[go: up one dir, main page]

JPS633957B2 - - Google Patents

Info

Publication number
JPS633957B2
JPS633957B2 JP55173126A JP17312680A JPS633957B2 JP S633957 B2 JPS633957 B2 JP S633957B2 JP 55173126 A JP55173126 A JP 55173126A JP 17312680 A JP17312680 A JP 17312680A JP S633957 B2 JPS633957 B2 JP S633957B2
Authority
JP
Japan
Prior art keywords
anode
thickness
exchange membrane
flat plate
cation exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55173126A
Other languages
Japanese (ja)
Other versions
JPS5798687A (en
Inventor
Mitsuo Yoshida
Hiroyoshi Matsuoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP55173126A priority Critical patent/JPS5798687A/en
Priority to IN1372/CAL/80A priority patent/IN154740B/en
Priority to CA000375306A priority patent/CA1195647A/en
Priority to US06/253,664 priority patent/US4354905A/en
Priority to FI811134A priority patent/FI68669C/en
Priority to AU69509/81A priority patent/AU541226B2/en
Priority to DE8181301638T priority patent/DE3167276D1/en
Priority to MX186857A priority patent/MX154933A/en
Priority to NO811303A priority patent/NO156016C/en
Priority to EP81301638A priority patent/EP0039171B1/en
Priority to BR8102349A priority patent/BR8102349A/en
Publication of JPS5798687A publication Critical patent/JPS5798687A/en
Publication of JPS633957B2 publication Critical patent/JPS633957B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】 本発明は、電解用陽極の構造に関するものであ
る。更に詳しくは、陽イオン交換膜により陽極室
と陰極室とに分割された塩化アルカリ金属水溶液
電解槽に用いられる有孔平板陽極において、表面
と孔側面の陽極活性被覆の厚みが裏面の陽極活性
被覆の厚みより大きいことを特徴とする電解用陽
極の構造に関するものである。本発明でいう表面
とは、陰極と向い合い陽イオン交換膜に近接して
いる面をいい、孔側面とは有孔部の板厚に相当す
る部分の面をいい、裏面とは表面と反対側の面を
いう。塩化アルカリ金属水溶液電解に用いられる
陽極は、チタニウム等の基材表面を酸化ルテニウ
ム等の貴金属酸化物を主体としたもので被覆した
いわゆる金属陽極が主流を占めている。又、塩化
アルカリ金属水溶液の電解においては、陽極で発
生する塩素ガスによる電流遮蔽により電圧が上昇
するために有孔陽極を用いて、陰極に対して陽極
の背後に陽極で発生する塩素ガスを抜け易くして
いる。代表的な構造は2乃至6mm径の丸棒を1乃
至3mm間隔に並べた構造、1乃至2mm厚みの薄板
から作られたエクスパンドメタル構造である。陽
イオン交換膜を用いた塩化アルカリ金属水溶液電
解法においても前述の代表的構造の陽極が用いら
れている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of an anode for electrolysis. More specifically, in a perforated flat plate anode used in an alkali metal chloride aqueous solution electrolyzer that is divided into an anode chamber and a cathode chamber by a cation exchange membrane, the thickness of the anode active coating on the front surface and the side surface of the hole is the same as that of the anode active coating on the back surface. The present invention relates to a structure of an electrolytic anode characterized in that the thickness is larger than the thickness of the anode. In the present invention, the surface refers to the surface facing the cathode and close to the cation exchange membrane, the pore side refers to the surface corresponding to the thickness of the perforated part, and the back surface refers to the surface opposite to the front. Refers to the side surface. The main type of anodes used in aqueous alkali metal chloride electrolysis are so-called metal anodes in which the surface of a base material such as titanium is coated with a noble metal oxide such as ruthenium oxide. In addition, in electrolysis of aqueous alkali metal chloride solutions, the voltage increases due to current shielding by chlorine gas generated at the anode, so a perforated anode is used to place the chlorine gas generated at the anode behind the cathode. I'm making it easy. Typical structures include a structure in which round rods with a diameter of 2 to 6 mm are arranged at intervals of 1 to 3 mm, and an expanded metal structure made from thin plates with a thickness of 1 to 2 mm. The anode having the typical structure described above is also used in the alkali metal chloride aqueous solution electrolysis method using a cation exchange membrane.

本発明者らは、特願昭55−48634において、陽
イオン交換膜を用いる塩化アルカリ金属水溶液電
解の場合、平板に円形、楕円形、正方形、長方
形、三角形、菱形及び十字形等の開口部を設ける
か又はエクスパンドメタルをプレス等により平板
化した有孔平板陽極を用いることにより、従来多
用されているエクスパンドメタル陽極を用いた場
合と比較し、0.15乃至0.2V電解電圧が低くなるこ
と、しかもその差は陽極電位ではなく、すべて陽
イオン交換膜での電圧降下の差であることを示し
た。又、有孔平板陽極の総切口長さが大きくなる
程陽イオン交換膜内の電流分布の均一化が行われ
電圧低下していることを示した。更に陽イオン交
換膜法塩化アルカリ電解の場合陽イオン交換膜と
接している陽極面の消耗が早いことは従来より公
知でありその対策として特公昭53−1063では陽イ
オン交換膜と接している陽極面の陽極活性被覆を
なくし、多孔性陽極の背面即ち膜によつて被われ
ていない面を貴金属、貴金属合金または貴金属酸
化物で被覆することを提案している。しかしこの
方法を有孔平板陽極に適用すると、陽イオン交換
膜内の電流分布均一化に最も大きな役割を果たす
表面が陽極として作動しないので電解電圧が高い
という欠点を有することを見い出した。
In Japanese Patent Application No. 55-48634, the present inventors proposed that in the case of aqueous electrolysis of alkali metal chloride using a cation exchange membrane, openings in the shape of a circle, an oval, a square, a rectangle, a triangle, a rhombus, a cross, etc. are formed in a flat plate. By using a perforated flat plate anode made by forming an expanded metal into a flat plate by pressing etc., the electrolytic voltage can be lowered by 0.15 to 0.2V compared to the case of using an expanded metal anode, which is commonly used in the past. It was shown that the difference was not in the anodic potential, but in the voltage drop across the cation exchange membrane. It was also shown that the larger the total cut length of the perforated flat plate anode, the more uniform the current distribution within the cation exchange membrane and the lower the voltage. Furthermore, in the case of cation-exchange membrane method alkaline chloride electrolysis, it has long been known that the anode surface in contact with the cation-exchange membrane wears out quickly, and as a countermeasure to this problem, Japanese Patent Publication No. 53-1063 proposed an anode in contact with the cation-exchange membrane. It is proposed to eliminate the anode active coating on the front side and to coat the back side of the porous anode, ie the side not covered by the membrane, with a noble metal, noble metal alloy or noble metal oxide. However, it has been found that when this method is applied to a perforated flat plate anode, the surface that plays the most important role in making the current distribution uniform within the cation exchange membrane does not function as an anode, resulting in a drawback that the electrolytic voltage is high.

本発明は、これらの問題を解決した新しい陽極
を提供するものである。本発明者らは、有孔平板
陽極の電流分布を鋭意検討した結果、有孔平板陽
極の表面と孔側面の二つの面に電流が集中してい
ること及びこの二つの面の消耗が裏面の消耗に比
較して早いことを見い出した。この現象は、陰極
室内圧を陽極室内圧よりも大きくして陽イオン交
換膜を陽極に向かつて押しつけて電解する場合特
に大きい。
The present invention provides a new anode that solves these problems. As a result of intensive study of the current distribution of a perforated flat plate anode, the present inventors found that the current was concentrated on two surfaces of the perforated flat plate anode, the front surface and the side surface of the hole, and that the wear on these two surfaces was caused by the wear on the back surface. We found that it is faster than wear and tear. This phenomenon is particularly large when electrolysis is performed by making the cathode chamber pressure higher than the anode chamber pressure and pressing the cation exchange membrane toward the anode.

本発明はこれらの知見に基づいてなされたもの
であり、有孔平板陽極において多くの電流を分担
し、かつ陽イオン交換膜内の電流分布の均一化に
大きな役割を果たす表面と孔側面の陽極活性物質
の厚みを、裏面の陽極活性物質の厚みよりも大き
くし、電解電圧の低い寿命の長い陽極を提供する
ものである。
The present invention was made based on these findings, and the anodes on the surface and the side of the holes share a large amount of current in the perforated flat plate anode and play a major role in making the current distribution uniform within the cation exchange membrane. The thickness of the active material is made larger than the thickness of the anode active material on the back side, thereby providing an anode with a low electrolysis voltage and a long life.

有孔平板陽極の表面、孔側面及び裏面の各々の
面の陽イオン交換膜内の電流分布均一化への寄与
率を調べるために、各々の面のうち一つの面だけ
陽極活性被覆を残し、他の二つの面の陽極活性被
覆を削り落とした有孔平板陽極を用いて電解し
た。有孔平板陽極には、厚さ1.2mmのチタン板に
2mm径の孔を3.5mmピツチで60度千鳥型に打ち抜
いた各々の面の面積が等しいものを用い、陽極活
性被覆として酸化ルテニウムをコーテイングし
た。通電面積は10cm×10cmで、陽イオン交換膜に
はテフロン織布を埋め込んだNafion315を用い
陰極には1.5mm厚みの軟鋼板から製作したエクス
パンドメタルを用い、陽極室にはPH2の3規定食
塩水溶液、陰極室には5規定苛性ソーダ水溶液を
供給し、陰極室内圧を陽極室内圧よりも1m
H2O高く保ちつつ電流密度50A/dm2、90℃で電解
した。又、同時に1.5mm厚みのチタニウム板から
製作した短径7mm、長径12.7mmのエクスパンドメ
タル陽極を用いて、同じ条件で電解し、その電解
電圧を基準値とし、各陽極を用いた場合の電圧と
エクスパンドメタル陽極を用いた場合の電圧の差
を比較した。陽極活性被覆を残した面が表面の場
合の電圧低下値は、0.11V、孔側面の場合0.06V
そして裏面の場合0.03Vであつた。エクスパンド
メタル陽極を用いた場合に比較し、有孔平板陽極
の裏面にだけ陽極活性被覆が存在するだけでも陽
イオン交換膜内の電流分布が均一化され、電圧が
低下することは驚くべきことであるが、更に孔側
面、表面の順に大きな電圧低下を示し、この順に
陽イオン交換膜内の電流分布をより均一化してい
ると同時に各面共陽極活性被覆を有している時は
この順により多くの電流を分担していることを示
していると思われる。又、全面を陽極活性被覆し
た有孔平板陽極を前述の電解条件で6カ月通電し
た後それぞれの面の陽極活性被覆の消耗した厚み
を測定した所、表面:孔側面:裏面の比が2:
1.4:1であつた。測定方法は島津製作所製のX
線マイクロアナライザーARL−EMX−SM−2
型を用い、陽極活性被覆のRu成分と基材のTi成
分の特性X線をチヤートに記録し、その線図の面
積の比を求め、あらかじめ陽極活性被覆の厚みの
わかつているSampleで求めた検量線から残留陽
極活性被覆の厚みを求め、消耗した厚みを計算し
た。表面及び孔側面の消耗が裏面の消耗より大き
い理由は、電流密度が大きいこと、及びアルカリ
性である陽イオン交換膜により近接しているため
と思われる。
In order to investigate the contribution of each of the front surface, the hole side surface, and the back surface of the perforated flat plate anode to the uniformity of the current distribution within the cation exchange membrane, the anode active coating was left on only one of each surface. Electrolysis was carried out using a perforated flat plate anode with the anode active coating shaved off on the other two sides. For the perforated flat plate anode, we used a 1.2 mm thick titanium plate with 2 mm diameter holes punched out at 3.5 mm pitch in a 60 degree staggered pattern so that each side had the same area, and was coated with ruthenium oxide as the anode active coating. did. The current carrying area is 10cm x 10cm, the cation exchange membrane is Nafion 315 with embedded Teflon fabric, the cathode is expanded metal made from a 1.5mm thick mild steel plate, and the anode chamber is a 3N saline solution with a pH of 2. , 5N caustic soda aqueous solution is supplied to the cathode chamber, and the pressure in the cathode chamber is lowered by 1 m than the pressure in the anode chamber.
Electrolysis was carried out at a current density of 50 A/dm 2 and 90° C. while keeping H 2 O high. At the same time, electrolysis was performed under the same conditions using an expanded metal anode made from a 1.5 mm thick titanium plate with a short axis of 7 mm and a long axis of 12.7 mm, and the electrolytic voltage was taken as a reference value, and the voltage when using each anode was calculated. The difference in voltage when using an expanded metal anode was compared. The voltage drop value is 0.11V when the surface with the anode active coating left is 0.11V, and 0.06V when it is on the side of the hole.
In the case of the back side, it was 0.03V. It is surprising that the presence of an anode active coating only on the back side of a perforated flat plate anode equalizes the current distribution within the cation exchange membrane and lowers the voltage compared to when an expanded metal anode is used. However, there is a larger voltage drop in the order of the pore side and the surface, and in this order, the current distribution within the cation exchange membrane becomes more uniform, and at the same time, when each surface has an anode active coating, This seems to indicate that a large amount of current is being shared. In addition, when we measured the thickness of the anode active coating on each surface after energizing a perforated flat plate anode whose entire surface was anode active coated for 6 months under the above-mentioned electrolytic conditions, we found that the ratio of front surface:hole side surface:back surface was 2:
The ratio was 1.4:1. The measurement method is Shimadzu X
Ray microanalyzer ARL-EMX-SM-2
Using a mold, the characteristic X-rays of the Ru component of the anode active coating and the Ti component of the base material were recorded on a chart, and the ratio of the area of the diagram was determined using a sample whose thickness of the anode active coating was known in advance. The thickness of the residual anode active coating was determined from the calibration curve, and the consumed thickness was calculated. The reason why the wear on the front and pore sides is greater than the wear on the back side may be due to the higher current density and the closer proximity to the alkaline cation exchange membrane.

このように、電圧低下効果が大きく、かつ消耗
の早い表面及び孔側面の陽極活性被覆の厚みを裏
面の厚みより大きくした有孔平板陽極は、寿命が
長くかつ電圧低下効果の長く続く陽極として極め
て大きな利益をもたらすものである。
In this way, the perforated flat plate anode, which has a large voltage reduction effect and wears out quickly, has a thicker anode active coating on the front and hole sides than the back side, and is extremely effective as an anode that has a long life and a long-lasting voltage reduction effect. It brings big profits.

裏面に対し、表面及び孔側面の陽極活性被覆の
厚みの比率は、種々の電解条件によつてそれぞれ
の面の消耗が異なるので、各面の陽極活性被覆が
同時になくなるように選ばれた条件に合せて、各
面の厚みを選択することが望ましい。好ましくは
1.5倍以上、表面及び孔側面の厚みを大きくする
のがよい。また前述したように裏面の電解電圧低
下効果が小さいので裏面の陽極活性被覆をなくし
てもよい。
The ratio of the thickness of the anode active coating on the front surface and the side surfaces of the hole to the back surface is determined based on the conditions selected so that the anodic active coating on each side is removed at the same time, since the wear on each side differs depending on various electrolytic conditions. It is also desirable to select the thickness of each surface. Preferably
It is better to increase the thickness of the surface and the side surfaces of the hole by at least 1.5 times. Further, as mentioned above, since the electrolytic voltage reduction effect on the back side is small, the anode active coating on the back side may be eliminated.

有孔平板は平板パンチング加工して作るのが一
般的であり、平板をエクスパンドメタルにした
後、プレス等で平板化してもよい。開口部の形状
は加工できるものであれば何でもよいが、パンチ
ング加工し易い円形が特に好ましい。円形の場
合、開口部の位置は正三角形或いは直角三角形の
頂点に円形開口の中心がくる、いわゆる60度千鳥
型或いは45度千鳥型が好ましい。又その径は小さ
い方がよく0.5mm乃至6mm、好ましくは1mm乃至
5mmがよい。又、陽イオン交換膜と近接する陽極
表面を、サンドブラストや化学的エツチング或い
は切削溝等で適度に荒らすことも有効である。
A perforated flat plate is generally made by flat plate punching, and the flat plate may be made into expanded metal and then flattened by pressing or the like. The opening may have any shape as long as it can be processed, but a circular shape that can be easily punched is particularly preferred. In the case of a circular shape, the openings are preferably located in a so-called 60-degree staggered shape or a 45-degree staggered shape, in which the center of the circular opening is located at the apex of an equilateral triangle or a right triangle. Also, the smaller the diameter, the better, from 0.5 mm to 6 mm, preferably from 1 mm to 5 mm. It is also effective to appropriately roughen the anode surface adjacent to the cation exchange membrane by sandblasting, chemical etching, cutting grooves, or the like.

有孔平板の厚みは、陽イオン交換膜を陽極に向
つて押しつけた時、大きく変形しない程度の強度
があればよく、0.8乃至3mmが適当である。
The thickness of the perforated plate needs to be strong enough not to be significantly deformed when the cation exchange membrane is pressed toward the anode, and a suitable thickness is 0.8 to 3 mm.

有孔平板陽極の材料は、通常塩化アルカリ金属
溶液の電解に使われるものでよい。即ち、基材と
してはチタニウム、ジルコニウム、タンタル、ニ
オブ及びその合金等が使用され、陽極活性被覆材
料としては酸化ルテニウム等の貴金属酸化物を主
体としたもの、貴金属、貴金属合金等一般に陽極
活性を示すものが使用される。又、基材と陽極活
性被覆の密着を高めるための脱脂、研磨、酸処理
等は通常行われている方法でよい。陽極活性被覆
を得る方法は、貴金属の塩化物等を水、塩酸或い
は有機溶剤等に溶解し、基材上に塗布後、熱分解
する方法、電気メツキ法、無電解メツキ法、メツ
キした後されに熱処理する方法、プラズマ溶射法
イオンプレーテイング法等が採用される。表面及
び孔側面のみ厚い陽極活性被覆を得る方法はどん
な方法でもよいが、塗布後熱分解する方法の場合
には、表面及び孔側面のみ塗布し、熱分解すれば
よい。又、メツキ法の場合には、表面側のみ対極
を置く方法或いは、裏面に必要な厚みをつけた後
防鍍塗料を塗布し、更にメツキを続ける等の方法
がよい。
The material of the perforated flat plate anode may be one commonly used for electrolysis of alkali metal chloride solutions. That is, titanium, zirconium, tantalum, niobium, and their alloys are used as the base material, and as the anode active coating material, materials mainly composed of noble metal oxides such as ruthenium oxide, noble metals, noble metal alloys, etc. that generally exhibit anodic activity are used. things are used. In addition, degreasing, polishing, acid treatment, etc. for enhancing the adhesion between the base material and the anode active coating may be carried out by conventional methods. The anode active coating can be obtained by dissolving precious metal chloride in water, hydrochloric acid, organic solvent, etc., applying it to the base material, and then thermally decomposing it, electroplating method, electroless plating method, and plating method. Heat treatment methods such as plasma spraying and ion plating are used. Any method may be used to obtain a thick anode active coating only on the surface and the side surfaces of the pores, but in the case of a method in which the coating is thermally decomposed after coating, it is sufficient to apply the coating only on the surface and the side surfaces of the pores and then thermally decompose the coating. In the case of the plating method, it is preferable to place a counter electrode only on the front side, or to apply an anti-plating paint after adding the necessary thickness to the back side, and then continue plating.

本発明の陽極が用いられる電解槽は、特開昭51
−68477号に記載されている如く、陽、陰極の背
後に空間を設け、ガス抜けをよくしたものが好ま
しい。陰極は通常の水素発生用陰極が使用され
る。又、陽イオン交換膜としては特に限定はな
く、一般に、塩化アルカリ金属水溶液電解に使用
されるものがすべて用いられる。イオン交換基と
してはスルホン酸型、カルボン酸型、或いは、ス
ルホン酸アミド型などいずれでもよいが、アルカ
リ金属輸率のよいカルボン酸型、またはカルボン
酸とスルホン酸の組合せ型が最適である。この場
合、スルホン酸基の存在する側を陽極面に、カル
ボン酸基の存在する側を陰極面にして用いるのが
最も好ましい。樹脂母体としてはフロロカーボン
系の樹脂が耐塩素性の面で優れている。又、強度
向上のために布、網等で裏うちしてあつてもよ
い。
An electrolytic cell in which the anode of the present invention is used is disclosed in Japanese Unexamined Patent Publication No. 51
As described in No. 68477, it is preferable to provide a space behind the anode and cathode to improve gas release. A common cathode for hydrogen generation is used as the cathode. Further, the cation exchange membrane is not particularly limited, and generally any membrane used in aqueous alkali metal chloride solution electrolysis can be used. The ion exchange group may be of the sulfonic acid type, carboxylic acid type, or sulfonic acid amide type, but the carboxylic acid type with a good alkali metal transfer number or the combination type of carboxylic acid and sulfonic acid is optimal. In this case, it is most preferable to use the side where the sulfonic acid group is present as the anode side and the side where the carboxylic acid group is present as the cathode side. As the resin matrix, fluorocarbon resin is excellent in terms of chlorine resistance. In addition, it may be lined with cloth, net, etc. to improve strength.

表面と孔側面の陽極活性被覆の厚みを裏面のそ
れよりも大きくした本発明の有孔平板陽極は、従
来多用されているエクスパンドメタル陽極を用い
た場合と比較し、0.15乃至0.2V電解電圧が低くか
つ各面の被覆厚みを等しくした有孔平板陽極に比
較し、各面の被覆量の合計が同一であつても電圧
低下効果がより長く持続し、寿命の長い陽極室に
なつている。以下、実施例により、本発明を詳細
に説明するが、本発明はこれに限定されるもので
はない。
The perforated flat plate anode of the present invention, in which the thickness of the anode active coating on the front surface and the side surface of the hole is larger than that on the back surface, has an electrolytic voltage of 0.15 to 0.2V compared to the case of using an expanded metal anode, which is commonly used in the past. Compared to a perforated flat plate anode in which the coating thickness on each surface is the same, the voltage reduction effect lasts longer even when the total coating amount on each surface is the same, resulting in a long-life anode chamber. EXAMPLES Hereinafter, the present invention will be explained in detail with reference to Examples, but the present invention is not limited thereto.

実施例 1、2 有孔平板陽極は次のように製作した。厚さ1mm
のチタニウム板に2mm径の円形孔を60度千鳥型に
3mmピツチでパンチング法で打ち抜いた。市販の
みがき粉で脱脂し、更に20重量%の硫酸水溶液中
に浸漬し、85℃で3時間表面を荒らした。その上
に、三塩化ルテニウムを10%塩酸水溶液に溶解し
て、ルテニウム40g/にした液を筆で塗布し、
450℃で5分間大気中で焼付する操作をくり返し
た。実施例1は、7回くり返し7回共、裏面は塗
布しなかつた。表面及び孔側面の被覆厚みは約
1.9μであつた。実施例2は、5回くり返し、最初
の2回は全面塗布し、残り3回は表面及び孔側面
のみ塗布し、裏面は塗布しなかつた。表面及び孔
側面の厚みは約1.6μで裏面は約0.6μであり、実施
例1、2共に塗布量は同じで約190mgであつた。
裏面に塗布しない場合は、裏面をナタネ油を1%
とかした四塩化炭素を浸み込ませたガーゼでふい
てから表面及び孔側面に塗布した。実施例1、2
共最後に大気中で500℃3時間熱処理した。
Examples 1 and 2 Perforated flat plate anodes were manufactured as follows. Thickness 1mm
Circular holes with a diameter of 2 mm were punched in a titanium plate with a pitch of 3 mm in a 60-degree staggered pattern using the punching method. It was degreased with commercially available polishing powder, and further immersed in a 20% by weight aqueous sulfuric acid solution to roughen the surface at 85°C for 3 hours. On top of that, a solution of ruthenium trichloride dissolved in a 10% hydrochloric acid aqueous solution to give 40 g of ruthenium was applied with a brush.
The operation of baking at 450°C for 5 minutes in the air was repeated. In Example 1, the coating was repeated 7 times and the back side was not coated in all 7 times. The coating thickness on the surface and side of the hole is approx.
It was 1.9μ. Example 2 was repeated 5 times, the first two times the entire surface was coated, and the remaining three times only the front surface and hole side surfaces were coated, and the back surface was not coated. The thickness of the front surface and the side surface of the hole was about 1.6 μm, and the thickness of the back surface was about 0.6 μm, and the coating amount was the same in both Examples 1 and 2, which was about 190 mg.
If not applying to the back side, apply 1% rapeseed oil to the back side.
It was wiped with gauze impregnated with melted carbon tetrachloride and then applied to the surface and sides of the hole. Examples 1 and 2
Finally, they were heat treated at 500°C for 3 hours in the air.

陽イオン交換膜は次のように作成した。テトラ
フロロエチレンとパーフロロ−3、6−ジオキシ
−4−メチル−7−オクテンスルホニルフルオラ
イドを1,1,2−トリクロル−1,2,2−ト
リフロロエタン中で、パーフロロプロピオニルパ
ーオキサイドを重合開始剤とし、共重合して当量
重量1350の重合体(重合体1)及び当量重量1090
の重合体(重合体2)を得た。これらの当量重量
は重合体の一部を水洗、けん化後滴定法により測
定した。
The cation exchange membrane was prepared as follows. Polymerize perfluoropropionyl peroxide with tetrafluoroethylene and perfluoro-3,6-dioxy-4-methyl-7-octensulfonyl fluoride in 1,1,2-trichloro-1,2,2-trifluoroethane. As an initiator, copolymerize a polymer with an equivalent weight of 1350 (polymer 1) and an equivalent weight of 1090
A polymer (Polymer 2) was obtained. These equivalent weights were determined by washing a portion of the polymer with water, saponifying it, and then titration.

これらの重合体を加熱成形して、それぞれの厚
さが35μ(重合体1)と、100μ(重合体2)の2層
積層物とし、更にテフロン織布を重合体2の面
より真空積層法により埋込んだ。該積層物をけん
化して得たスルホン酸型陽イオン交換膜の重合体
1の面だけを還元処理してカルボン酸基に変換し
た。(A面) 電解槽は通電面積10cm×10cmで、陽極室枠はチ
タニウムで、陰極室枠はステンレスで作られ、向
い合つた陽極と陰極のそれぞれの背後に3cmの空
間をもつた構造のものを用いた。
These polymers were heat-molded to form a two-layer laminate with a thickness of 35 μm (polymer 1) and 100 μm (polymer 2), and then a Teflon woven fabric was applied from the side of polymer 2 using a vacuum lamination method. Embedded by. Only the surface of the polymer 1 of the sulfonic acid type cation exchange membrane obtained by saponifying the laminate was subjected to reduction treatment to convert it into carboxylic acid groups. (Side A) The electrolytic cell has a current-carrying area of 10 cm x 10 cm, the anode chamber frame is made of titanium, the cathode chamber frame is made of stainless steel, and there is a space of 3 cm behind each of the facing anode and cathode. was used.

この電解槽に重合体1(A面)が陰極側になる
ように陽イオン交換膜を組み込み、陽極室には、
PH2の3規定食塩水を、陰極面には5規定の苛性
ソーダ水溶液を供給し、陰極室内圧を陽極室内圧
よりも水柱1m高く保持しながら電流分布50A/d
m2で温度90℃で電解した。電解電圧は実施例1は
3.88〜3.92V、実施例2は3.85〜3.90Vで安定して
運転されたが実施例1は15カ月経過後、実施例2
は1.6カ月経過後電圧が上昇し始め、同時に陽極
電位も上昇し始め、陽極寿命となつた。
A cation exchange membrane was installed in this electrolytic cell so that polymer 1 (side A) was on the cathode side, and the anode chamber was
A 3N saline solution with a pH of 2 and a 5N caustic soda aqueous solution were supplied to the cathode surface, and the current distribution was 50A/d while maintaining the cathode chamber pressure 1 m higher in water column than the anode chamber pressure.
m 2 and electrolyzed at a temperature of 90 °C. The electrolysis voltage in Example 1 is
3.88 to 3.92V, Example 2 was operated stably at 3.85 to 3.90V, but Example 1 was operated stably at 3.85 to 3.90V, but Example 2
After 1.6 months, the voltage started to rise, and at the same time, the anode potential also started to rise, and the anode life was reached.

比較例 1、2 有孔平板陽極は、実施例1と同じ基材を使い同
様のやり方で製作した。比較例1は裏面のみ4回
塗布し約4.5μとした。比較例2は全面同じ厚みに
なるよう4回塗布をくり返し、全塗布量は実施例
1、2と同じ約190mgであつた。最後に大気中で
500℃3時間熱処理し、陽極とした。
Comparative Examples 1 and 2 Perforated flat plate anodes were manufactured using the same base material and in the same manner as in Example 1. In Comparative Example 1, only the back side was coated four times to give a thickness of about 4.5μ. In Comparative Example 2, the coating was repeated four times so that the entire surface had the same thickness, and the total coating amount was about 190 mg, the same as in Examples 1 and 2. Finally in the atmosphere
It was heat treated at 500°C for 3 hours and used as an anode.

実施例1と同じ陽イオン交換膜、同じ装置で実
施例1と同じ方法で電解したところ比較例1は電
解電圧が4.02Vと極めて高かつた。比較例2は電
解電圧は3.85V〜3.90Vで安定していたが、13カ
月経過後、電解電圧と陽極電位が上昇し始め寿命
となつた。
When electrolysis was performed in the same manner as in Example 1 using the same cation exchange membrane and the same apparatus as in Example 1, the electrolysis voltage in Comparative Example 1 was extremely high at 4.02V. In Comparative Example 2, the electrolytic voltage was stable at 3.85 V to 3.90 V, but after 13 months, the electrolytic voltage and anode potential began to rise and the life span was reached.

実施例 3 有孔平板陽極として1mm厚みのチタニウム板に
2mm径の円形孔を45度千鳥型に4mmピツチにパン
チング法で打ち抜いた。実施例1と同様の方法で
前処理した後、三塩化ルテニウムをエチルアルコ
ールに溶解し、ルテニウム40g/にし、更に増
粘剤として市販のエチルセルロースを10%添加し
た液を筆で塗布し、450℃で5分間大気中で焼付
した。表面及び孔側面は5回、裏面は最初の1回
のみ塗布し、表面および孔側面の被覆厚みは
1.7μ、裏面の被覆厚みは0.35μであつた。又、全
塗布量は約190mg/dm2であつた。最後に大気中で
500℃3時間熱処理した。
Example 3 As a perforated flat plate anode, circular holes with a diameter of 2 mm were punched in a titanium plate with a thickness of 1 mm at a pitch of 4 mm in a staggered pattern at a 45 degree angle. After pretreatment in the same manner as in Example 1, a solution containing ruthenium trichloride dissolved in ethyl alcohol to give 40 g of ruthenium and 10% of commercially available ethyl cellulose as a thickener was applied with a brush and heated at 450°C. Baked in air for 5 minutes. The surface and hole sides are coated 5 times, the back side is coated only once, and the coating thickness on the front and hole sides is
The coating thickness on the back side was 0.35μ. Moreover, the total coating amount was about 190 mg/dm 2 . Finally in the atmosphere
Heat treatment was performed at 500°C for 3 hours.

陽イオン交換膜は次のように作成した。テトラ
フロロエチレンとCF2=CFO(CF23COOCH3
共重合体で、当量重量が650、厚さが250μのフイ
ルムに、テフロン織布を熱プレス積層法により
埋込み、加水分解してカルボン酸型イオン交換膜
を得た。
The cation exchange membrane was prepared as follows. A copolymer of tetrafluoroethylene and CF 2 = CFO (CF 2 ) 3 COOCH 3 , with an equivalent weight of 650 and a thickness of 250μ, a Teflon woven fabric is embedded in a film using a hot press lamination method, and then hydrolyzed to form carbon dioxide. An acid type ion exchange membrane was obtained.

これらの陽イオン交換膜及び陽極を用いて実施
例1と同じ装置で同じ方法で電解した。尚、本実
施例では、電流密度20A/dm2、食塩水のPH3、ま
た苛性ソーダ濃度は13規定で実施した。電解電圧
は3.60〜3.65Vで安定していたが、23ケ月経過後
電解電圧と陽極電位が上昇し始めた。
Electrolysis was carried out using the same apparatus and method as in Example 1 using these cation exchange membranes and anodes. In this example, the current density was 20 A/dm 2 , the pH of the saline solution was 3, and the concentration of caustic soda was 13N. The electrolysis voltage was stable at 3.60 to 3.65V, but after 23 months, the electrolysis voltage and anode potential began to rise.

比較例 3 有孔平板陽極として、実施例3と同じパンチン
グメタル、同じ前処理をした後、同じ塗布液を各
面共2回ずつ塗布し、全塗布量を約190mg/dm2
実施例3と同じにした。被覆厚みは各面とも
1.35μであつた。実施例3と同じ陽イオン交換膜
を用い同一条件で電解したところ電解電圧は3.60
〜3.65Vと同じであつたが18ケ月経過後電解電
圧、陽極電位共上昇し始めた。
Comparative Example 3 As a perforated flat plate anode, the same punched metal as in Example 3 was used, and after the same pretreatment, the same coating solution was applied twice to each surface, and the total coating amount was approximately 190 mg/dm 2 and Example 3. I made it the same as The coating thickness is on each side.
It was 1.35μ. When electrolysis was carried out under the same conditions using the same cation exchange membrane as in Example 3, the electrolysis voltage was 3.60.
The voltage remained the same at ~3.65V, but after 18 months, both the electrolytic voltage and the anode potential began to rise.

Claims (1)

【特許請求の範囲】 1 陽イオン交換膜により陽極室と陰極室とに分
割された塩化アルカリ金属水溶液電解槽に用いら
れる有孔平板陽極において、表面と孔側面の陽極
活性被覆の厚みが裏面の陽極活性被覆の厚みより
大きいことを特徴とする電解用陽極。 2 陰極室内圧が陽極室内圧よりも高い電解槽に
用いる特許請求の範囲第1項の電解用陽極。
[Scope of Claims] 1. In a perforated flat plate anode used in an alkali metal chloride aqueous solution electrolytic cell that is divided into an anode chamber and a cathode chamber by a cation exchange membrane, the thickness of the anode active coating on the front surface and the hole side surface is equal to that of the back surface. An anode for electrolysis, characterized in that the thickness is greater than the thickness of the anode active coating. 2. The electrolytic anode according to claim 1, which is used in an electrolytic cell in which the cathode chamber pressure is higher than the anode chamber pressure.
JP55173126A 1980-04-15 1980-12-10 Anode for electrolysis Granted JPS5798687A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP55173126A JPS5798687A (en) 1980-12-10 1980-12-10 Anode for electrolysis
IN1372/CAL/80A IN154740B (en) 1980-04-15 1980-12-11
CA000375306A CA1195647A (en) 1980-04-15 1981-04-13 Electrolyzing method and cell with perforated anode for alkali metal chloride solution
US06/253,664 US4354905A (en) 1980-04-15 1981-04-13 Method for the electrolysis of an aqueous solution of an alkali metal chloride and an anode therefor
FI811134A FI68669C (en) 1980-04-15 1981-04-13 FOERFARANDE FOER ELEKTROLYSERING AV EN VATTENLOESNING AV EN ALALIMETALLKLORID OCH ANOD HAERFOER
AU69509/81A AU541226B2 (en) 1980-04-15 1981-04-14 Anode for electrolysis of aqueous solution of alkali metal chloride
DE8181301638T DE3167276D1 (en) 1980-04-15 1981-04-14 A method for the electrolysis of an aqueous solution of an alkali metal chloride and an electrolytic cell therefor
MX186857A MX154933A (en) 1980-04-15 1981-04-14 IMPROVED ANODE FOR THE ELECTROLYSIS OF A WATER SOLUTION OF ALKALINE METAL CHLORIDE IN AN ELECTROLYTIC CELL
NO811303A NO156016C (en) 1980-04-15 1981-04-14 PROCEDURE FOR ELECTROLYSEING Aqueous ALKALIMETAL SOLUTION, AND ELECTROLYCLE CELL FOR CARRYING OUT THE PROCEDURE.
EP81301638A EP0039171B1 (en) 1980-04-15 1981-04-14 A method for the electrolysis of an aqueous solution of an alkali metal chloride and an electrolytic cell therefor
BR8102349A BR8102349A (en) 1980-04-15 1981-04-15 PROCESS FOR THE ELECTROLYSIS OF AN AQUEOUS SOLUTION OF AN ALKALINE METAL CHLORIDE AND ANODOD FOR THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55173126A JPS5798687A (en) 1980-12-10 1980-12-10 Anode for electrolysis

Publications (2)

Publication Number Publication Date
JPS5798687A JPS5798687A (en) 1982-06-18
JPS633957B2 true JPS633957B2 (en) 1988-01-26

Family

ID=15954607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55173126A Granted JPS5798687A (en) 1980-04-15 1980-12-10 Anode for electrolysis

Country Status (1)

Country Link
JP (1) JPS5798687A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110247929A1 (en) * 2008-09-24 2011-10-13 Sumitomo Electric Hardmetal Corp. Diamond electrode and method for manufacturing diamond electrode

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5085582A (en) * 1973-11-29 1975-07-10

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5085582A (en) * 1973-11-29 1975-07-10

Also Published As

Publication number Publication date
JPS5798687A (en) 1982-06-18

Similar Documents

Publication Publication Date Title
US5082543A (en) Filter press electrolysis cell
JPH09501468A (en) Electrode and manufacturing method thereof
KR900000455B1 (en) Method for producing ion-exchange membranes
US7001494B2 (en) Electrolytic cell and electrodes for use in electrochemical processes
JPH01139785A (en) Electrode catalyst and production thereof
EP0045603A1 (en) Ion exchange membrane cell and electrolytic process using the same
US5954928A (en) Activated cathode and method for manufacturing the same
JPH0125836B2 (en)
US4444641A (en) Electrode
US7211177B2 (en) Electrode for electrolysis in acidic media
JP2641584B2 (en) Anode with dimensional stability
US3926769A (en) Diaphragm cell chlorine production
EP0139382B1 (en) Production of cathode for use in electrolytic cell
US4354905A (en) Method for the electrolysis of an aqueous solution of an alkali metal chloride and an anode therefor
US4401529A (en) Raney nickel hydrogen evolution cathode
US4425203A (en) Hydrogen evolution cathode
JPS6372897A (en) Cathode suitable for use in electrochemical processes that generate hydrogen
JP3676554B2 (en) Activated cathode
JPS633957B2 (en)
CA1205419A (en) Electrode with rough surface of electrochemically active particles and polymeric coating
US4871703A (en) Process for preparation of an electrocatalyst
JPH0288645A (en) Fluorine-containing cation exchange membrane for alkali chloride electrolysis
US4389494A (en) Process for producing a membrane for electrolysis by forming removable thin layer upon electrode
US4430186A (en) Electrolytic cell with improved hydrogen evolution cathode
JP3008953B2 (en) Ion-exchange membrane electrolytic cell