[go: up one dir, main page]

JPS633790A - Recombinant plasmid - Google Patents

Recombinant plasmid

Info

Publication number
JPS633790A
JPS633790A JP61146963A JP14696386A JPS633790A JP S633790 A JPS633790 A JP S633790A JP 61146963 A JP61146963 A JP 61146963A JP 14696386 A JP14696386 A JP 14696386A JP S633790 A JPS633790 A JP S633790A
Authority
JP
Japan
Prior art keywords
gene
plasmid
recombinant
give
egf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61146963A
Other languages
Japanese (ja)
Inventor
Yoshinori Harada
義則 原田
Akiko Matsui
暁子 松井
Michio Ito
伊藤 迪夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Hitachi Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP61146963A priority Critical patent/JPS633790A/en
Publication of JPS633790A publication Critical patent/JPS633790A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/475Growth factors; Growth regulators
    • C07K14/485Epidermal growth factor [EGF], i.e. urogastrone

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Toxicology (AREA)
  • Saccharide Compounds (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:A plasmid recombinant producing protein showing epidermal growth factor (EGF), efficiently, having a structural gene to code a specific polypeptide inserted into the plasmid recombinant. CONSTITUTION:A DNA base sequence of a structual gene of protein factor (EGF) having epidermal growth activity and a translation control signal range is synthesized to give ECF gene (A) having a recognition breakage site of restric tion enzyme XbaI between a gene codon at the top of the structural gene and SD sequence. Then manifestation plasmid vector pDR540 having tac promoter is scissored with BamHI to give cleft cloning vector (B). The components A and B are linked with ligase T4 to give recombinant plasmid pPGFLI (C). Then the component C is transduced into Escherichia coli JM103, the prepared transformant is cultivated and multiplied. Then the multiplied mold is extracted and separated to give a recombinant plasmid (figure) into which a structure gene to code a polypeptide consisting of 53 amino acids having amino acid in the downstream of the tac promoter is inserted.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、遺伝子工学的手法による表皮増殖作用を有す
る蛋白質の合成法知係シ、特にその高効率生産条件の探
索、検討に好適なプラスミド組換え体に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for synthesizing a protein having an epidermal proliferation effect using genetic engineering techniques, and in particular to a plasmid suitable for searching for and studying conditions for highly efficient production thereof. Regarding recombinants.

〔従来の技術〕[Conventional technology]

一般に遺伝子工学的手法によシ、微生物体に、それが本
来生産していない蛋白質を生産させる場合、その合成効
率を向上させるためには、主に下記の3つの要因を満た
す必要がある。これらは(1)転写効率、翻訳効率の高
いクローニングベクターの使用、(2)ベクターの特性
を有効に発tさ5る宿主(微生物)系の選択、(3)微
生物体培養液からの生産蛋白質の高効率回収法の確立、
である。これらのうち、効果の最も大きいものは(1)
の要因である。
Generally, when using genetic engineering techniques to cause microorganisms to produce proteins that they do not originally produce, the following three factors must be satisfied in order to improve the synthesis efficiency. These are (1) use of cloning vectors with high transcription and translation efficiency, (2) selection of host (microorganism) systems that effectively express the characteristics of the vector, and (3) production of proteins from microbial culture fluid. Establishment of a highly efficient collection method for
It is. Among these, the one with the greatest effect is (1)
This is a factor.

表皮増殖活性を有する蛋白質性因子(以下EGFと略記
)の遺伝子工学的手法による生産に関しては、これまで
、4件の報告がある(例えば、特開昭57−1’209
6号公報)。いずれも53個のアミノ酸からなる天然W
BGF6るいは、そのN末端側に数個以上のアミノ酸か
らなるペプチド鎖を連結した融合蛋白質の生産を自相し
たものである。これらの報告ではいずれも、大腸菌、酵
母等で普遍的に見出される遺伝子発現プロモーターのう
ち比較的転写効率の、高いことの知られているものを含
むプラスミドベクターに、EGFの構造遺伝子を連結し
たプラスミド組換え体を利用して蛋白質の生産を試みて
いる。
To date, there have been four reports regarding the production of a protein factor with epidermal proliferation activity (hereinafter abbreviated as EGF) using genetic engineering methods (for example, JP-A-57-1'209
Publication No. 6). Both are natural W consisting of 53 amino acids.
BGF6 or BGF6 is a self-produced fusion protein in which a peptide chain consisting of several or more amino acids is linked to its N-terminus. In all of these reports, a plasmid in which the structural gene of EGF is linked to a plasmid vector containing a gene expression promoter that is known to have relatively high transcription efficiency among gene expression promoters commonly found in E. coli, yeast, etc. We are trying to produce proteins using recombinants.

また、このEGFの構造遺伝子は、天然型EGFのアミ
ノ景配列情報をもとに設計し、有機化学的に合成してい
る。その際、微生物体内での翻訳効率が低くならないよ
うに、宿主に応じて遺伝子コドンの選択している。すな
わち、1アミノ酸に対し、遺伝子コドンが縮重している
場合には、大腸菌あるいは酵素で出現頻度の高いコドン
を選択している。
The structural gene of EGF is designed based on the amino sequence information of natural EGF and synthesized organically. At this time, gene codons are selected depending on the host so that the translation efficiency within the microorganism is not reduced. That is, when gene codons are degenerate for one amino acid, codons that appear frequently in E. coli or enzymes are selected.

しかし、これらの報告では、翻訳効率に重大な影響をお
よぼすことが明らか罠なっている翻訳制御シグナル、す
なわち、構造遺伝子の先頭コドン(ATG)とその直前
のSD配列との間の間隔゛(石片、今本、蛋白質・核酸
・酵素、vot、28゜、櫂14.  pp、28−4
7.(1983))については、何ら考慮していない。
However, these reports have focused on a translational control signal that is clearly a trap that has a significant impact on translation efficiency, namely the distance between the first codon (ATG) of a structural gene and the SD sequence immediately preceding it. Kata, Imamoto, Proteins/Nucleic Acids/Enzymes, vot, 28°, Kai 14.pp, 28-4
7. (1983)) are not considered at all.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明も目的は、EGFt−大腸菌に生産させる能力が
あシ、かつ2つの翻訳シグナル(SD配列と翻訳開始コ
ドン)間の間隔を容易に酵素的に変化させることができ
、それを基に、53個のアミノ酸よ)なるEGFの高効
率生産を可能とするための条件検討を可能とするプラス
ミド組換え体:pEGFLIを提供することにある。
The purpose of the present invention is to have the ability to produce EGFt in E. coli, and to easily enzymatically change the interval between two translation signals (SD sequence and translation start codon). The purpose of the present invention is to provide a plasmid recombinant: pEGFLI, which enables the investigation of conditions for the highly efficient production of EGF (53 amino acids).

〔問題点を解決するための手段〕[Means for solving problems]

53個のアミノ酸よりなるEGFの配列情報を担う構造
遺伝子DNAを得るためには2通りの方法がある。(1
)実際にEGFを生産している細胞よ)雑種DNA対合
法でEGF用の伝令R,NAを分離、精製し、これよ、
9DNAt−生化学的に合成する場合と、(2) E 
G Fのアミノ酸配列から予測される何通りかの遺伝子
の塩基配列のうち、その中で使われている遺伝子コドン
が使用する宿主中で。
There are two methods for obtaining the structural gene DNA that carries the sequence information of EGF, which consists of 53 amino acids. (1
) Cells that actually produce EGF) Separate and purify the messengers R and NA for EGF using the hybrid DNA pairing method.
9DNAt-biochemically synthesized and (2) E
Among the several gene base sequences predicted from the amino acid sequence of GF, the gene codons used therein are used in the host.

出現頻度の高いものであるかどうか、またこれを有機合
成する際に、ミスの起こシにくい構造であるかどうかを
考慮の上、最も適切と思われる塩基配列1つを選び、そ
れを有機化学合成する場合とがある。53アミノ酸に対
応する159塩基対を有機化学合成する方が、こfl’
13X10”塩基対(七人細胞内にあると見積られる塩
基対)の中から探し出すよシもはるかに容易なので、本
発明では、(2)の方法を選択した。
After considering whether it appears frequently and whether it has a structure that is unlikely to cause mistakes during organic synthesis, select one base sequence that seems to be the most appropriate, and use it in organic chemistry. Sometimes they are synthesized. It is easier to synthesize 159 base pairs corresponding to 53 amino acids using organic chemistry.
In the present invention, method (2) was selected because it is much easier to search for 13×10” base pairs (base pairs estimated to exist in seven cells).

合成した本遺伝子を発現させるためのプロモーターとし
ては既存のtacプロモーターを利用した。
The existing tac promoter was used as a promoter to express the synthesized gene.

また、上述の2つの翻訳制御シグナル間の間隔を可変と
するために、本発明では、2シグナル間に、組換えプラ
スミド全体で、ここにしか存在しない制限酵素の認識切
換部位を挿入することとした。そのため、本発明では、
EGFの構造遺伝子のみならず、翻訳制御シグナル領域
のDNAも化学合成した。
Furthermore, in order to make the interval between the above two translation control signals variable, in the present invention, a recognition switching site for a restriction enzyme that exists only here in the entire recombinant plasmid is inserted between the two signals. did. Therefore, in the present invention,
Not only the structural gene of EGF but also the DNA of the translation control signal region were chemically synthesized.

〔作用〕[Effect]

その結果プラスミド組換え体を当該酵素で、切断し、ま
た修復、連結して、前述の2シグナル間の間隔を可変と
することができた。
As a result, the recombinant plasmid was cut, repaired, and ligated with the enzyme, thereby making it possible to make the interval between the two signals described above variable.

〔実施例〕〔Example〕

以下、プラスミド組換え体pEGFL 1作製の一実施
例を述べる。
An example of the production of plasmid recombinant pEGFL 1 will be described below.

まずEGFの構造遺伝子および翻訳制御シグナル領域の
DNA塩基配列設計とその合成について述べる。第2図
にEGFのアミノ酸配列と対応する遺伝子を、示す。E
GFのアミノ酸配列はQregory  らによシ決定
されているので、その構造遺伝子は、アミノ酸・遺伝子
コドンの対応表から予測できる。しかし、遺伝子コドン
側に一部重復があるため、この対応は一義的でない。そ
こで、宿主別遺伝子コドン出現頻度表(池村、細胞工学
First, we will describe the DNA sequence design and synthesis of the EGF structural gene and translational control signal region. FIG. 2 shows the amino acid sequence of EGF and the corresponding gene. E
Since the amino acid sequence of GF was determined by Qregory et al., its structural gene can be predicted from the amino acid/gene codon correspondence table. However, this correspondence is not unambiguous because there is some duplication on the gene codon side. Therefore, we created a host-specific gene codon frequency table (Ikemura, Cell Engineering).

vot、2,413.  pp、78−89 (198
3))を参考に大腸菌体内で出現頻度の高い遺伝子コド
ンを各アミノ酸毎に選択し、それらのみからなる159
塩基の構造遺伝子設計図をまず設計した。
vot, 2,413. pp, 78-89 (198
3) With reference to), gene codons that appear frequently in E. coli were selected for each amino acid, and 159 genes consisting only of them were selected.
First, we designed a structural gene blueprint for bases.

さらに、翻訳開始コドンATGの上流;8塩基を隔てて
SD配列(AGGA) t−置くとともに両シグナルの
中央に制限酵素XbaIの認識・切断部位を設け、全長
185塩基対の2本鎖DNAを設計した。
Furthermore, we placed an SD sequence (AGGA) t- upstream of the translation start codon ATG; separated by 8 bases, and created a recognition/cleavage site for the restriction enzyme XbaI in the center of both signals to design a double-stranded DNA with a total length of 185 base pairs. did.

ところが、公知のDNA合成法であるリン酸トリエステ
ル法による一連のDNA鎖伸長反応操作では、第2図に
示したような長鎖DNAを一気に合成することはできな
い。すなわち、1塩基分の伸長反応の収率を90%とし
ても20回くシ返すと全体での収率は12%程度となり
精製が困難になる。そこで実際には、第1図の長鎖2本
鎖DNAを第3図に示したように28本の1本鎖オリゴ
ヌクレクチドのブロック(A−5−1〜A−14,B−
1ニーB−14)に分割し、それぞれを、リン酸トリエ
ステル法によるDNA鎖伸長反応で合成した。
However, a series of DNA chain elongation reactions using the phosphotriester method, which is a known DNA synthesis method, cannot synthesize long-chain DNA as shown in FIG. 2 all at once. That is, even if the yield of the elongation reaction for one base is 90%, if the reaction is repeated 20 times, the total yield will be about 12%, making purification difficult. Therefore, in reality, the long double-stranded DNA in Figure 1 is converted into a block of 28 single-stranded oligonucleotides (A-5-1 to A-14, B-
1 knee B-14), and each was synthesized by a DNA chain elongation reaction using the phosphotriester method.

このブロック化に%しては、これらのブロックを1つに
まとめてEGFの遺伝子を作製するときに、ブロック間
に不適切な相互作用が生じて、正しくない構造の遺伝子
が形成されることのないように、各ブロックの塩基配列
を最適化した。
The reason for this blocking is that when these blocks are put together to create the EGF gene, inappropriate interactions may occur between the blocks, resulting in the formation of a gene with an incorrect structure. The base sequence of each block was optimized to avoid

第4図には、ポリスチレン樹脂に結合したモノヌクレオ
チド(a)に別のモノヌクレオチド(b)を縮合重合さ
せジヌクレオチド(C)を合成するプロセスを示した。
FIG. 4 shows a process in which a mononucleotide (a) bonded to a polystyrene resin is subjected to condensation polymerization with another mononucleotide (b) to synthesize a dinucleotide (C).

nコのヌクレオチドからなるオリゴヌクレオチドを合成
するためには、本工程を(n−1)回くシ返せば良い。
In order to synthesize an oligonucleotide consisting of n nucleotides, this step may be repeated (n-1) times.

反応条件の詳細は、前出の引用文献に詳しい。Details of the reaction conditions are detailed in the cited references cited above.

第5図には、T4 リガーゼを使用した、ブロック化オ
リゴヌクレオチドの連結手順を示した。゛287°ロッ
クを一挙に連結すると正しくない組合せの生ずるおそれ
があったので、2段階の連結法を採用した。反応は常法
に従った。
FIG. 5 shows the procedure for ligating blocked oligonucleotides using T4 ligase. Since there was a risk that an incorrect combination would occur if the 287° locks were connected all at once, a two-step connection method was adopted. The reaction followed a conventional method.

次に、第1図によう、合成したEGF遺伝子の発現ベク
ターへの分子クローニングの手順を示す。
Next, as shown in FIG. 1, the procedure for molecular cloning of the synthesized EGF gene into an expression vector is shown.

まず、β−ラクタマーゼ遺伝子(Amp’)と、ガラク
トキナーゼ遺伝子(Qalk)とを選択マーカー遺伝子
として、さらに、トリプトファンプロモーターの35領
域とラクトースプロモーターのpribno姪列とを融
合したtacプロモーターを有す既存の発現プラスミド
ベクターあるpD几540(a)を制限酵素BamHI
 で切断して開裂させた。次にこれを細菌性アルカリフ
ォスファターゼで処理して、Bam)(I末端を脱リン
酸化した開裂クローニングベクター(b)fi−得た。
First, we used the β-lactamase gene (Amp') and the galactokinase gene (Qalk) as selectable marker genes, and further used the existing tac promoter, which is a fusion of the 35 region of the tryptophan promoter and the pribno niece sequence of the lactose promoter. Expression plasmid vector pD 540(a) was digested with restriction enzyme BamHI.
It was cut and cleaved. This was then treated with bacterial alkaline phosphatase to obtain a cleavage cloning vector (b) fi- whose I terminus was dephosphorylated.

さらに、前述の合成EGF遺伝子(C)と(b)とを連
結酵素T4 リガーゼにより結合し新規な組換えプラス
ミドpEGFL1(d)を得た。次いでルビジウム・カ
ルシウム法で受容細胞とした大腸菌JM103を、プラ
スミド(d)で形質転換した。この菌をアンピシリン含
有寒天プレート培地で培養して、生じたコロニー(アン
ピシリン耐性遺伝子A m p ’を含む、すなわちp
EGFLl を含む菌であることを示す)を単離した。
Furthermore, the above-mentioned synthetic EGF genes (C) and (b) were ligated using a ligating enzyme T4 ligase to obtain a novel recombinant plasmid pEGFL1 (d). E. coli JM103, which was used as a recipient cell, was then transformed with plasmid (d) using the rubidium-calcium method. This bacterium was cultured on an agar plate medium containing ampicillin, and the resulting colonies (containing the ampicillin resistance gene A m p', i.e. p
EGFLl-containing bacteria) were isolated.

これを液体培地中で培養し増殖させた後、菌体よシ組換
えプラスミドベクター(ψを回収した(Molecul
ar Cloning、 ed by Maniati
s etal。
After culturing and proliferating this in a liquid medium, the recombinant plasmid vector (ψ) was recovered from the bacterial cells (Molecul
ar Cloning, ed by Maniati
s et al.

Co1d 3prHng 1(arbor Labor
atory、 pp。
Co1d 3prHng 1 (arbor Labor
atory, pp.

(1982))。(1982)).

第1図(e)には(d)の制限酵素地図を示す。FIG. 1(e) shows the restriction enzyme map of (d).

〔発明の効果〕〔Effect of the invention〕

本発明によシ作製されたプラスミドベクターpEGFL
1 には制限酵素XbaIの認識切断部位は翻訳制御に
関係している2つのシグナル配列、すなわちEGF遺伝
子の先頭コドンATGとその直前のSD配列の間の1ケ
所にしか存在しないので、これに対し、酵素的処理を行
うことで、2つのシグナル間の間隔を変化させることが
できる。第6図により各種間隔を有すpEGFL1改変
体の作製法を示す。
Plasmid vector pEGFL produced according to the present invention
1, the recognition cleavage site for the restriction enzyme , the interval between the two signals can be changed by enzymatic treatment. FIG. 6 shows a method for producing pEGFL1 variants with various spacings.

pEGFLl(a)ではSD配列とATG:ffトン間
の間隔は8塩基である(第2図参照)。(a)をXba
Iで切断すると(b)が得られるので、これを81ヌク
レアーゼで処理して切断部位を平滑末端化(f)シた後
、Ta リガーlで連結すると、2つのシグナル間の距
離が4塩基のpEGFLl 改変体位)を炸裂できる。
In pEGFLl(a), the interval between the SD sequence and the ATG:ffton is 8 bases (see Figure 2). (a) to Xba
Cleavage with I yields (b), which is treated with 81 nuclease to blunt the cleavage site (f), and then ligated with Ta liger I, resulting in a distance of 4 bases between the two signals. pEGFLl (modified position) can be exploded.

一方、Φ)にDNAポリメラーゼの[lenow 72
グメントを作用させると切断末端部の1本鎖部分が2本
鎖化され、(C)を得る。次にT4リガーゼでこれを連
結すると2つのシグナル間の距離を12塩基とするpE
GFL1改変体(d)を得る。この際、新たに制限酵素
Alu工の認識切断部位を生ずる。そこで新たに(d)
をA l u Iで切断して(e)を得て、HapIリ
ンカ−の)と連結することで(i)を作製することがで
きるが、これを制限酵素Haplで切断した後0)、こ
れに対し上述の手順と同様に、S1ヌクレアーゼとDN
Aポリメラーゼを作用させることで、2つのシグナル間
の距離が、それぞれ、14塩基と18塩基のpEGFL
2改変体か)、(Aを得ることができる。
On the other hand, [lenow 72] of DNA polymerase is added to Φ).
When treated with a compound, the single-stranded portion at the cut end becomes double-stranded, yielding (C). Next, by ligating this with T4 ligase, the distance between the two signals becomes 12 bases.
Obtain GFL1 variant (d). At this time, a new recognition cleavage site for the restriction enzyme Alu is generated. Therefore, newly (d)
(e) is obtained by cutting with A l u I, and (i) can be produced by ligating it with the HapI linker (), but after cutting this with the restriction enzyme Hapl, this Similar to the procedure described above, S1 nuclease and DN
By applying A polymerase, the distance between the two signals is 14 bases and 18 bases, respectively.
2 variants), (A can be obtained.

このように酵素反応のみによる操作で元の組換えプラス
ミドベクター1)EGPLI(a)d−ら、2つのシグ
ナル間の距離が4,8,12,14,18塩基の5種類
の改変体を得ることができる。
In this way, five types of modified versions of the original recombinant plasmid vector 1) EGPLI (a), d-, etc., in which the distance between the two signals is 4, 8, 12, 14, and 18 bases, are obtained by operations using only enzyme reactions. be able to.

上記の工程中で、81ヌクレアーゼを作用させる時に、
酵素および基質の濃度、量比などの反応条件を変動させ
、さらに壬の後、反応生成物に対しDNAポリメラーゼ
を作用させることで、平滑化されるDNA末端の寸法を
調節できるので、両シグナル間の間隔5〜7塩基、13
塩基の改変体を作製することも可能である。
During the above process, when 81 nuclease is allowed to act,
By varying the reaction conditions such as the concentration and quantitative ratio of the enzyme and substrate, and then by allowing DNA polymerase to act on the reaction product, the size of the DNA end to be blunted can be adjusted. interval 5-7 bases, 13
It is also possible to create base variants.

このように調製した各種pEGFL1改変体を菌体内に
導入して、各種の条件下で宿主を培養し、BGFを発現
させることで、翻訳効率の最も高い2つのシグナル間の
間隔を見出せる。ここで得られた知見は汎用性を持って
お!り、EGF以外の構造遺伝子を組込み、それの発現
を図る場合にも応用が可能である。
By introducing the various pEGFL1 variants prepared in this manner into bacterial cells, culturing the host under various conditions, and expressing BGF, the interval between the two signals with the highest translation efficiency can be found. The knowledge gained here is versatile! It can also be applied to cases where a structural gene other than EGF is incorporated and its expression is attempted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による組換え体クローニングベクターの
作製と制限酵素認識部位を示す説明図、第2図は合成し
た全塩基配列を示す図、第3図は全塩基配列を28本の
合成オリゴヌクレオチドブロックに分けて示す図、第4
図はオリゴヌクレオチド合成のフローを示す図、第5図
は合成オリゴヌクレオチドブロックの集合および連結の
フローを示す図、第6図は本発明の応用例を示す説明図
である。 A・・・アデニン、C・・・シトシン、G・・・グアニ
ン、T・・・チミン、SD配列・−3hine、 ])
a1garnow配列、A−1〜14、B−1〜14・
・・合成したDNA断−二 第30
Figure 1 is an explanatory diagram showing the preparation of a recombinant cloning vector according to the present invention and restriction enzyme recognition sites, Figure 2 is a diagram showing the entire synthesized base sequence, and Figure 3 is a diagram showing the entire base sequence with 28 synthetic oligos. Diagram divided into nucleotide blocks, No. 4
FIG. 5 is a diagram showing the flow of oligonucleotide synthesis, FIG. 5 is a diagram showing the flow of assembly and connection of synthetic oligonucleotide blocks, and FIG. 6 is an explanatory diagram showing an application example of the present invention. A...adenine, C...cytosine, G...guanine, T...thymine, SD sequence -3hine, ])
a1garnow sequence, A-1 to 14, B-1 to 14・
・Synthesized DNA fragment 2nd part 30

Claims (1)

【特許請求の範囲】 1、tacプロモータの下流に表皮増殖作用を有す53
個のアミノ酸よりなるポリペプチドをコードする構造遺
伝子が挿入されていることを特徴とするプラスミド組換
え体。 2、特許請求の範囲第1項記載のプラスミド組換え体に
おいて、前記構造遺伝子の先頭の遺伝子コドンとSD配
列との間に制限酵素の認識切断部位を設け、両者の間隔
を、酵素を使い改変することで遺伝子の翻訳効率の検討
が容易となるようにしたことを特徴とするプラスミド組
換え体。 3、特許請求の範囲第2項記載のプラスミド組換え体に
おいて、前記構造遺伝子の先頭の遺伝子コドンとSD配
列との間に制限酵素Xba I の認識切断部位を有する
ことを特徴とするプラスミド組換え体。
[Claims] 1. 53 having an epidermal proliferation effect downstream of the tac promoter
1. A recombinant plasmid, characterized in that a structural gene encoding a polypeptide consisting of 5 amino acids has been inserted. 2. In the plasmid recombinant according to claim 1, a restriction enzyme recognition cleavage site is provided between the first gene codon of the structural gene and the SD sequence, and the interval between the two is modified using an enzyme. A recombinant plasmid, which facilitates examination of gene translation efficiency. 3. The plasmid recombinant according to claim 2, which has a recognition cleavage site for the restriction enzyme Xba I between the first gene codon of the structural gene and the SD sequence. body.
JP61146963A 1986-06-25 1986-06-25 Recombinant plasmid Pending JPS633790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61146963A JPS633790A (en) 1986-06-25 1986-06-25 Recombinant plasmid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61146963A JPS633790A (en) 1986-06-25 1986-06-25 Recombinant plasmid

Publications (1)

Publication Number Publication Date
JPS633790A true JPS633790A (en) 1988-01-08

Family

ID=15419540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61146963A Pending JPS633790A (en) 1986-06-25 1986-06-25 Recombinant plasmid

Country Status (1)

Country Link
JP (1) JPS633790A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019528759A (en) * 2016-09-30 2019-10-17 ネクスゼン バイオテクノロジーズ インコーポレイテッドNexgen Biotechnologies, Inc. Fusion protein containing antifreeze protein and human epidermal growth factor with enhanced antioxidant function and skin cell proliferation effect, and cosmetic composition for wrinkle improvement containing the same as active ingredients

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019528759A (en) * 2016-09-30 2019-10-17 ネクスゼン バイオテクノロジーズ インコーポレイテッドNexgen Biotechnologies, Inc. Fusion protein containing antifreeze protein and human epidermal growth factor with enhanced antioxidant function and skin cell proliferation effect, and cosmetic composition for wrinkle improvement containing the same as active ingredients
US10815284B2 (en) 2016-09-30 2020-10-27 Nexgen Biotechnologies, Inc. Fusion protein comprising antifreeze protein and human epidermal growth factor with increased anti-oxidant activity and skin cell proliferation effect and cosmetic composition for anti-wrinkle comprising the same as effective component

Similar Documents

Publication Publication Date Title
JPH0669375B2 (en) Specific cleavage linker
US4769326A (en) Expression linkers
EP0929564B1 (en) High level expression of proteins
US4673640A (en) Regulated protein production using site-specific recombination
US6492107B1 (en) Process for obtaining DNA, RNA, peptides, polypeptides, or protein, by recombinant DNA technique
US5026651A (en) Methods and compositions for the production of human transferrin
JPH0630582B2 (en) DNA transfer vector
EP0123928A2 (en) Recombinant DNA coding for a polypeptide displaying milk clotting activity
US5629205A (en) Promoters for gene expression
EP0063494B1 (en) Method for producing protein from a microorganism, microorganisms for use in such method and creation thereof, vectors for use in said creation, and protein produced thereby, and transformant culture derived from said microorganisms
JPH067187A (en) Fusion product of protected peptide and alpha-hanp
US4830965A (en) Transposable linkers to transfer genetic information
JPS633790A (en) Recombinant plasmid
JPH04211375A (en) Synthetic gene and production of human serum albumin using the synthetic gene
AU606049B2 (en) Inducible heat shock and amplification system
IE57976B1 (en) Vectors for expressing bovine growth hormone derivatives
JPS633791A (en) Recombinant plasmid
CN112626120A (en) Design of novel gene editing tool and use method thereof
JP3651915B2 (en) Method for searching DNA fragment encoding signal sequence peptide and vector therefor
US5304471A (en) Process for producing foreign protein in Escherichia coli
US4816396A (en) Method and vector organism for controlled accumulation of heterologous gene products in bacillus subtilis
JP2525413B2 (en) Recombinant plasmid for expressing L-phenylalanine ammonia lyase and transformant having the plasmid
JP3277523B2 (en) Factor Xa linker DNA
JPH1014578A (en) Construction of transgenic mutant gene DNA
JPH01257482A (en) DNA having a synthetic gene for human epidermal growth factor production and its plasmid recombinant