[go: up one dir, main page]

JPS634010A - Refining method for bottom blow of steel in electric furnace - Google Patents

Refining method for bottom blow of steel in electric furnace

Info

Publication number
JPS634010A
JPS634010A JP61146033A JP14603386A JPS634010A JP S634010 A JPS634010 A JP S634010A JP 61146033 A JP61146033 A JP 61146033A JP 14603386 A JP14603386 A JP 14603386A JP S634010 A JPS634010 A JP S634010A
Authority
JP
Japan
Prior art keywords
gas
steel
pressure
molten steel
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61146033A
Other languages
Japanese (ja)
Inventor
Masahisa Tate
楯 昌久
Makoto Watanabe
信 渡辺
Tsutomu Kuroda
勉 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toa Steel Co Ltd
Original Assignee
Toa Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Steel Co Ltd filed Critical Toa Steel Co Ltd
Priority to JP61146033A priority Critical patent/JPS634010A/en
Priority to CA 539308 priority patent/CA1311787C/en
Priority to US07/062,472 priority patent/US4749408A/en
Priority to GB8714000A priority patent/GB2192446B/en
Priority to KR1019870006380A priority patent/KR910001577B1/en
Priority to FR8708865A priority patent/FR2601966B1/en
Priority to DE19873720886 priority patent/DE3720886A1/en
Publication of JPS634010A publication Critical patent/JPS634010A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PURPOSE:To complete slag making without purposely wind-up of electrodes at the early stage and to reduce Fe content in the slag by executing bottom blow of gas by the prescribed means, flow rate and pressure as indicator for rising height of molten steel surface. CONSTITUTION:Plural plugs 8 having plural fine tube holes 9 respectively at the furnace bottom are arranged. The gas is continuously or intermittently blown from these plugs 8 during the term from initial stage of refining period, when the charged scraps are melted down, to tapping off. The above gas blow is controlled at 1-40Nl/min per one fine tube hole 9 for the flowing rate, 20-800Nl/min per one plug 8 for the flowing rate and <=10kg/cm<2>.g the pressure. And, the rising height of molten steel surface 14 DELTAh is limited to <=1,000mm.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は電気炉による鋼の底吹き精錬法に関するもので
ある。 〔従来の技術とその問題点〕 普通鋼および合金鋼の溶解精錬手段として交流もしくは
直流のアーク電気炉が汎用されているが、スクラップ溶
解後の精錬期においては、スラグ−メタル間の反応、鋼
浴中の各成分の移動が専ら拡散律速で支配されており、
例えばP、Sについて、溶鉄中ではそれぞれ2 X I
 O−’aJ/s、4 X 10−’aJ/s、スラグ
中ではそれぞれ4 X 10−’ad/ s、2 X 
10−”a(/sである。そのため上記スラグ−メタル
間の反応、鋼浴中の各成分の移動がともに遅く、かつア
ークエネルギーの伝達が制約され、これにより、下記の
ような問題が生じていた。 ■Fe歩留向上の余地が無い。すなわちたとえば、スラ
グ中トータルFe分20%、製品銅当リスラグ量50k
g/Tでは10kg/Tの鉄分がスラグ中に移行しロス
が生ずる。 ■炉内スラグ、メタル層の温度、成分が不均一となりや
すく、製錬末期まで未溶解個体が残存する可能性がある
。 ■溶鋼とスラグ間の成分元素の移動がスラグと溶鋼の界
面から少しずつ拡散するだけであるため移動速度が不足
しやすく、(C)を始めとしくMn)、(P)、(S)
[Industrial Application Field] The present invention relates to a bottom-blowing refining method for steel using an electric furnace. [Conventional technology and its problems] AC or DC arc electric furnaces are widely used as a means of melting and refining ordinary steel and alloy steel, but during the refining period after scrap melting, reactions between slag and metal, The movement of each component in the bath is controlled exclusively by diffusion rate.
For example, for P and S, each in molten iron is 2 X I
O-'aJ/s, 4 X 10-'aJ/s, respectively 4 X 10-'ad/s, 2 X in the slag
10-"a (/s). Therefore, the reaction between the slag and metal and the movement of each component in the steel bath are both slow, and the transmission of arc energy is restricted, which causes the following problems. ■There is no room for improving Fe yield.For example, if the total Fe content in slag is 20% and the amount of reslag per product copper is 50k.
g/T, 10 kg/T of iron migrates into the slag, causing loss. ■The temperature and composition of the slag and metal layer in the furnace tend to be uneven, and unmelted solids may remain until the final stage of smelting. ■Since the movement of component elements between molten steel and slag only diffuses little by little from the interface between slag and molten steel, the movement speed is likely to be insufficient, and the movement speed is likely to be insufficient.
,

〔0〕も拡散律速に支配されるため、反応時間がかか
る。 ■スラグ層にアークエネルギーが吸収され、また、アー
ク熱の作用範囲が電極近傍の狭い範囲に限られるため、
熱の伝達が制約されて電力の消費量が大となる。 ■合金鉄、脱酸剤がスラグで酸化され、本来メタルの還
元に利用されるべきこれら添加物が不必要に消費される
。 また、昨今、スラグラインより上部の炉壁から酸素やオ
イル等を吹き込む方法が広く採用されているが、この方
法はスクラップ溶解の促進にはかなりの効果があるもの
の、鋼浴の攪拌を行えないため、アークエネルギーの効
率的伝達の面および冶金反応の促進の面では殆ど実効が
ない。 そこで近時、電気炉操業中炉床部から炉内にガスを吹き
込むいわゆる底吹き法が提案されているがいずれも操業
諸元の定量性がなく、具体性を欠くため、実験室規模は
ともかくとしても、実操業としてほとんど採用の例を見
ない。 また、最近、炉底部ではなく電気炉側壁下部にガス吹き
込み管を設置し、これで溶解時に不活性ガスを吹き込み
、精錬時には不活性ガスと酸素を大量に吹き込む方法も
提案されている。しかし、この方法は、過大なガス量を
吹き込むため、吹き込み時には電極を炉外に巻き上げる
ことが前提となっており、また、適正な吹き込み量、吹
き込み圧が規定されておらず、大量のガスが吹き込まれ
るため、ガス使用効率が悪く、実用性に乏しい。 〔問題点を解決するための手段〕 本発明は前記のような問題点を解決するために研究と実
験を重ねて創案されたもので、その目的とするところは
、炉底からのガス吹き込みを併用した電気炉の精錬期に
おいて、使用ガスを最も効率良く作用させ、電極の巻き
上げを必ずしも要さずして攪拌力を強化し、冶金反応を
促進し、エネルギー効率の向上を図ることのできる実用
性の高いこの種電気炉底吹き精錬法を提供することにあ
る。 この目的を達成するため、本発明は電気炉炉底からのガ
ス吹き込み条件、すなわちガス吹き込みプラグの数、吹
き込み量および吹き込み圧力とを定量化し、溶鋼盛り上
がり高さを所定範囲に制御するようにしたものである。 すなわち本発明の特徴とするところは、装入スクラップ
の溶解がほぼ完了した精錬期の初期から出鋼までの間に
、炉底に設けた複数個でかつそれぞれに多数の細管孔を
有するプラグから、1細管孔あたり1〜4ONQ/+m
in、1プラグあたり20〜80ONQ/win、圧力
10kg/aJ・g未満のガスを連続的にもしくは間欠
的に炉内に吹き込み、鋼浴の盛り上り高さを1000m
m以内に制御して操業することにある。 以下本発明を添付図面に基づき具体的に説明する。 第1図ないし第3図は本発明電気炉によるスクラップ溶
解後の鋼の底吹き精錬法の概要を示すもので、1は電気
炉であり、耐火物の内壁2と、スタンプおよび煉瓦から
なる炉床3と、これらの外周を覆う鉄皮4を有しており
、上部側壁には補助バーナないしランス5が設けられて
いる。6,6は電極である。 7は炉床3に円周方向でほぼ等間隔に(一実施例)配設
された特殊なガス吹き込み装置であり、このガス吹き込
み装置は、第3図に示すように、耐火物からなる截頭テ
ーパ状のプラグ8と、これの高さ方向を貫通するように
所定間隔で多数穿設された細管孔9,9と、プラグ8の
下端に嵌着された分配室10とを備えており、プラグ8
は炉床3の開孔にはめられ、構築用付帯レンガ11によ
り固定され、分配室10はガス配管工2により図示しな
いガス供給源に導かれている。なお、細管孔用金属管に
は誘導電流の発生を防止する機構が設けられているが、
本発明には関係がないので図面は省略した。 14は溶鋼、15はスラグである。 しかして、本発明は、電気炉1により普通鋼あるいは合
金鋼やステンレスをガスを吹き込みながら製造する際、
特にスクラップの溶解がほぼ完了した精錬期の初期から
出鋼までの間の全期間を通してもしくは間欠的に炉底3
から前記ガス吹き込み装置により、C08、空気、酸素
または不活性ガスたとえば窒素ガス、アルゴンを、連続
的または間欠的に炉内に吹き込み、しかも、このガスの
底吹きを下記条件に設定して行うものである。 ■ガス吹き込みは複数個の前記ガス吹き込み装置で行う
。 ■1容に関係なく、ガス流量を1細管孔あたり1〜40
 N Q /win、 1プラグあたり20〜80ON
fi/鳳inとする。 ■ガスの吹き込み圧力を10kg/aJ−、未満とする
。 ■上記吹き込み流量と圧力は鋼浴盛り上がり高さΔhが
1000+sm以下好ましくは50〈Δhく500 (
mm)となる範囲内で制御する。 上記条件は、浴深さの比較的浅い(約1500mm以内
)電気炉において、精錬期には、必ずしも電極の巻き上
げを要さずかっ溶湯の不必要な冷却を起こさせずに、鋼
浴を少ないガス量で最も効率よく攪拌するために必要な
条件であり、これを見出したのが本発明の特徴である。 詳述すると、まず、前記ガス吹き込み装置7は複数個で
あり、通常の場合、3個以内とすることが望ましい、そ
の理由は4個を超えると周辺の炉床耐火物が損傷し、そ
の補修に多くの時間を要し、また、鋼浴に不必要な動き
を与え、電力効率を損なうなどの不利があるからである
。但し、1容によっては、5個程度まで設置してもよい
。 ガス吹き込み装置7,7の各プラグ8における細管孔9
,9の数は、−般に10〜30本とし、各細管孔の直径
は0.6〜1.5m+mの範囲とすることが望ましい、
また、細管孔の大きさは均一なものを用いても異径のも
のを選択してもよい。 細管孔を採用したのは、ガスを適度に分散しつつ良好な
貫通力(到達距離)を得しめるためである。 細管孔の直径の下限を0.6mmとしたのは、これ以下
の孔径では攪拌力を与えるのに必要なガス量を炉内に導
入するのに、高い圧力を要するからである。上限を1.
5m重としたのは、溶鋼盛り上がり高さΔhを1000
II11以下のとするには前記流量と圧力との相関から
これが限界だからである。 次にガスの流量を1細管孔あたり1〜40 N Q/w
inとしたのは、前記のように1プラグあたり10〜3
0本の細管孔9を具備する場合、1細管孔あたりI N
 Q /+min未満では、異物、溶融物、溶鋼の細管
孔への浸入を防止できず、精錬期に溶鋼盛り上がり高さ
Δhが不足し、溶鋼とスラブに十分な攪拌力を与えるこ
とができないからである。 第4図は溶鋼深さ1000+mにおける孔径と溶鋼浸入
限界流量の関係を検討した結果を示すもので、前記孔径
範囲ではI N Q /rain以上が必要であること
がわかる。 また、上限を40 N 2 /winとしたのは、これ
を超える流量では、溶解物、溶鋼の細管孔への浸入は無
いものの、溶解物の飛散が激しすぎて電極や炉蓋に付着
したり、溶鋼盛り上がり高さΔhが1000+u+を超
える過大な大きさとなり、電極に溶鋼が大量に飛散して
煩雑な電極巻き上げを余儀なくされるからである。 また、1プラグ当りのガスの流量を20〜800 N 
Q /minとしたのも、前記と同様な理由に加え、総
流量が多くなり過ぎ、溶鋼に不必要な冷却が助長され、
またガスとして不活性ガスを使用した場合に消費量が不
必要に増すからである。 また、本発明は、ガスの圧力を10 kg/aJ−g未
満の低圧に限定することも特徴である。下限は一般に1
 kg/a# −gであり、これは前記のようにノズル
の径を小さくしたのでこの程度の圧力でも溶鋼の浸入を
防止でき、また本発明で期待する効果の得られる最低圧
力だからである。上限を10kg/d−g未満としたの
は、本発明は低圧で十分な効果が得られ、必要以上の攪
拌は無意味だからである。 第5図は炉床厚さ700mm(=細管孔9の長さ)にお
けるガスの圧力と流量の関係を細管孔の孔径別に示した
ものである。また、第6図はガスの圧力2 kg/a1
・gにおける細管孔長さと流量の関係を、第7図は同じ
くガスの圧力を9.8kg/aj−gとした場合の細管
孔長さと流量の関係を示している。 これら図面及び前記第4図から適宜簡便で安定したガス
吹き込み条件を設定することができる。 さらに、本発明は、上記ガス流量、ガス圧力を鋼浴盛り
上がり高さΔhが1000mm以下好ましくは50<Δ
h(500(m菖)となるように各時期で制御するもの
で、鋼浴盛り上がり高さΔhは、次式により設定される
。 Δh=に−H−E ここで、Hは鋼浴の深さく、)、Eはガス吹き込みによ
り鋼浴に与えられる攪拌力(watt)、K、α、βは
実験的に与えられる定数である。 電気炉における鋼浴深さは1500mm以下であり、こ
の場合のに、α、βは、実験的に1.9≦に≦2.9、
−1.40≦α≦−1,46、β:2/3の値となる。 そして。 攪拌力(watt)は前記したガス吹き込み流量と圧力
を制御することで与えられる。また、前述と異なる因子
、例えば異なる攪拌エネルギーの式を用いたとしても、
盛り上り高さの最適範囲は50〜50mであり、最大値
は1000m以下とする必要がある。第8図は浴温−定
(1550℃)における鋼浴深さH−攪拌力E−鋼浴盛
り上がり高さΔh−1プラグ当りのガス流量の換算グラ
フを示すもので、この第8図を各温度ごとに製作してお
くことで簡便に操業条件を設定できる。 通常、ガスの吹き込みは、スクラップの装入時から開始
すべきであり、この時期とスクラップが溶解を開始した
時期には異物や溶解スクラップによる細管孔の閉塞を防
止しうる程度の低い圧力とし、溶融物のある程度の生成
を待ってからガスの吹き込み流量と圧力を上昇させ、生
成量の増加に応じて次第に吹き込み流量と圧力を増せば
よい。 もっとも、以上詳述したガス吹込み用細管孔の寸法、ガ
ス圧力、ガス流量の規制は、スクラップの溶落ち後の精
錬期において溶鋼の盛り上り高さを10001以下に制
御する手段としての条件であるから、装入スクラップの
未溶解分がかなり残留している期間中は、芸人材料がス
ラグラインと天井の内側、炉内壁までの空間に存在する
ため、精錬期間より高い圧力もしくは大量のガスを吹込
んでも、溶解中には溶融物は上部に存在する未溶解装入
物に接触し飛散が妨げられるので、電極、電極孔、天井
内面、炉内壁上部等へ付着する恐れがない、したがって
、スクラップの装入時からほぼ溶解の完了するまでは、
必要量以上の不活性ガスの吹込みによる炉内の冷却等を
考えない限り、特に量、圧力の上限を規制する必要はな
い。 スクラップ溶解後は、ガスの吹き込み流量と圧力をさら
に増加させ、第3図に示される溶鋼盛り上がり高さΔh
を制御するもので、これにより過不足のない適切な攪拌
効果が得られ、メタル、スラグ間の反応の促進、鋼浴温
度均一化が図られる。 第9図は本発明の1チヤージにおける操業パターン(溶
鋼深さ、底吹きガス量、溶鋼盛り上がり高さ)を例示す
るもので、ガス使用量41.5NM’/chで合計攪拌
力0.165KwH/Tが得られた。 なお、上記ガス吹き込みにおいて、各プラグ8゜8は必
ずしもすべて同等の流量、圧力にすることは必要でなく
、各プラグごとに前記範囲内で可変としてもよいもので
あり、また、連続的でなく、間欠的に吹き込んでもよい
ものである。 〔実 施 例〕 本発明の詳細な説明する。 50T電気炉で普通鋼を製造するに当り、本発明を適用
した。 炉底に0,8■φの細管孔20本を穿設したプラグ3個
をほぼ120°間隔にホットゾーンの炉床部に取り付け
、スクラップ装入時から、細管孔に異物の詰まらない程
度の圧力で窒素ガスを圧送し、若干量の溶解物の生成を
待ってから、1細管孔あたり1.5N Q /win、
1プラグあたり3ON Q /win、圧力1kg/a
#・gで窒素ガスを吹き込み、溶湯の生成量の増大に応
じて吹き込み流量を漸増させた。 スクラップの溶解完了以降は、1プラグ当り20ON 
Q /win、圧力6kg/cd・gで窒素ガスを吹き
込み、溶鋼盛り上がり高さを120〜4801に制御し
た。 このときの各時間ごとの浴諸元を下記第1表に示す。 第1表 この操業結果(多チャージを行った平均値)を底吹きを
行わない場合と比較して下記第2表に示す。なお、溶鋼
量は45450kgであった。 第  2 表 また、上記操業条件における酸化期経過時間と塩基度、
スラグ成分、溶鋼温度の比較データを第10図に示す、
この図から本発明によれば早期造滓が可能で、高塩基度
期間を長く保てることがわかる。 第11図は溶は落ちから成品間のCu成分のバラツキを
実測した結果であり、従来法は、炉内溶解物中のCu%
が均一混合していないため、サンプル時期毎に大きな相
違を示している。これに対し本漬は速やかに均一混合条
件がなされ安定した値を示している。 第12図は溶落から経過時間毎のスラグ中の(P)と溶
融中のCP)の割合の変化並びに同様なスラグ中の(S
)と溶融中の(S)の割合の変化を示すもので、本発明
法による場合には、短時間で平衡に達することがわかる
。 本実施例では炉底のプラグの取り付は位置をスクラップ
の溶解時期における熱の有効利用の観点からホットゾー
ンの炉床部としたが、電極の大小、位置もしくは炉底の
形状等によっては任意の位置からのガス吹込みができる
ことはいうまでもなく、ガスの種類も窒素に限定されな
いことは前述した通りである。 〔発明の効果〕 以上説明した本発明によるときには、電気炉製鋼におい
て、装入スクラップ、酸化、還元の溶解がほぼ完了した
精錬期の初期から出鋼までの間、ガスの底吹きを、鋼浴
盛り上がり高さを指針として、特定の吹き込み手段と吹
き込み流量及び圧力条件で実施するようにしたので、こ
とさら電極巻き上げを行うことなく、効率よいガス使用
量で下記の効果を確実かつ安定して得ることができる。 そして、早期造滓が可能となり、未溶解CAOが減り高
塩基度期間が長く保てるので、CAOJ7X単位を低減
できる。さらに、精錬期においては、効率のよい攪拌で
スラグ、メタル間の反応が促進されるため、スラグ中の
(TFe)含有率の低減とこれによる出鋼歩留の向上、
メタル中
[0] is also controlled by diffusion rate, so it takes a long reaction time. ■The arc energy is absorbed by the slag layer, and the action range of the arc heat is limited to a narrow area near the electrode.
Heat transfer is restricted and power consumption increases. ■The ferroalloy and deoxidizing agent are oxidized by the slag, and these additives, which should originally be used to reduce the metal, are consumed unnecessarily. In addition, recently, a method of injecting oxygen, oil, etc. from the furnace wall above the slag line has been widely adopted, but although this method is quite effective in promoting scrap melting, it cannot stir the steel bath. Therefore, it is hardly effective in efficiently transmitting arc energy and promoting metallurgical reactions. Recently, a so-called bottom-blowing method has been proposed in which gas is injected into the furnace from the hearth during operation of the electric furnace, but these methods do not have quantitative operational specifications and lack specificity. However, there are almost no examples of its adoption in actual operations. Recently, a method has been proposed in which a gas blowing pipe is installed at the lower part of the side wall of the electric furnace instead of at the bottom of the furnace, and inert gas is blown into the furnace during melting, and a large amount of inert gas and oxygen are blown into the furnace during refining. However, in this method, an excessive amount of gas is blown, and the electrode must be rolled up outside the furnace when blowing. Also, the appropriate amount and pressure of blowing are not specified, and a large amount of gas is blown into the furnace. Since gas is blown into the system, gas usage efficiency is poor and practicality is poor. [Means for solving the problems] The present invention was created through repeated research and experiments in order to solve the above-mentioned problems. During the refining stage of the electric furnace used in conjunction with the electric furnace, it is a practical method that allows the gas used to work most efficiently, strengthens the stirring power without necessarily requiring winding of the electrode, promotes metallurgical reactions, and improves energy efficiency. The object of the present invention is to provide this type of electric furnace bottom blowing refining method with high performance. In order to achieve this objective, the present invention quantifies the gas injection conditions from the bottom of the electric furnace, that is, the number of gas injection plugs, the injection amount, and the injection pressure, and controls the height of the molten steel rise within a predetermined range. It is something. In other words, the feature of the present invention is that from the beginning of the refining period, when the melting of the charged scrap is almost completed, until the steel is tapped, a , 1 to 4 ONQ/+m per capillary pore
In, 20 to 80 ONQ/win per plug, gas with a pressure of less than 10 kg/aJ・g is continuously or intermittently blown into the furnace, and the height of the rise of the steel bath is increased to 1000 m.
The aim is to control and operate within m. The present invention will be specifically described below based on the accompanying drawings. Figures 1 to 3 show an overview of the bottom-blowing refining method for steel after melting scrap using an electric furnace of the present invention, in which 1 is an electric furnace, and the furnace consists of an inner wall 2 of refractory material, a stamp, and a brick. It has a floor 3 and an iron skin 4 covering the outer periphery thereof, and an auxiliary burner or lance 5 is provided on the upper side wall. 6 and 6 are electrodes. Reference numeral 7 designates a special gas blowing device (one example) disposed at approximately equal intervals in the circumferential direction of the hearth 3. As shown in FIG. It comprises a plug 8 with a tapered head, a large number of thin tube holes 9, 9 drilled at predetermined intervals so as to pass through the plug in the height direction, and a distribution chamber 10 fitted into the lower end of the plug 8. , plug 8
is fitted into an opening in the hearth 3 and fixed by an additional construction brick 11, and the distribution chamber 10 is led to a gas supply source (not shown) by a gas plumber 2. Note that the metal tube for the thin tube hole is equipped with a mechanism to prevent the generation of induced current.
The drawings are omitted because they are not related to the present invention. 14 is molten steel, and 15 is slag. Therefore, the present invention provides a method for producing ordinary steel, alloy steel, or stainless steel using the electric furnace 1 while blowing gas into it.
In particular, the bottom of the furnace is
C08, air, oxygen, or an inert gas such as nitrogen gas or argon is continuously or intermittently blown into the furnace using the gas blowing device, and the bottom blowing of this gas is performed under the following conditions. It is. (2) Gas blowing is performed using a plurality of the gas blowing devices. ■ Regardless of the volume, the gas flow rate is 1 to 40 per capillary hole.
NQ/win, 20~80ON per plug
Let's say fi/Otoriin. (2) Keep the gas blowing pressure to less than 10 kg/aJ-. ■The above blowing flow rate and pressure are such that the height of the rise in the steel bath Δh is 1000+sm or less, preferably 50〈Δh×500 (
(mm). The above conditions mean that in an electric furnace with a relatively shallow bath depth (within approximately 1500 mm), during the refining period, the steel bath does not necessarily require winding up the electrodes, does not cause unnecessary cooling of the molten metal, and reduces the steel bath depth. This is a necessary condition for stirring most efficiently with the amount of gas, and the discovery of this is a feature of the present invention. To explain in detail, first, there is a plurality of gas blowing devices 7, and normally it is desirable to have no more than three.The reason is that if more than four gas blowing devices 7 are used, the surrounding hearth refractories will be damaged and it will be difficult to repair them. This is because it takes a lot of time to process, gives unnecessary movement to the steel bath, and has disadvantages such as impairing power efficiency. However, depending on the volume, up to 5 units may be installed. Thin tube hole 9 in each plug 8 of gas blowing device 7, 7
, 9 is generally 10 to 30, and the diameter of each capillary hole is preferably in the range of 0.6 to 1.5 m+m.
Moreover, the size of the capillary pores may be uniform or may be selected from those with different diameters. The reason why the thin tube hole was adopted is to obtain good penetration power (reaching distance) while dispersing the gas appropriately. The reason why the lower limit of the diameter of the thin tube hole is set to 0.6 mm is that a hole with a diameter smaller than this requires high pressure to introduce into the furnace the amount of gas necessary to provide stirring force. Set the upper limit to 1.
The reason why the weight is 5m is that the height of the molten steel bulge Δh is 1000
This is because II11 or less is the limit due to the correlation between the flow rate and pressure. Next, adjust the gas flow rate to 1 to 40 N Q/w per capillary hole.
The reason for in is 10 to 3 per plug as mentioned above.
When equipped with 0 capillary holes 9, I N per 1 capillary hole
If it is less than Q/+min, it will not be possible to prevent foreign matter, molten matter, and molten steel from entering the narrow tube holes, and the height of the molten steel bulge Δh will be insufficient during the refining stage, making it impossible to provide sufficient stirring force to the molten steel and slab. be. FIG. 4 shows the result of examining the relationship between the hole diameter and the limit flow rate for molten steel penetration at a molten steel depth of 1000+ m, and it can be seen that I N Q /rain or more is required in the above hole diameter range. In addition, the upper limit was set at 40 N 2 /win because at a flow rate exceeding this, melted material and molten steel will not enter the thin tube holes, but the melted material will scatter too much and adhere to the electrodes and furnace lid. Otherwise, the molten steel swell height Δh becomes excessively large, exceeding 1000+u+, and a large amount of molten steel scatters on the electrode, forcing complicated electrode winding. In addition, the gas flow rate per plug should be adjusted to 20 to 800 N.
The reason for setting Q/min is that in addition to the same reason as above, the total flow rate becomes too large and unnecessary cooling of the molten steel is promoted.
Furthermore, if an inert gas is used as the gas, the consumption amount will increase unnecessarily. Another feature of the present invention is that the gas pressure is limited to a low pressure of less than 10 kg/aJ-g. The lower limit is generally 1
kg/a#-g, and this is because the diameter of the nozzle is made small as described above, so even this level of pressure can prevent the intrusion of molten steel, and this is the lowest pressure at which the desired effects of the present invention can be obtained. The reason why the upper limit is set to less than 10 kg/dg is that sufficient effects can be obtained in the present invention at low pressure, and stirring more than necessary is meaningless. FIG. 5 shows the relationship between gas pressure and flow rate at a hearth thickness of 700 mm (=length of the capillary hole 9) for each diameter of the capillary hole. Also, Figure 6 shows the gas pressure 2 kg/a1
Figure 7 shows the relationship between the capillary hole length and flow rate when the gas pressure is 9.8 kg/aj-g. From these drawings and FIG. 4, it is possible to appropriately set simple and stable gas blowing conditions. Furthermore, the present invention adjusts the gas flow rate and gas pressure so that the height of the steel bath bulge Δh is 1000 mm or less, preferably 50<Δ
h (500 (m)), and the height of the rise in the steel bath Δh is set by the following formula: Δh=−H−E Here, H is the depth of the steel bath. ), E is the stirring force (watt) given to the steel bath by gas blowing, and K, α, and β are constants given experimentally. The depth of the steel bath in the electric furnace is 1500 mm or less, and in this case, α and β are experimentally determined to be 1.9≦≦2.9,
-1.40≦α≦-1,46, β: 2/3. and. The stirring power (watt) is given by controlling the gas blowing flow rate and pressure described above. Furthermore, even if a different factor from the above is used, for example, a different stirring energy equation,
The optimum range of the height of the bulge is 50 to 50 m, and the maximum value must be 1000 m or less. Figure 8 shows a conversion graph of steel bath depth H - stirring force E - steel bath swelling height Δh - gas flow rate per plug at constant bath temperature (1550°C). By making them for each temperature, you can easily set operating conditions. Normally, gas blowing should start from the time of charging the scrap, and at this time and when the scrap starts to melt, the pressure should be low enough to prevent clogging of the capillary holes by foreign objects and melted scrap; The gas blowing flow rate and pressure may be increased after waiting for a certain amount of melt to be generated, and the blowing flow rate and pressure may be gradually increased as the amount of generated gas increases. However, the regulation of the dimensions of the gas injection capillary hole, gas pressure, and gas flow rate detailed above is a condition for controlling the height of the molten steel to 10,001 or less during the refining period after scrap burn-through. Therefore, during the period when a considerable amount of unmelted material from the charged scrap remains, the material is present in the space between the slag line, the ceiling, and the inner wall of the furnace. Even if it is blown in, the molten material comes into contact with the unmelted charge present at the top during melting and is prevented from scattering, so there is no risk of it adhering to the electrode, electrode hole, inner surface of the ceiling, upper part of the furnace wall, etc. From the time of charging the scrap until almost the completion of melting,
Unless consideration is given to cooling the inside of the furnace by blowing inert gas in excess of the necessary amount, there is no need to particularly regulate the upper limits of the amount and pressure. After melting the scrap, the gas blowing flow rate and pressure are further increased to increase the height of the molten steel bulge Δh shown in Figure 3.
As a result, an appropriate stirring effect with just the right amount of stirring can be obtained, promoting the reaction between metal and slag, and making the temperature of the steel bath uniform. Figure 9 illustrates the operation pattern (molten steel depth, bottom blowing gas amount, and molten steel swelling height) in one charge of the present invention, where the gas consumption amount is 41.5 NM'/ch and the total stirring force is 0.165 KwH/ch. T was obtained. In addition, in the above-mentioned gas blowing, it is not necessary that all the plugs 8°8 have the same flow rate and pressure, and it is also possible to make the flow rate and pressure variable within the above range for each plug, and it is also possible to make the flow rate and pressure not continuous. , may be blown intermittently. [Example] The present invention will be explained in detail. The present invention was applied to manufacturing ordinary steel in a 50T electric furnace. Three plugs with 20 thin tube holes of 0.8 mm φ drilled in the bottom of the hearth are attached to the hearth of the hot zone at approximately 120° intervals, and from the time of charging scrap, the thin tube holes are made to prevent foreign matter from clogging. After pumping nitrogen gas under pressure and waiting for the formation of a small amount of dissolved material, 1.5N Q /win per capillary hole,
3ON Q/win per plug, pressure 1kg/a
Nitrogen gas was blown in at #·g, and the blowing flow rate was gradually increased in accordance with the increase in the amount of molten metal produced. 20ON per plug after scrap melting is completed
Q/win, nitrogen gas was blown at a pressure of 6 kg/cd·g, and the height of the molten steel buildup was controlled to 120 to 4,801 cm. The bath specifications for each time period are shown in Table 1 below. Table 1 The results of this operation (average value after multiple charges) are compared with the case without bottom blowing and are shown in Table 2 below. Note that the amount of molten steel was 45,450 kg. Table 2 also shows the oxidation phase elapsed time and basicity under the above operating conditions.
Comparative data of slag composition and molten steel temperature is shown in Figure 10.
This figure shows that according to the present invention, early slag formation is possible and a high basicity period can be maintained for a long time. Figure 11 shows the results of actual measurement of the variation in Cu content between products from the beginning of melting.
Because they are not mixed uniformly, there are large differences between sample periods. On the other hand, with Honzuke, uniform mixing conditions were established quickly and stable values were obtained. Figure 12 shows the changes in the ratio of (P) in slag and CP in melting over time after melting, and the change in the ratio of (S) in similar slag.
) and the change in the ratio of (S) during melting, and it can be seen that in the case of the method of the present invention, equilibrium is reached in a short time. In this example, the plug at the bottom of the hearth was installed at the hearth of the hot zone from the viewpoint of effective use of heat during the scrap melting period, but it can be installed at any position depending on the size and size of the electrode, the position, or the shape of the hearth bottom. As mentioned above, it goes without saying that gas can be blown from the position, and the type of gas is not limited to nitrogen. [Effects of the Invention] According to the present invention as described above, in electric furnace steelmaking, gas bottom blowing is carried out in the steel bath from the early stage of the refining period when the melting of charged scrap, oxidation, and reduction is almost completed until the steel is tapped. Using the height of the swelling as a guideline, we carried out the process using a specific blowing method, blowing flow rate, and pressure conditions, so we were able to reliably and stably obtain the following effects with efficient gas usage without having to wind up the electrodes. Can be done. Then, early slag formation becomes possible, undissolved CAO is reduced, and the high basicity period can be maintained for a long time, so that the CAOJ7X units can be reduced. Furthermore, during the refining stage, efficient stirring promotes the reaction between slag and metal, reducing the (TFe) content in the slag and thereby improving the tapping yield.
metal medium

〔0〕含有率の低減による脱酸剤、合金鉄の歩
留向上、鋼浴成分の均一化の促進が得られ、また、鋼浴
温度が均一化されるとともに、溶解精錬時間が短縮され
るため、生産能率の向上と、電力量の節約を達成できる
[0] By reducing the content of deoxidizing agent, the yield of ferroalloy can be improved, and the uniformity of steel bath components can be promoted. Also, the steel bath temperature can be made uniform, and the melting and refining time can be shortened. Therefore, it is possible to improve production efficiency and save electricity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明電気炉による鋼の底吹き精錬法を示す概
要説明図、第2図は第1図の平面図、第3図は第1図の
拡大図、第4図は本発明における細管孔径と溶鋼浸入限
界流量の関係を示すグラフ、第5図はガスの吹き込み圧
力と流量の関係を示すグラフ、第6図と第7図は細管孔
長とガス流量の関係を示すグラフ、第8図は本発明にお
ける温度−定での鋼浴深さ〜撹拌力〜溶鋼盛り上がり高
さの関係を示すグラフ、第9図は本発明の操業パターン
を例示するグラフ、第10図は本発明と従来法の酸化期
経過時間と塩基度、スラグ成分、溶鋼温度を比較して示
すグラフ、第11図は溶は落ちから成品間のCu成分バ
ラツキを検討したグラフ、第12図(a)(b)は溶落
ちから経過時間毎のP、Sのスラグ中/溶鋼中の割合の
変化を示すグラフである。 3・・・炉床、8・・・プラグ、9・・・細管孔、Δh
・・・溶鋼盛り上がり高さ
Fig. 1 is a schematic explanatory diagram showing the bottom blowing refining method of steel using an electric furnace according to the present invention, Fig. 2 is a plan view of Fig. 1, Fig. 3 is an enlarged view of Fig. Figure 5 is a graph showing the relationship between narrow tube hole diameter and molten steel penetration limit flow rate. Figure 5 is a graph showing the relationship between gas blowing pressure and flow rate. Figures 6 and 7 are graphs showing the relationship between narrow tube hole length and gas flow rate. Figure 8 is a graph showing the relationship between steel bath depth, stirring force, and height of molten steel at a constant temperature in the present invention, Figure 9 is a graph illustrating the operation pattern of the present invention, and Figure 10 is a graph showing the relationship between the steel bath depth and stirring force at a constant temperature in the present invention. A graph comparing the elapsed time of the oxidation period and basicity, slag composition, and molten steel temperature in the conventional method. Figure 11 is a graph examining the variation in Cu content between finished products from the time of melting. Figures 12 (a) (b) ) is a graph showing changes in the ratio of P and S in slag/molten steel with each elapsed time from burn-through. 3... Hearth, 8... Plug, 9... Capillary hole, Δh
...Height of molten steel rise

Claims (1)

【特許請求の範囲】[Claims] 装入スクラップの溶解がほぼ完了した精錬期の初期から
出鋼までの間に、炉底に設けた複数個でかつそれぞれに
多数の細管孔を有するプラグから、1細管孔あたり1〜
40Nl/min、1プラグあたり20〜800Nl/
min、圧力10kg/cm^2・g未満のガスを連続
的にもしくは間欠的に炉内に吹込み、鋼浴の盛り上り高
さを1000mm以内に制御して操業することを特徴と
する電気炉による鋼の底吹き精錬法。
From the beginning of the refining period, when the melting of the charged scrap is almost completed, until the steel is tapped, from the plugs provided at the bottom of the furnace, each having a large number of thin tube holes, one to one
40Nl/min, 20-800Nl/per plug
An electric furnace characterized in that the electric furnace is operated by continuously or intermittently blowing gas into the furnace at a pressure of less than 10 kg/cm^2・g and controlling the height of the rise of the steel bath to within 1000 mm. A bottom-blown refining method for steel.
JP61146033A 1986-06-24 1986-06-24 Refining method for bottom blow of steel in electric furnace Pending JPS634010A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP61146033A JPS634010A (en) 1986-06-24 1986-06-24 Refining method for bottom blow of steel in electric furnace
CA 539308 CA1311787C (en) 1986-06-24 1987-06-10 Method of bottom blowing operation of a steel making electric furnace
US07/062,472 US4749408A (en) 1986-06-24 1987-06-12 Method of bottom blowing operation of a steel making electric furnace
GB8714000A GB2192446B (en) 1986-06-24 1987-06-16 A method of producing steel in an electric furnace
KR1019870006380A KR910001577B1 (en) 1986-06-24 1987-06-23 Low blow operation method of electric furnace
FR8708865A FR2601966B1 (en) 1986-06-24 1987-06-24 PROCESS OF OPERATING AN ELECTRIC OVEN FOR THE MANUFACTURE OF STEEL, INCORPORATING A GAS BLOWING OPERATION BY THE SOLE OF THE OVEN.
DE19873720886 DE3720886A1 (en) 1986-06-24 1987-06-24 FLOOR BLOWING PROCESS FOR ARC FURNACES FOR STEEL PRODUCTION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61146033A JPS634010A (en) 1986-06-24 1986-06-24 Refining method for bottom blow of steel in electric furnace

Publications (1)

Publication Number Publication Date
JPS634010A true JPS634010A (en) 1988-01-09

Family

ID=15398587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61146033A Pending JPS634010A (en) 1986-06-24 1986-06-24 Refining method for bottom blow of steel in electric furnace

Country Status (1)

Country Link
JP (1) JPS634010A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7557383B2 (en) 2003-09-19 2009-07-07 Panasonic Corporation Lighting apparatus
JP2016151375A (en) * 2015-02-17 2016-08-22 新日鐵住金株式会社 Operation method of arc type bottom-blowing electric furnace

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60103109A (en) * 1983-11-11 1985-06-07 Toshin Seikou Kk Method for operating electric furnace

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60103109A (en) * 1983-11-11 1985-06-07 Toshin Seikou Kk Method for operating electric furnace

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7557383B2 (en) 2003-09-19 2009-07-07 Panasonic Corporation Lighting apparatus
KR101109899B1 (en) * 2003-09-19 2012-01-31 파나소닉 주식회사 Illuminating device
JP2016151375A (en) * 2015-02-17 2016-08-22 新日鐵住金株式会社 Operation method of arc type bottom-blowing electric furnace

Similar Documents

Publication Publication Date Title
US4749408A (en) Method of bottom blowing operation of a steel making electric furnace
JP5155503B2 (en) Stable pause operation in a method for producing molten metal
JPS62227023A (en) Steelmaking apparatus
US4362556A (en) Arc furnace steelmaking involving oxygen blowing
JPH073323A (en) Converter for steel production
CN117230273A (en) Method for smelting low-nitrogen steel by adopting electric arc furnace
JPS634010A (en) Refining method for bottom blow of steel in electric furnace
CN102140567B (en) Argon-oxygen refining method for low-carbon ferrochromium alloy
JP2001181727A (en) Method for monitoring condition in electric furnace
JPH0233779B2 (en)
JPH01127613A (en) Method and apparatus for refining molten metal
JP2000337776A (en) Method for improving secondary combustion rate and heating efficiency of melting furnace, or the like
KR100336854B1 (en) Carbon injection method into d.c electric furnace
JP2002012907A (en) Method for operating metal melting furnace, smelting furnace, refining furnace and vacuum refining furnace
JP2000008115A (en) Melting of cold iron source
CN102586541A (en) Steelmaking method suitable for small power electric arc furnace
KR100225249B1 (en) Remaining slag control method of of slopping control
JPS631367B2 (en)
JP3121894B2 (en) Metal melting furnace
JPH0768574B2 (en) Metal oxide smelting reduction method and smelting reduction furnace
JP2006104501A (en) Methods for reducing and dissolving iron raw materials containing iron oxide
JP4781812B2 (en) Converter steelmaking method
SU1142514A1 (en) Method of refining molten metal
JP2023093079A (en) Method of charging reduced iron into electric furnace
CN1373231A (en) Method for smelting middle-or low-carbon ferromanganese by frequency-conversion induction furnace