JPS6341176B2 - - Google Patents
Info
- Publication number
- JPS6341176B2 JPS6341176B2 JP14578281A JP14578281A JPS6341176B2 JP S6341176 B2 JPS6341176 B2 JP S6341176B2 JP 14578281 A JP14578281 A JP 14578281A JP 14578281 A JP14578281 A JP 14578281A JP S6341176 B2 JPS6341176 B2 JP S6341176B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- vacuum
- alloy
- alloy material
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000956 alloy Substances 0.000 claims description 19
- 239000010949 copper Substances 0.000 claims description 14
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 13
- 229910052802 copper Inorganic materials 0.000 claims description 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 12
- 239000000843 powder Substances 0.000 claims description 10
- 229910000990 Ni alloy Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000011148 porous material Substances 0.000 claims description 7
- 229910052742 iron Inorganic materials 0.000 claims description 6
- 230000008018 melting Effects 0.000 claims description 6
- 238000002844 melting Methods 0.000 claims description 6
- 238000005245 sintering Methods 0.000 claims description 4
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 3
- 230000004323 axial length Effects 0.000 claims description 3
- 239000004020 conductor Substances 0.000 description 11
- 239000006185 dispersion Substances 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 238000005219 brazing Methods 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Landscapes
- High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
Description
【発明の詳細な説明】
本発明は真空しや断器に係り、特にしや断アー
クに対し平行な軸方向磁界を発生させる手段を電
極の背部に設けた真空しや断器に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vacuum shear breaker, and more particularly to a vacuum sheath breaker in which means for generating an axial magnetic field parallel to the shear arc is provided at the back of the electrode.
近年、アークにこれと平行な軸方向磁界を印加
することにより、アークを電極面上に分散せしめ
てその集中化を防止し、電極の過度の溶融を防ぐ
ことによりしや断能力の向上を図つた、いわゆる
アーク分散方式の真空しや断器が知られている。 In recent years, by applying an axial magnetic field parallel to the arc, it is possible to disperse the arc on the electrode surface and prevent its concentration, thereby improving the shearing ability by preventing excessive melting of the electrode. A so-called arc dispersion type vacuum cutter is known.
かかるアーク分散方式の真空しや断器は、第1
図に概略構成を示すように、一般に、円筒状に形
成したガラスまたはセラミツクからなる絶縁筒1
の両端を金属からなる円板状の端板2,2により
気密に閉塞しかつ内部を高真空に排気して真空容
器3を形成し、この真空容器3内にその軸線上に
おいて1対の電極4,4を接触離反(接離)すべ
く各端板2の中央部から真空容器3の気密を保持
しつつ対をなす電極棒5,5を図示しない操作装
置を介し相対的に接近離反自在に導入するととも
に、各電極4の背部中央とそれぞれの電極棒の内
端部とを、電極棒5に流れる軸方向(第1図にお
いて上下方向)の電流を電極棒5を中心とするル
ープ電流に変更して軸方向磁界を発生させるコイ
ル体6,6により接続して構成されている。 Such an arc dispersion type vacuum shield disconnector is
As shown in the figure, an insulating cylinder 1 is generally made of glass or ceramic and has a cylindrical shape.
A vacuum container 3 is formed by airtightly closing both ends with disk-shaped end plates 2, 2 made of metal and evacuating the inside to a high vacuum. In order to bring the electrodes 5, 4 into contact with and away from each other, the pair of electrode rods 5, 5 can be moved relatively toward and away from the center of each end plate 2 via an operating device (not shown) while maintaining the airtightness of the vacuum container 3. At the same time, the current flowing in the axial direction (up and down direction in FIG. 1) flowing through the electrode rod 5 is connected to the center of the back of each electrode 4 and the inner end of each electrode rod as a loop current centered on the electrode rod 5. The coil bodies 6, 6 are connected to each other to generate an axial magnetic field.
しかしながら、電極4は、通常、導電率の高い
銅系材料により形成されているため、コイル体6
により発生する軸方向磁界が鎖交することによつ
て電極4内にうず電流が発生し、このうず電流に
より実質的に軸方向磁界の強度低下を招き、真空
しや断器のしや断能力が低減されている。 However, since the electrode 4 is usually formed of a copper-based material with high conductivity, the coil body 6
As a result of the interlinkage of the axial magnetic fields generated by the has been reduced.
かかる問題に対処するため、第2図に示すよう
に、電極4の体部にその中央部付近から周縁部に
向つて放射状に延びる複数のスリツト7を設け、
うず電流の発生を抑制したものが知られている
が、かかる電極4の場合には、電極4自体の機械
的強度が低下するとともに、スリツト7の角部に
アークが停滞しやすくなるため、しや断能力の低
下を招きかつ高電圧用の真空しや断器の場合には
耐電圧の低下を招く等の問題がある。 In order to deal with this problem, as shown in FIG. 2, a plurality of slits 7 are provided in the body of the electrode 4 that extend radially from near the center toward the periphery.
Electrodes 4 that suppress the generation of eddy currents are known, but in the case of such electrodes 4, the mechanical strength of the electrode 4 itself decreases and the arc tends to stagnate at the corners of the slit 7. In the case of high-voltage vacuum shields and disconnectors, there are problems such as a decrease in withstand voltage.
本発明は上述した問題に鑑みてなされたもの
で、その目的とするところは、電極を導電率の低
い鉄を主成分とする合金材料により形成し、また
前記合金材料からなる電極の接触面とコイル体の
接続部との間の軸方向長さを十分に小さくするこ
とにより、電極の機械的強度を低下することなく
うず電流の発生を抑制し、もつてしや断性能の向
上を図り得るようにし、また電極の閉路状態にお
ける通電電流の損失を低減し得るようにしたアー
ク分散方式の真空しや断器を提供するにある。 The present invention has been made in view of the above-mentioned problems, and its object is to form an electrode from an alloy material mainly composed of iron with low conductivity, and to form a contact surface of the electrode made of the alloy material. By sufficiently reducing the length in the axial direction between the coil body and the connection part, it is possible to suppress the generation of eddy current without reducing the mechanical strength of the electrode, and improve the connection and disconnection performance. It is an object of the present invention to provide an arc dispersion type vacuum shield breaker which is capable of reducing the loss of current flowing when the electrodes are in a closed circuit state.
以下、第3図以降の図面を参照してこの発明の
実施例を詳細に説明する。なお、以下の説明にお
いて前述した従前のものと同一の構成部材には同
一符号を付しその重複する説明を省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings from FIG. 3 onwards. In the following description, the same reference numerals are given to the same constituent members as in the previous one described above, and redundant explanation thereof will be omitted.
第3図および第4図は本発明の第1実施例の縦
断面図および平断面図で、図示しない真空容器に
導入される電極棒5の内端軸心部には、円形の凹
部8が設けられており、この凹部8を設けること
によつて形成される筒体部5aには、第5図に示
すように、円周方向へ等配されかつ凹部8の半分
程度の深さを有する複数(実施例では4個)の溝
9a,9b,9c,9dが設けられている。そし
て、凹部8には、その底部に基部をろう付けによ
り接合したコイル絶縁支持体10が同心状に収納
されている。コイル絶縁支持体10は、後述する
如く一端を電極棒5の筒体部5aと接続されるコ
イル体6、その他端と電極棒5との電気的絶縁を
図りつつ支持するもので、絶縁物またはステンレ
ス鋼の如き高抵抗金属により凹部8の深さの半分
程度の長さを有するとともに凹部8の内径より小
径にしてかつ端部に仕切壁を有する円筒状に形成
されており、その筒体部および仕切壁に電極棒5
等との接合時におけるガス抜きのための孔11,
12が設けられている。 3 and 4 are a longitudinal sectional view and a plan sectional view of the first embodiment of the present invention, in which a circular recess 8 is formed at the inner end shaft center of the electrode rod 5 introduced into a vacuum container (not shown). As shown in FIG. 5, in the cylindrical body portion 5a formed by providing the recess 8, the recesses are equally distributed in the circumferential direction and have a depth about half of the recess 8. A plurality of (four in the embodiment) grooves 9a, 9b, 9c, and 9d are provided. A coil insulating support 10 whose base portion is joined by brazing to the bottom of the recess 8 is concentrically housed therein. As will be described later, the coil insulating support 10 supports the coil body 6 connected to the cylindrical portion 5a of the electrode rod 5 at one end while electrically insulating the electrode rod 5 from the other end, and is made of an insulating material or It is made of a high-resistance metal such as stainless steel and has a length of about half the depth of the recess 8, a diameter smaller than the inner diameter of the recess 8, and a cylindrical shape with a partition wall at the end. and electrode rod 5 on the partition wall.
Hole 11 for degassing when joining with etc.
12 are provided.
前記コイル絶縁支持体10の端部には、分流タ
イプのコイル体6がその一端の中心導体13を介
し絶縁支持されている。すなわち、コイル体6
は、第3図、第4図に示すように、コイル絶縁支
持体10とほぼ同径にしてかつそれより長い円柱
状に形成した中心導体13と、中心導体13の外
周部から電極棒5における筒体部5aの各溝9
a,9b,9c,9dを挿通して半径方向(第3
図において左右方向)外方へ延びる第1アーム1
4a,14b,14c,14dと、各第1アーム
14a,14b,14c,14dの端部から電極
4の背部付近においてその外周縁に沿つて同一方
向へ円弧状に彎曲した円弧部15a,15b,1
5c,15dと、各円弧部15a,15b,15
c,15dの端部からそれぞれの円弧部15a,
15b,15c,15dと電極棒5の筒体部5a
とを電気的に接続すべく隣接する円弧部15b,
15c,15d,15aの第1アーム14b,1
4c,14d,14aと同一平面内において平行
に半径方向内方へ延びる第2アーム16a,16
b,16c,16dとから構成されており、その
他端となる中心導体13の基部をコイル絶縁支持
体10の端部に嵌合しかつろう付けにより接合す
ることによつて電極棒5に絶縁支持され、またそ
の一端となる第2アーム16a,16b,16
c,16dの内端部を電極棒5の筒体部5aに接
合することによつて電極棒5に電気的に接続され
つつ支持されている。なお、コイル体6の中心導
体13の端部は、第1アーム14a,14b,1
4c,14dおよび第2アーム16a,16b,
16c,16dより第3図において上方に位置す
るが如くして突出されているものである。そし
て、コイル体6の中心導体13の端部には、中央
部に平坦な円形の接触面4aを設けた笠形円板状
の電極4が、その背部中央に設けた円形の凹部1
7を介し嵌合されるとともにろう付けにより接合
されている。なお、凹部17の深さは、電極4と
の接続部であるコイル体6の中心導体13の端部
と電極4の接触面4aとの間の軸方向長さ、換言
すれば凹部17の底部と接触面13との間におけ
る電極4の肉厚eを、後述する如く導電率の低い
合金材料からなる電極4の閉路中における通電電
流の損失を低減すべく、2mm以下と電極4の他の
部分の肉厚に比し十分に小さく設けられているも
のである。 A shunt type coil body 6 is insulated and supported at an end of the coil insulating support 10 via a center conductor 13 at one end thereof. That is, the coil body 6
As shown in FIGS. 3 and 4, the central conductor 13 is formed into a cylindrical shape having approximately the same diameter as the coil insulating support 10 but longer than that, and the distance from the outer periphery of the central conductor 13 to the electrode rod 5. Each groove 9 of the cylindrical body part 5a
a, 9b, 9c, 9d in the radial direction (third
The first arm 1 extends outward (left-right direction in the figure)
4a, 14b, 14c, 14d, and circular arc portions 15a, 15b that curve in an arc shape from the end of each first arm 14a, 14b, 14c, 14d to the same direction along the outer periphery near the back of the electrode 4. 1
5c, 15d, and each arc portion 15a, 15b, 15
c, 15d to the respective arcuate portions 15a,
15b, 15c, 15d and the cylindrical body portion 5a of the electrode rod 5
The adjacent arcuate portion 15b to electrically connect the
1st arm 14b, 1 of 15c, 15d, 15a
4c, 14d, 14a, and a second arm 16a, 16 extending radially inward in parallel with the second arm 4c, 14d, 14a.
b, 16c, and 16d, and by fitting the base of the center conductor 13, which is the other end, to the end of the coil insulating support 10 and joining by brazing, the electrode rod 5 is insulated and supported. and the second arms 16a, 16b, 16 which serve as one end thereof.
By joining the inner end portions of c and 16d to the cylindrical portion 5a of the electrode rod 5, they are supported while being electrically connected to the electrode rod 5. Note that the ends of the center conductor 13 of the coil body 6 are connected to the first arms 14a, 14b, 1
4c, 14d and second arms 16a, 16b,
It protrudes as if positioned above 16c and 16d in FIG. At the end of the center conductor 13 of the coil body 6, there is a cap-shaped disk-shaped electrode 4 with a flat circular contact surface 4a in the center, and a circular recess 1 provided in the center of the back.
7, and are joined by brazing. The depth of the recess 17 is defined as the axial length between the end of the center conductor 13 of the coil body 6, which is the connection part with the electrode 4, and the contact surface 4a of the electrode 4, in other words, the depth of the recess 17 is defined as the depth of the recess 17. The wall thickness e of the electrode 4 between the electrode 4 and the contact surface 13 is set to 2 mm or less and other than that of the electrode 4 in order to reduce the loss of the current flowing during the closing of the electrode 4 made of an alloy material with low conductivity as described later. It is sufficiently small compared to the wall thickness of the part.
前記電極4は、銅の3〜15%の導電率を有しか
つ鉄を主成分とする合金材料、たとえば銅の3%
以下の導電率を有するFe−Cr−Ni合金、銅の10
〜15%の導電率を有するFe−Cr−Cu合金、0.5〜
500μの粒子径を有するFe−18Cr−8Ni合金粉末
を真空中で0.5〜500μの孔(空隙)径を有する多
孔質材に焼結しかつ多孔質材にこれより融点の低
いCuの如き金属を真空中で溶浸してなり銅の5
〜15%の導電率を有するもの、または0.5〜500μ
の粒子径を有するFe−18Cr−8Ni合金粉末とこれ
より融点の低いCuの如き金属粉末とを真空中で
焼結してなり銅の5〜15%の導電率を有するもの
によつて形成されている。 The electrode 4 is made of an alloy material having an electrical conductivity of 3 to 15% of copper and having iron as a main component, for example, 3% of copper.
Fe-Cr-Ni alloy, copper with conductivity below 10
Fe-Cr-Cu alloy with conductivity of ~15%, 0.5~
Fe-18Cr-8Ni alloy powder with a particle size of 500μ is sintered in a vacuum into a porous material with a pore (void) diameter of 0.5 to 500μ, and a metal such as Cu having a lower melting point than this is sintered into the porous material. 5 of copper infiltrated in vacuum
Those with conductivity of ~15%, or 0.5~500μ
It is formed by sintering Fe-18Cr-8Ni alloy powder with a particle size of ing.
以上の構成により電極4の接触4aに発生した
電流は、中心導体13、各第1アーム14a,1
4b,14c,14d、各円弧部15a,15
b,15c,15dおよび各第2アーム16a,
16b,16c,16dを経て電極棒5へと流
れ、コイル体6の各円弧部15a,15b,15
c,15dを同一円周方向へ流れる電流により軸
方向磁界が発生されることによつてアークが電極
面上に分散されるものである。そして、コイル体
6により発生する軸方向磁界が電極4に鎖交する
ことによつて電極4にうず電流が発生するが、電
極4は銅の3〜15%の導電率であるのでその発生
が大幅に抑制される。ために、軸方向磁界の損失
が少なく大電流のしや断を効率よく行なうことが
できるとともに、位相遅れが少なく絶縁回復特性
を向上することができ、ひいてはしや断性能を向
上することができる。また、銅の3〜15%の導電
率である、換言すれば比較的抵抗の大きい電極4
の接触面4aとコイル体6の接続部との間の軸方
向長さを十分に小さくしたから、通電中の電流損
失を小さくすることができる。 With the above configuration, the current generated at the contact 4a of the electrode 4 is transmitted to the center conductor 13, each of the first arms 14a, 1
4b, 14c, 14d, each arc portion 15a, 15
b, 15c, 15d and each second arm 16a,
16b, 16c, 16d to the electrode rod 5, and each circular arc portion 15a, 15b, 15 of the coil body 6
The arc is dispersed on the electrode surface by generating an axial magnetic field by the current flowing in the same circumferential direction through the electrodes c and 15d. When the axial magnetic field generated by the coil body 6 interlinks with the electrode 4, an eddy current is generated in the electrode 4, but since the electrode 4 has a conductivity of 3 to 15% that of copper, this generation is prevented. significantly suppressed. Therefore, it is possible to efficiently insulate and break large currents with less loss in the axial magnetic field, and it is possible to improve insulation recovery characteristics with less phase lag, which in turn improves insulating and breaking performance. . In addition, the electrode 4 has a conductivity of 3 to 15% that of copper, in other words, has a relatively high resistance.
Since the length in the axial direction between the contact surface 4a and the connecting portion of the coil body 6 is made sufficiently small, current loss during energization can be reduced.
なお、上述した電極4の導電率と磁束密度との
関係は、横軸に銅に対する導電率(%)、縦軸に
うず電流が発生しない場合に対する磁束密度の比
率(%)をとつた第6図に示すようになり、また
電極4の導電率と位相遅れとの関係は、横軸に銅
に対する導電率(%)、縦軸に銅からなる電極4
における軸方向磁界の位相遅れに対する軸方向磁
界の位相遅れの比率(%)をとつた第7図に示す
ようになつた。したがつて、電極4の銅に対する
導電率が小さくすることによつて、軸方向磁界の
損失を低減することができるとともに、導電率が
銅の3〜15%の範囲では、磁束密度がほとんど変
わらず100%に近い値を確保でき、またうず電流
の発生も少なく移相遅れが極く小さいためしや断
性能が向上される。 The relationship between the electrical conductivity and magnetic flux density of the electrode 4 described above is expressed by the sixth equation, where the horizontal axis is the electrical conductivity (%) for copper, and the vertical axis is the ratio (%) of the magnetic flux density to the case where no eddy current occurs. As shown in the figure, the relationship between the electrical conductivity of the electrode 4 and the phase delay is shown by the horizontal axis representing the electrical conductivity (%) for copper, and the vertical axis representing the relationship between the electrical conductivity of the electrode 4 and the phase delay.
Figure 7 shows the ratio (%) of the phase lag of the axial magnetic field to the phase lag of the axial magnetic field. Therefore, by reducing the electrical conductivity of the electrode 4 relative to copper, it is possible to reduce the loss of the axial magnetic field, and when the electrical conductivity is in the range of 3 to 15% of that of copper, the magnetic flux density hardly changes. It is possible to secure a value close to 100%, and the generation of eddy current is small, phase shift delay is extremely small, and test and break performance is improved.
また、電極は鉄を主成分とする合金材料により
形成されているので、安価で抵抗値の高い電極材
料を得ることができるとともに、うず電流の発生
が少ないので、従来のようなスリツトを設ける必
要がないことと相俟つて機械的強度の高い電極が
得られる。 In addition, since the electrode is made of an alloy material whose main component is iron, it is possible to obtain an electrode material that is inexpensive and has a high resistance value, and because there is little generation of eddy current, there is no need to provide slits like in the past. Coupled with the absence of cracks, an electrode with high mechanical strength can be obtained.
また、上述した実施例においては、コイル体6
を分流タイプのものとした場合について述べたが
これに限定されるものではなく、たとえばコイル
体6を電極棒5を中心として配設される有端環状
の円弧部と、円弧部の各端部と電極4および電極
棒5とを接続する第1、第2アームとによつて構
成したり、あるいは第8図、第9図に示す第2実
施例のように、コイル体6を、基部をコイル絶縁
支持体10を介し電極棒5の凹部8の底部に接合
されかつ端部に電極4を接合する中心導体13
と、中心導体13を囲繞するが如くして電極棒5
の筒体部5aの端部に接合されかつ1または2以
上の切断部18a,18b,18c,18dを有
する内側円弧部19a,19b,19c,19d
と、各内側円弧部19a,19b,19c,19
dと対向せしめて電極4における背部付近の外周
縁に沿つて配設した外側円弧部20a,20b,
20c,20dと、各外側円弧部20a,20
b,20c,20dの一端と中心導体13とを接
続すべく内側円弧部19a,19b,19c,1
9dの切断部18a,18b,18c,18dを
挿通して半径方向へ延びる第1アーム21a,2
1b,21c,21dと、各外側円弧部20a,
20b,20c,20dの他端と一端を介して筒
体部5aに接続された各内側円弧部19a,19
b,19c,19dの他端とを接続すべく第1ア
ーム21a,21b,21c,21dと同一平面
内において平行に半径方向へ延びる第2アーム2
2a,22b,22c,22dとにより構成し、
内側円弧部19a,19b,19c,19dと外
側円弧部20a,20b,20c,20dとによ
つて発生される軸方向磁界の極性を半径方向に亘
つて異ならせるものとしてもよいものである。 Further, in the embodiment described above, the coil body 6
Although the case is described in which the coil body 6 is of a shunt type, the present invention is not limited to this. For example, the coil body 6 may be formed into an annular arc portion with an end disposed around the electrode rod 5, and each end of the arc portion. and first and second arms connecting the electrode 4 and the electrode rod 5, or as in the second embodiment shown in FIGS. A center conductor 13 connected to the bottom of the recess 8 of the electrode rod 5 via the coil insulating support 10 and having the electrode 4 connected to the end thereof.
Then, the electrode rod 5 surrounds the center conductor 13.
Inner circular arc portions 19a, 19b, 19c, 19d that are joined to the end of the cylindrical body portion 5a and have one or more cut portions 18a, 18b, 18c, 18d.
and each inner circular arc portion 19a, 19b, 19c, 19
outer arcuate portions 20a, 20b disposed along the outer peripheral edge near the back of the electrode 4, facing d;
20c, 20d, and each outer arc portion 20a, 20
Inner arc portions 19a, 19b, 19c, 1 to connect one end of b, 20c, 20d and the center conductor 13
The first arms 21a, 2 extend in the radial direction through the cut portions 18a, 18b, 18c, 18d of 9d.
1b, 21c, 21d, and each outer arc portion 20a,
Each inner circular arc portion 19a, 19 is connected to the cylindrical body portion 5a via the other end and one end of 20b, 20c, 20d.
a second arm 2 extending in the radial direction in parallel in the same plane as the first arms 21a, 21b, 21c, 21d to connect the other ends of the arms 21a, 19c, 19d;
Consisting of 2a, 22b, 22c, 22d,
The polarity of the axial magnetic field generated by the inner circular arc parts 19a, 19b, 19c, 19d and the outer circular arc parts 20a, 20b, 20c, 20d may be made different in the radial direction.
以上の如く本発明は、真空容器内にその軸線上
において1対の電極を接離すべく対をなす電極棒
を相対的に接近離反自在に導入するとともに、各
電極の背部中央とそれぞれの電極棒の内端部と
を、電極棒に流れる軸方向の電流を電極棒を中心
とするループ電流に変更して軸方向磁界を発生さ
せるコイル体により接続してなる真空しや断器に
おいて、前記電極を銅の3〜15%の導電率を有し
かつ鉄を主成分とする合金材料により形成したも
のであるから、電極の機械的強度を従来のものに
比し飛躍的に高めることができる。またうず電流
の発生を抑制することができるので、軸方向磁界
の損失が低減され大電流のしや断を効率よく行な
うことができるとともに、軸方向磁界の位相遅れ
が少なくなり絶縁回復特性を向上することがで
き、ひいてはしや断性能を向上することができ
る。 As described above, the present invention introduces a pair of electrode rods into a vacuum container so that the pair of electrodes can approach and separate from each other on its axis, and also In a vacuum shield disconnector, the electrode is connected to the inner end thereof by a coil body that generates an axial magnetic field by changing the axial current flowing through the electrode into a loop current centered around the electrode. Since the electrode is made of an alloy material that has a conductivity of 3 to 15% that of copper and whose main component is iron, the mechanical strength of the electrode can be dramatically increased compared to conventional electrodes. In addition, since the generation of eddy current can be suppressed, the loss of the axial magnetic field is reduced and large currents can be efficiently cut off, and the phase delay of the axial magnetic field is reduced, improving insulation recovery characteristics. This makes it possible to improve the shearing and cutting performance.
また、電極を上記合金材料により形成するとと
もに、電極の接触面とその背部中央におけるコイ
ル体の接続部との間の軸方向長さを十分に小さく
したものであるから、通電中における通電電流の
損失を低減できる等の効果を奏する。 In addition, since the electrode is made of the above-mentioned alloy material and the axial length between the contact surface of the electrode and the connection part of the coil body at the center of the back of the electrode is made sufficiently small, the current flow during energization is reduced. This has effects such as reducing loss.
第1図は一般的なアーク分散方式の真空しや断
器の概略構成図、第2図は従来技術の要部平面
図、第3図は本発明の第1実施例の縦断面図、第
4図および第5図は第3図における−線断面
図および−線断面図、第6図は導電率と磁束
密度の比率との関係説明図、第7図は導電率と位
相遅れの比率との関係説明図、第8図は本発明の
第2実施例の平面図、第9図は第8図における
−線断面図である。
3……真空容器、4……電極、5……電極棒、
6……コイル体、e……肉厚。
Fig. 1 is a schematic configuration diagram of a general arc dispersion type vacuum shield breaker, Fig. 2 is a plan view of the main part of the conventional technology, Fig. 3 is a longitudinal sectional view of the first embodiment of the present invention, Figures 4 and 5 are cross-sectional views along the - line and - line in Figure 3, Figure 6 is an explanatory diagram of the relationship between the conductivity and the ratio of magnetic flux density, and Figure 7 is the relationship between the conductivity and the phase delay ratio. FIG. 8 is a plan view of the second embodiment of the present invention, and FIG. 9 is a sectional view taken along the line -- in FIG. 3... Vacuum container, 4... Electrode, 5... Electrode rod,
6...Coil body, e...Thickness.
Claims (1)
を接離すべく対をなす電極棒を相対的に接近離反
自在に導入するとともに、各電極の背部中央とそ
れぞれの電極棒の内端部とを、電極棒に流れる軸
方向の電流を電極棒を中心とするループ電流に変
更して軸方向磁界を発生させるコイル体により接
続してなる真空しや断器において、前記電極を銅
の3〜15%の導電率を有しかつ鉄を主成分とする
合金材料により形成したことを特徴とする真空し
や断器。 2 合金材料をFe−Cr−Ni合金としたことを特
徴とする特許請求の範囲第1項記載の真空しや断
器。 3 合金材料をFe−Cr−Cu合金としたことを特
徴とする特許請求の範囲第1項記載の真空しや断
器。 4 合金材料をFe−Cr−Ni合金粉末を焼結して
なる多孔質材にこれより融点の低い金属を溶浸し
たものとしたことを特徴とする特許請求の範囲第
1項記載の真空しや断器。 5 合金材料をFe−Cr−Ni合金粉末とこれより
融点の低い金属粉末とを焼結したものとしたこと
を特徴とする特許請求の範囲第1項記載の真空し
や断器。 6 真空容器内にその軸線上において1対の電極
を接離すべく対をなす電極棒を相対的に接近離反
自在に導入するとともに、各電極の背部中央部と
それぞれの電極棒の内端部とを、電極棒に流れる
軸方向の電流を電極棒を中心とするループ電流に
変更して軸方向磁界を発生させるコイル体により
接続してなる真空しや断器において、前記電極を
銅の3〜15%の導電率を有しかつ鉄を主成分とす
る合金材料により形成するとともに、電極の接触
面とその背部中央における前記コイル体の接続部
との間の軸方向長さを十分に小さくしたことを特
徴とする真空しや断器。 7 合金材料をFe−Cr−Ni合金としたことを特
徴とする特許請求の範囲第6項記載の真空しや断
器。 8 合金材料をFe−Cr−Cu合金としたことを特
徴とする特許請求の範囲第6項記載の真空しや断
器。 9 合金材料をFe−Cr−Ni合金粉末を焼結して
なる多孔質材にこれより融点の低い金属を溶浸し
たものとしたことを特徴とする特許請求の範囲第
6項記載の真空しや断器。 10 合金材料をFe−Cr−Ni合金粉末とこれよ
り融点の低い金属粉末とを焼結したものとしたこ
とを特徴とする特許請求の範囲第6項記載の真空
しや断器。[Scope of Claims] 1. A pair of electrode rods are introduced into a vacuum container so that they can approach and separate from each other on the axis of the vacuum container, and the center of the back of each electrode and each electrode rod In a vacuum shield disconnector, the electrode is connected to the inner end thereof by a coil body that generates an axial magnetic field by changing the axial current flowing through the electrode into a loop current centered around the electrode. 1. A vacuum shield breaker characterized in that it is made of an alloy material having an electrical conductivity of 3 to 15% that of copper and whose main component is iron. 2. The vacuum shear breaker according to claim 1, characterized in that the alloy material is an Fe-Cr-Ni alloy. 3. The vacuum shear breaker according to claim 1, characterized in that the alloy material is an Fe-Cr-Cu alloy. 4. The vacuum chamber according to claim 1, wherein the alloy material is a porous material made by sintering Fe-Cr-Ni alloy powder and infiltrated with a metal having a lower melting point than the porous material. Or disconnection. 5. The vacuum shear disconnector according to claim 1, wherein the alloy material is a sintered Fe-Cr-Ni alloy powder and a metal powder having a lower melting point than the Fe-Cr-Ni alloy powder. 6 Introduce a pair of electrode rods into a vacuum container so that they can approach and separate from each other on the axis of the vacuum container, and also insert the electrode rods into the vacuum container so that they can approach and separate from each other, and connect the central part of the back of each electrode and the inner end of each electrode rod. In a vacuum shield disconnector connected by a coil body that generates an axial magnetic field by changing the axial current flowing through the electrode rod into a loop current centered around the electrode rod, the electrode is It is made of an alloy material having an electrical conductivity of 15% and whose main component is iron, and the axial length between the contact surface of the electrode and the connection part of the coil body at the center of its back is made sufficiently small. A vacuum cutter characterized by: 7. The vacuum shear breaker according to claim 6, characterized in that the alloy material is an Fe-Cr-Ni alloy. 8. The vacuum shear breaker according to claim 6, characterized in that the alloy material is an Fe-Cr-Cu alloy. 9. The vacuum chamber according to claim 6, wherein the alloy material is a porous material made by sintering Fe-Cr-Ni alloy powder and infiltrated with a metal having a lower melting point than the porous material. Or disconnection. 10. The vacuum shear breaker according to claim 6, characterized in that the alloy material is made by sintering Fe-Cr-Ni alloy powder and metal powder having a lower melting point than the Fe-Cr-Ni alloy powder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14578281A JPS5848321A (en) | 1981-09-16 | 1981-09-16 | Vacuum breaker |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14578281A JPS5848321A (en) | 1981-09-16 | 1981-09-16 | Vacuum breaker |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5848321A JPS5848321A (en) | 1983-03-22 |
JPS6341176B2 true JPS6341176B2 (en) | 1988-08-16 |
Family
ID=15393033
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14578281A Granted JPS5848321A (en) | 1981-09-16 | 1981-09-16 | Vacuum breaker |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5848321A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02196935A (en) * | 1989-01-25 | 1990-08-03 | Canon Inc | Heat fixing device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3832493A1 (en) * | 1988-09-22 | 1990-03-29 | Siemens Ag | VACUUM SWITCH TUBES, A SWITCH DISCONNECT CONTAINING SUCH A SWITCH TUBE AND METHOD FOR OPERATING SUCH A SWITCH DISCONNECTOR |
-
1981
- 1981-09-16 JP JP14578281A patent/JPS5848321A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02196935A (en) * | 1989-01-25 | 1990-08-03 | Canon Inc | Heat fixing device |
Also Published As
Publication number | Publication date |
---|---|
JPS5848321A (en) | 1983-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4260864A (en) | Vacuum-type circuit interrupter with an improved contact with axial magnetic field coil | |
US4588879A (en) | Vacuum interrupter | |
JPH0322007B2 (en) | ||
US4584445A (en) | Vacuum interrupter | |
JPH0230132B2 (en) | ||
US4081640A (en) | Compact vacuum switch for high voltage circuit interruption | |
US5612523A (en) | Vacuum circuit-breaker and electrode assembly therefor and a manufacturing method thereof | |
EP0076659B1 (en) | A vacuum interrupter | |
JPS6341176B2 (en) | ||
US5461205A (en) | Electrode stem for axial magnetic field vacuum interrupters | |
JPS59186219A (en) | Slender contact structure | |
JPH0427650B2 (en) | ||
JPS6318292B2 (en) | ||
US4695688A (en) | Electrical contact construction | |
JPS5928011B2 (en) | Vacuum cutter | |
JPS6313634Y2 (en) | ||
JPS6357897B2 (en) | ||
KR910006238B1 (en) | Vacuum Interlator (INTERRUPTER) | |
JPS6214580Y2 (en) | ||
JPH0479090B2 (en) | ||
JPS59103236A (en) | Vacuum breaker | |
JPS6214581Y2 (en) | ||
JPS6336916Y2 (en) | ||
JPS6347219B2 (en) | ||
JPS6077327A (en) | Vacuum interrupter |