測定された脱イオン水をイオ
ン交換樹脂により脱イオン化し、再生する再生器
と、この再生器で再生した脱イオン水を前記吸収
管に供給する手段とを具備してなることを特徴と
する排ガス中塩化水素測定装置。1 Equipped with an absorption tube to which exhaust gas whose concentration of hydrogen chloride is to be measured and deionized water that absorbs hydrogen chloride and coexisting gases in this exhaust gas are supplied, a chlorine ion electrode and a comparison electrode, and a chlorine ion electrode and a comparison electrode. a measuring device that measures the hydrogen chloride concentration in deionized water that has absorbed the hydrogen chloride and coexisting gas with an electrode; a regenerator that deionizes and regenerates the deionized water in which the hydrogen chloride concentration has been measured using an ion exchange resin; An apparatus for measuring hydrogen chloride in exhaust gas, comprising means for supplying deionized water regenerated by the regenerator to the absorption tube.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6665279A JPS55158555A (en) | 1979-05-29 | 1979-05-29 | Measuring apparatus for hydrogen chloride in exhaust gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6665279A JPS55158555A (en) | 1979-05-29 | 1979-05-29 | Measuring apparatus for hydrogen chloride in exhaust gas |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS55158555A JPS55158555A (en) | 1980-12-10 |
JPS634139B2 true JPS634139B2 (en) | 1988-01-27 |
Family
ID=13322037
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6665279A Granted JPS55158555A (en) | 1979-05-29 | 1979-05-29 | Measuring apparatus for hydrogen chloride in exhaust gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS55158555A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220005006A (en) | 2019-04-23 | 2022-01-12 | 주식회사 쿠라레 | Thermoplastic liquid crystal polymer film, laminate, and molded article, and manufacturing method thereof |
KR20220005005A (en) | 2019-04-23 | 2022-01-12 | 주식회사 쿠라레 | Thermoplastic liquid crystal polymer film, laminate, and molded article, and manufacturing method thereof |
KR20220005007A (en) | 2019-04-23 | 2022-01-12 | 주식회사 쿠라레 | Thermoplastic liquid crystal polymer film, laminate, and molded article, and manufacturing method thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3118945B2 (en) * | 1992-01-16 | 2000-12-18 | 三菱電機株式会社 | Odor sensor and odor measurement device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5427690B2 (en) * | 1972-05-02 | 1979-09-11 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5244068Y2 (en) * | 1972-03-07 | 1977-10-06 | ||
JPS5730608Y2 (en) * | 1977-07-25 | 1982-07-05 |
-
1979
- 1979-05-29 JP JP6665279A patent/JPS55158555A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5427690B2 (en) * | 1972-05-02 | 1979-09-11 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220005006A (en) | 2019-04-23 | 2022-01-12 | 주식회사 쿠라레 | Thermoplastic liquid crystal polymer film, laminate, and molded article, and manufacturing method thereof |
KR20220005005A (en) | 2019-04-23 | 2022-01-12 | 주식회사 쿠라레 | Thermoplastic liquid crystal polymer film, laminate, and molded article, and manufacturing method thereof |
KR20220005007A (en) | 2019-04-23 | 2022-01-12 | 주식회사 쿠라레 | Thermoplastic liquid crystal polymer film, laminate, and molded article, and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPS55158555A (en) | 1980-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5902751A (en) | Method and apparatus for the measurement of dissolved carbon | |
US5900042A (en) | Method for the removal of elemental mercury from a gas stream | |
US4277438A (en) | Method and apparatus for measuring the amount of carbon and other organics in an aqueous solution | |
CN1051476C (en) | Method for controlling the oxidation of sulfites | |
CN206330884U (en) | A kind of gaseous sulfur line oxide detection means | |
US5788828A (en) | Apparatus for detecting anions in water | |
JPH04361196A (en) | Testing method of soluble matter in nuclear reactor cooling water | |
CA2228337A1 (en) | Method and apparatus for the measurement of dissolved carbon | |
JPS634139B2 (en) | ||
JPS59150339A (en) | Continuous measurement of concentration of carbonate and sulfite in liquid | |
Augugliaro et al. | Kinetics of carbon dioxide absorption into catalysed potassium carbonate solutions | |
JPS634140B2 (en) | ||
JPH022919A (en) | Method of continuously analyzing chloride ion existing in water of head of distillation column of hydrocarbon and analyzer for implementing the same | |
CN110687062A (en) | Detection system and detection method for sulfur trioxide content in flue gas | |
JPH1183820A (en) | Smell measuring instrument | |
EP0466303B1 (en) | Method and system for continuously monitoring and controlling a process stream for dechlorination residual | |
Cummings et al. | An analytical method for determining bound and free alkanolamines in heat stable salt contaminated solutions | |
JP2000317208A (en) | Continuous gas extractor and continuous analyzer for analyzing free carbonic acid and dissolved inorganic carbonic acid in water using the same | |
CN109738571A (en) | A device and method for gaseous mercury valence state conversion and measurement | |
US3361661A (en) | Apparatus for analyzing gases | |
JPS61104256A (en) | Apparatus for analysis of total volatile organic compound | |
JPH0352826B2 (en) | ||
JP3074938B2 (en) | Carbon content measuring device | |
JP4071686B2 (en) | Conductivity measurement cell | |
JPH08129011A (en) | Inorganic carbon measuring device |