[go: up one dir, main page]

JPS6333509A - Production of fine hexagonal cobalt particle - Google Patents

Production of fine hexagonal cobalt particle

Info

Publication number
JPS6333509A
JPS6333509A JP17670886A JP17670886A JPS6333509A JP S6333509 A JPS6333509 A JP S6333509A JP 17670886 A JP17670886 A JP 17670886A JP 17670886 A JP17670886 A JP 17670886A JP S6333509 A JPS6333509 A JP S6333509A
Authority
JP
Japan
Prior art keywords
cobalt
reaction
hydrogen
hexagonal
cobalt acetate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17670886A
Other languages
Japanese (ja)
Inventor
Ryuichiro Tsumura
津村 柳一郎
Kazufumi Oshima
一史 大島
Kimiteru Tagawa
公照 田川
Teruo Muraishi
照男 村石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP17670886A priority Critical patent/JPS6333509A/en
Publication of JPS6333509A publication Critical patent/JPS6333509A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To produce fine hexagonal cobalt particles having uniform grain sizes at a high yield by subjecting cobalt acetate contg. water of crystallization to a dehydration heat treatment, then heating the same in a hydrocarbon medium and reducing the cobalt acetate by pressurized hydrogen. CONSTITUTION:The cobalt acetate tetrahydrate is heated for about 10-20hr at about 100-250 deg.C under a reduced pressure to eliminate part or the whole of the water of crystallization contained therein. The cobalt acetate is then dispersed into the hydrocarbon medium (heptane, octane, etc.) until the initial concn. attains about 1-50wt%, then the cobalt acetate is reduced in the heated state by the hydrogen dissolved under the pressurization. The pressure of the hydrogen at this time is maintained under about 0.5-300kg/cm<2>, the reaction temp. at about 150-350 deg.C and the reaction time for about 0.5-20hr. The reaction is carried out under stirring. The hexagonal cobalt is thereby obtd. at approximately 10% reaction yield and the particles thereof are as fine as 0.01-1mu grain size. The prepd. hexagonal cobalt is adequately usable as a magnetic material for perpendicular magnetic recording medium.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁性材料として、特に高密度な磁気記録が可能
となる垂直磁気記録方式のための記録媒体(テープ、デ
ィスク、ドラム等)用の磁性粉として、有用な六方晶系
コバルト微粒子の製造法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a magnetic material, particularly for use in recording media (tapes, disks, drums, etc.) for perpendicular magnetic recording systems that enable high-density magnetic recording. The present invention relates to a method for producing hexagonal cobalt fine particles useful as magnetic powder.

〔従来の技術〕[Conventional technology]

現行の長手方式と異なった究極的に高密度な磁気記録方
式として垂直方式が提唱され、その高い性能が試験的に
実証されている。この新方式を実用化するために新たな
特性をもつ塗付型の磁性粉、例えばバリウムフェライト
微粒子粉末が現在開発されつつある。
A perpendicular method has been proposed as an ultimately high-density magnetic recording method different from the current longitudinal method, and its high performance has been experimentally demonstrated. In order to put this new method into practical use, coated magnetic powder with new characteristics, such as barium ferrite fine particle powder, is currently being developed.

しかして、もし、該バリウムフェライト微粒子よりも高
い飽和磁化(100emu/g以上)を有するコバルト
微粒子を六方晶系の結晶格子で且適当なサブミクロン程
度の粒径・均一な分散性と保磁力(200〜2,000
0e)を示す磁性粉末として製造できれば、これよりも
ずっと優れた垂直記録用素材となることが期待される。
However, if cobalt fine particles having a higher saturation magnetization (100 emu/g or more) than the barium ferrite fine particles are formed in a hexagonal crystal lattice, have an appropriate submicron particle size, uniform dispersibility, and coercive force ( 200-2,000
If it can be produced as a magnetic powder exhibiting 0e), it is expected that it will be a far superior perpendicular recording material.

従来、金属状コバルトの粉末またはゾルの製造法として
は、大別すると、(1)コバルト酸化物を高温で気相水
素還元する方法、(2)コバルトカルボニルまたはコバ
ルト塩を液相熱分解する方法、(3)蓚酸塩や炭酸塩の
ごときコバルト塩を高温で気相水素還元する方法(例え
ば特公昭47−38417号、特開昭50−26750
号) 、 +41炭酸塩のごときコバルト塩を液相媒体
中で水素または還元性試剤により還元する方法(例えば
特公昭43−22395号) 、+51コバルト電極で
還元剤存在下に水電解する方法、(6)金属状コバルト
を不活性ガス中で高温蒸発される方法等が公知である。
Conventional methods for producing metallic cobalt powder or sol can be roughly divided into (1) a method in which cobalt oxide is reduced with gas phase hydrogen at high temperature, and (2) a method in which cobalt carbonyl or cobalt salt is thermally decomposed in a liquid phase. , (3) A method of reducing cobalt salts such as oxalates and carbonates with gas phase hydrogen at high temperatures (for example, Japanese Patent Publication No. 47-38417, Japanese Patent Application Laid-open No. 50-26750)
(No. 43), +41 A method of reducing cobalt salts such as carbonates with hydrogen or a reducing agent in a liquid phase medium (for example, Japanese Patent Publication No. 43-22395), +51 A method of electrolyzing water with a cobalt electrode in the presence of a reducing agent, ( 6) A method in which metallic cobalt is evaporated at high temperature in an inert gas is known.

本発明にかかる製造法は、上記のうち、(4)の方法に
属するものである。蓋し、他の(11から(6)の方法
では結晶型、粒径または分散性のいずれかの点で木質的
に本発明の目的とする垂直記録用素材には成り得ないか
らである。
The manufacturing method according to the present invention belongs to method (4) among the above methods. This is because the other methods (11 to (6)) cannot produce the material for perpendicular recording that is the object of the present invention in terms of wood quality in terms of crystal type, particle size, or dispersibility.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明が解決せんとする第1の主たる問題点は、原料の
コバルト塩から純粋な六方晶コバルト微粒子を如何にし
てつくるかということである。
The first major problem to be solved by the present invention is how to produce pure hexagonal cobalt fine particles from the raw material cobalt salt.

蓋し、コバルトの結晶格子には低温安定型の六方晶系と
高温(約300℃以上)安定型の面心立方晶系があると
ころ、本発明の主たる用途である垂直磁気記録方式用の
磁性粉としては、−軸結高磁気異方性を発現させるため
に、純粋な前者の結晶系でなければならず4、後者もし
くは後者が混入したものでは役立たないからである。従
来公知の前記製法により得られる六方晶コバルト微粒子
はすべて面心立方晶またはこれを主とするものであり、
本発明が意図する垂直磁気記録方式の磁性粉としての用
途には基本的に全く沿わないのである。
The crystal lattice of cobalt has a hexagonal system that is stable at low temperatures and a face-centered cubic system that is stable at high temperatures (about 300 degrees Celsius or higher). This is because the powder must be a pure crystal system of the former type in order to exhibit -axial high magnetic anisotropy4, and the latter or one mixed with the latter is useless. All of the hexagonal cobalt fine particles obtained by the conventionally known production method are face-centered cubic crystals or are mainly composed of face-centered cubic crystals,
Basically, it is completely unsuitable for use as a magnetic powder for perpendicular magnetic recording as intended by the present invention.

本発明の企図する第2の問題点は、凝集し易い粒径サブ
ミクロン以下の粒子を如何にしてよい分散状態で得るか
という点にある。
The second problem contemplated by the present invention is how to obtain particles with a particle diameter of submicron or less, which tend to aggregate, in a good dispersed state.

前記の水中スラリー水素還元法では、数ミクロンの粒子
しか得られないので、さらに微粒子化しなければならな
い。また従来の公知の方法による強磁性体たるコバルト
微粒子は、針状、線状、環状に配列したり不規則に凝集
または凝結しており、本発明の用途には全く不適当だか
らである。
Since the above-mentioned slurry hydrogen reduction method in water can only obtain particles of several microns, it is necessary to further refine the particles. Further, cobalt fine particles, which are ferromagnetic substances, obtained by conventional known methods are arranged in needles, lines, rings, or irregularly agglomerated or aggregated, and are completely unsuitable for the use of the present invention.

本発明の意図する第3の問題点は、如何にして高い飽和
磁化と適当な保磁力を微粒子粉末に保たせるかにある。
The third problem addressed by the present invention is how to maintain high saturation magnetization and appropriate coercive force in the fine particles.

静的な磁気特性に関しては、飽和磁化と保磁力が重要に
なるところ、純粋な金属コバルト自身は飽和磁化が16
1emu/g (20℃)とバリウムフェライトの二倍
以上を有するのでこの点きわめて優れた素材というべき
である。一方、保磁力は通常200〜2,0000e、
特に!、0000eまでの範囲が望ましい。したがって
、咳高い飽和磁化を低下させずに、適当な保磁力を示す
ような安定な磁性体微粒子を得ることが望ましいのであ
る。
Regarding static magnetic properties, saturation magnetization and coercive force are important, and pure metallic cobalt itself has a saturation magnetization of 16
It has 1 emu/g (20° C.), which is more than twice that of barium ferrite, so it should be considered an extremely superior material in this respect. On the other hand, the coercive force is usually 200 to 2,0000e,
especially! , 0000e is desirable. Therefore, it is desirable to obtain stable magnetic particles that exhibit an appropriate coercive force without reducing the high saturation magnetization.

〔問題を解決するための手段〕[Means to solve the problem]

本発明者らは上記問題点を解決するため、特定のカルボ
ン酸のコバルト塩を特定の処理を施した後特定の条件下
で水素還元することにより、上記の問題をすべて解決す
ることが出来ることを見出し、本発明を完成するに到っ
た。
In order to solve the above problems, the present inventors have proposed that all of the above problems can be solved by subjecting a cobalt salt of a specific carboxylic acid to a specific treatment and then reducing it with hydrogen under specific conditions. They discovered this and completed the present invention.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明は、コバルトの微粒子を製造する方法であって、
結晶水を含む酢酸コバルトを脱水熱処理した後、炭化水
素媒体中で加熱して加圧水素により還元すること、すな
わち■原料酢酸コバルトの脱水熱処理と■該脱水熱処理
生成物の水素還元の二つの反応工程からなることを特徴
とする六方晶コバルト微粒子粉末の製法である。
The present invention is a method for producing cobalt fine particles, comprising:
After dehydrating cobalt acetate containing water of crystallization, it is heated in a hydrocarbon medium and reduced with pressurized hydrogen, that is, two reaction steps: (1) dehydration heat treatment of the raw material cobalt acetate, and (2) hydrogen reduction of the dehydration heat treatment product. This is a method for producing hexagonal cobalt fine particle powder characterized by comprising:

本発明において用いられる原料の酢酸コバルトは4水和
物Co(OCOC)Is) !4H20であり、商業的
に容易に入手出来る。この4水塩は、その侭では炭化水
素中に溶解せず、またこれを微粉砕した結晶を本発明の
方法で水素還元しようとしても、後記比較例に示すよう
に全く反応しないのである。しかるに驚くべきことに、
本発明者らが検討したところによると、該4水塩を脱水
熱処理したものは、同様の条件で水素還元を容易に受け
ることが出来、本発明の目的たるコバルト微粒子が得ら
れるのである。 本発明でいう脱水熱処理とは、原料4
水塩を大気圧若しくは減圧下に100℃〜250℃程度
の温度に加熱して、該原料に含有される結晶水の一部乃
至全部を該原料から離脱せしめ、加熱反応の系外に取り
出すことを云う。なお、この際、酢酸根も通常部分的に
離脱する。しかして脱水熱処理生成物は、原型量の通常
20〜50重量%、好ましくは25〜40重1%程度の
、水を主体とする液状物を離脱させたものである。これ
らは通常茎気として発生する。
The raw material cobalt acetate used in the present invention is tetrahydrate Co(OCOC)Is)! 4H20 and is easily available commercially. This tetrahydrate does not dissolve in hydrocarbons as it is, and even if crystals obtained by pulverizing the tetrahydrate are attempted to be reduced with hydrogen by the method of the present invention, they do not react at all as shown in the comparative example below. However, surprisingly,
According to studies conducted by the present inventors, the tetrahydrate subjected to dehydration heat treatment can easily undergo hydrogen reduction under similar conditions, and the cobalt fine particles that are the object of the present invention can be obtained. The dehydration heat treatment in the present invention refers to the raw material 4
Heating the aqueous salt to a temperature of approximately 100°C to 250°C under atmospheric pressure or reduced pressure to cause part or all of the crystal water contained in the raw material to be separated from the raw material and taken out of the heating reaction system. says. At this time, acetic acid roots are also usually partially detached. The dehydration heat-treated product is usually 20 to 50% by weight, preferably 25 to 40% by weight of the original mold, from which water-based liquid has been removed. These usually occur as stalks.

かかる脱水熱処理生成物を得るための加熱時間は、原料
の形態、加熱反応装置の形式、大きさ、加熱温度および
圧力によって変わりうるが通常10分〜20時間、好ま
しくは1時間〜10時間程度の範囲である。なお、原料
4水塩は粗大な結晶のままのものから、これを粉砕した
ものまで種々の形態で使用することも出来る。脱水熱処
理反応は大気中で実施してもよいが、窒素、炭化水素、
−酸化炭素、二酸化炭素若しくは水素等の不活性ガス若
しくは還元性ガスの雰囲気下で実施するのが好ましい。
The heating time to obtain such a dehydration heat-treated product may vary depending on the form of the raw material, the type and size of the heating reactor, heating temperature and pressure, but is usually about 10 minutes to 20 hours, preferably about 1 hour to 10 hours. range. Note that the raw material tetrahydrate can be used in various forms, from coarse crystals as they are to pulverized ones. The dehydration heat treatment reaction may be carried out in the atmosphere, but nitrogen, hydrocarbons,
- Preferably carried out under an atmosphere of an inert gas or reducing gas such as carbon oxide, carbon dioxide or hydrogen.

これらの雰囲気ガスは脱水反応で発生する発生蒸気の系
外への搬送ガスとして用いることが好ましい。
These atmospheric gases are preferably used as carrier gases for the vapor generated in the dehydration reaction to the outside of the system.

脱水熱処理を実施するための反応装置は、固体もしくは
粉体を加熱する手段と、発生する蒸気成分を分離・凝縮
する手段を備え、かつ反応生成物であるコバルト化合物
が容易に取り出せるものであれば特にその形式について
制限は無い。反応は勿論回分式若しくは連続式により一
段若しくは多段階に実施することが出来る。
The reaction apparatus for carrying out the dehydration heat treatment is one that is equipped with a means for heating the solid or powder and a means for separating and condensing the generated vapor components, and from which the cobalt compound that is the reaction product can be easily taken out. There are no particular restrictions on the format. The reaction can of course be carried out in one stage or in multiple stages, either batchwise or continuously.

以上のごとくして得られたコバルト化合物はそのままで
若しくは粉砕して次の水素還元工程に用いられる。
The cobalt compound obtained as described above is used as it is or after being pulverized in the next hydrogen reduction step.

水素還元工程では、該脱水処理生成物を、炭化水素媒体
中で水素加圧下に加熱して還元する。
In the hydrogen reduction step, the dehydrated product is reduced by heating under hydrogen pressure in a hydrocarbon medium.

本発明において使用する炭化水素媒体としては炭化水素
類としては、有機化合物としての代表例を具体的に例示
すると、例えばペンタン、ヘキサン、ヘプタン、オクタ
ン、デカン、ドデカン、2゜2−ジメチルブタン、ヘキ
サデカン、石油エーテル、石油ベンジン、リグロイン、
ガソリン、ケロシン、石油スピリット、石油ナフサ、流
動パラフィン、その他脂肪族系熱媒体及び石油留分等の
様脂肪族飽和炭化水素頚; シクロペンクン、シクロヘ
キサン、メチルシクロヘキサン、エチルシクロヘキサン
、シクロオクタン、デカリン、P−メンテン、シクロド
デカン、ナフテン系熱媒体および石油留分のような脂環
式飽和炭化水素類;ベンゼン、トルエン、エチルベンゼ
ン、ドデシルベンゼン、キシレン、ジブチルベンゼン、
メチルナフタレン、テトラリン、ジフェニルメタン、タ
ーフェニル、芳香族石油留分等の芳香族炭化水素類が好
ましいものとして挙げられるが、特に好ましくは、ヘプ
タン、オクタン、ドデカン、シクロヘキサン、トルエン
、エチルベンゼン、キシレン等がMINfうれる。これ
らの炭化水素媒体は単独で若しくは混合して用いられる
。これらの使用量は、この中に分散されるべき酢酸コバ
ルト脱水処理物の初期濃度が大略1〜5帽1%、好まし
くは5〜20重世%程度になるようにする。
The hydrocarbon medium used in the present invention includes typical examples of organic compounds such as pentane, hexane, heptane, octane, decane, dodecane, 2゜2-dimethylbutane, and hexadecane. , petroleum ether, petroleum benzene, ligroin,
Aliphatic saturated hydrocarbons such as gasoline, kerosene, petroleum spirit, petroleum naphtha, liquid paraffin, other aliphatic heating media and petroleum fractions; cyclopenkune, cyclohexane, methylcyclohexane, ethylcyclohexane, cyclooctane, decalin, P- Alicyclic saturated hydrocarbons such as menthene, cyclododecane, naphthenic heat carriers and petroleum fractions; benzene, toluene, ethylbenzene, dodecylbenzene, xylene, dibutylbenzene,
Preferred examples include aromatic hydrocarbons such as methylnaphthalene, tetralin, diphenylmethane, terphenyl, and aromatic petroleum fractions, and particularly preferred are heptane, octane, dodecane, cyclohexane, toluene, ethylbenzene, xylene, etc. I'm happy. These hydrocarbon media may be used alone or in combination. The amounts used are such that the initial concentration of the dehydrated cobalt acetate to be dispersed therein is about 1 to 5%, preferably about 5 to 20%.

酢酸コバルト脱水処理生成物は上記の炭化水素媒体中へ
分散され、好ましくは効果的な混合著しくは流動分散状
態で加圧下に溶解した水素により加熱状態で還元を受は
目的の六方晶コバルト微粒子を生成する。
The cobalt acetate dehydration product is dispersed in the above-mentioned hydrocarbon medium and subjected to reduction under heating by dissolved hydrogen under pressure under effective mixing, preferably in a fluidized dispersion state, to obtain the desired hexagonal cobalt fine particles. generate.

本発明においては、還元剤として水素を使用するが、こ
れは必ずしも特に高純度でなくても良いし、勿論不活性
なガスを混合して用いてもよい。
In the present invention, hydrogen is used as a reducing agent, but this does not necessarily have to be of particularly high purity, and of course it may be used in combination with an inert gas.

なお、還元剤としては、その他、次亜燐酸ナトリウム、
水素化硼素ナトリウム、ヒドラジンの如き化学的試剤も
あるが(例えば特開昭48−44194号、特公昭49
−1997号、特開昭59−17209号等)、この場
合は、還元試剤は高価であり得られるコバルト微粒子は
本発明の目的とする上記緒特性を満足するものは得られ
ないし、混入する不純物の除去も厄介である。
In addition, other reducing agents include sodium hypophosphite,
There are also chemical reagents such as sodium borohydride and hydrazine (for example, JP-A No. 48-44194, JP-B No. 49-Sho.
-1997, JP-A No. 59-17209, etc.), in this case, the reducing agent is expensive and the obtained cobalt fine particles cannot satisfy the above-mentioned characteristics that are the object of the present invention, and contaminating impurities It is also difficult to remove.

本発明においては、反応は水素の加圧下に行われるが、
水素の圧力は、好ましくは0.5〜300Kg/−の範
囲であるが、更に好ましくは2〜200Kg/catの
範囲であり、特に好ましくは5〜150Kg/c−の範
囲である。 反応温度は通常150〜350℃の範囲で
あり、特に180〜300℃が好ましい。反応温度がこ
れ未満の場合は実質的に反応が進行せず、また、これを
越えるような高温では六方晶系から面心立方晶系への転
移が無視出来なくなり、望ましい六方晶コバルトが得ら
れなくなる。なお、実際には、反応温度としては水素の
圧力によって適当な値が選ばれる。また、反応時間は原
料濃度、反応温度及び反応圧力等によって異なりうるが
、通常、0.5〜20時間、特に1〜10時間程度が好
ましい。
In the present invention, the reaction is carried out under pressure of hydrogen,
The pressure of hydrogen is preferably in the range of 0.5 to 300 kg/c, more preferably in the range of 2 to 200 kg/c, particularly preferably in the range of 5 to 150 kg/c. The reaction temperature is usually in the range of 150 to 350°C, particularly preferably 180 to 300°C. If the reaction temperature is lower than this, the reaction will not substantially proceed, and if the temperature is higher than this, the transition from the hexagonal system to the face-centered cubic system cannot be ignored, making it impossible to obtain the desired hexagonal cobalt system. It disappears. Note that, in reality, an appropriate value is selected as the reaction temperature depending on the pressure of hydrogen. Further, the reaction time may vary depending on the raw material concentration, reaction temperature, reaction pressure, etc., but is usually about 0.5 to 20 hours, preferably about 1 to 10 hours.

還元反応は基本的に、原料と生成物が媒体中にスラリー
状態で懸濁し、ここに反応を伴いつつ水素ガスが吸収さ
れる!c、様で進行すると考えられるので、かかる反応
を良好に進行せしめる為には、化学工学的な考膚を払い
、加熱反応中のガスの拡散と生成粒子の分散を良好にす
べく反応スラリーを充分混合もしくは撹拌することが望
ましい。かくして、はぼ100%の反応収率で六方晶コ
バルト微粒子を生成させることが出来る。なお、反応方
式としては、回分反応方式もしくは連続反応方式のいず
れをも採用することが出来る。
Basically, in a reduction reaction, the raw materials and products are suspended in a slurry state in a medium, and hydrogen gas is absorbed while the reaction takes place! In order to make this reaction proceed smoothly, consideration should be given to chemical engineering, and the reaction slurry should be prepared to improve the gas diffusion and the dispersion of the produced particles during the heating reaction. It is desirable to mix or stir thoroughly. In this way, hexagonal cobalt fine particles can be produced with almost 100% reaction yield. In addition, as a reaction method, either a batch reaction method or a continuous reaction method can be adopted.

本発明において、還元反応は、基本的には特に界面活性
剤を用いなくても実施出来るが、界面活性剤を存在せし
めることにより、粒子サイズ、粒子分散、生成磁性粉の
安定化、保磁力等をより容易に制御することが出来る。
In the present invention, the reduction reaction can basically be carried out without using a particular surfactant, but the presence of a surfactant improves particle size, particle dispersion, stabilization of the generated magnetic powder, coercive force, etc. can be controlled more easily.

このような目的で使用される界面活性剤としては種々の
ものを選んで用いることが出来る。例えば、イオン系の
ものとして例えばドデシルベンゼンスルホン酸ソーダ、
ジオクチルスルホンこはく酸ソータ、パーフルオロアル
キルスルホン酸アンモニウム等の様なスルホン酸塩;例
えばステアリン酸ソーダ、パーフルオロアルキルカルボ
ン酸ソーダ等の様なカルボン酸塩;例えばラウリル硫酸
ソーダ等の様な硫酸エステルと例えばリン酸ジ(ポリエ
チレングリコール−p−ノニルフェニル)ソーダ、パー
フルオロアルキルリン酸ソーダ等の様なリン酸塩のアニ
オン界面活性剤;例えばトリオクチルメチルアンモニウ
ムクロライド、パーフルオロアルキルメチルアンモニウ
ムクロライド等の様なアンモニウム塩;ピリジニウム塩
とイミダゾリニウム塩のカチオン界面活性剤;ベタイン
、パーフルオロアルキルベタイン、アミノカルボン酸塩
の様な両性界面活性剤が用いられる。ノニオン系のもの
としては、例えばポリエチレングリコールラウリルエー
テル、ポリエチレングリコールノニルフェニルエーテル
、パーフルオロアルキルポリオキシエチレンエタノール
等の様なエーテル型のもの:例えばポリエチレングリコ
ールモノステアレート、ソルビタンオレエート、フルオ
ロアルキルエステル等の様なエステル型のものと、例え
ばポリオキシエチレンエチルアミン、パーフルオロアル
キルアミンオキシド等の様な窒素含有型のものの様なノ
ニオン界面活性剤が使い分けられる。
Various surfactants can be selected and used for this purpose. For example, as an ionic type, for example, sodium dodecylbenzenesulfonate,
Sulfonates such as dioctyl sulfone succinic acid sorta, ammonium perfluoroalkyl sulfonate, etc.; carboxylates such as sodium stearate, sodium perfluoroalkyl carboxylate, etc.; sulfuric esters such as sodium lauryl sulfate, etc. Anionic surfactants of phosphates, such as di(polyethylene glycol-p-nonylphenyl) soda phosphate, sodium perfluoroalkyl phosphate, etc.; such as trioctylmethylammonium chloride, perfluoroalkylmethylammonium chloride, etc. ammonium salts; cationic surfactants such as pyridinium salts and imidazolinium salts; amphoteric surfactants such as betaines, perfluoroalkylbetaines, and aminocarboxylate salts. Nonionic ones include ether type ones such as polyethylene glycol lauryl ether, polyethylene glycol nonylphenyl ether, perfluoroalkyl polyoxyethylene ethanol, etc.; for example, polyethylene glycol monostearate, sorbitan oleate, fluoroalkyl ester, etc. Ester-type surfactants such as , and nonionic surfactants such as nitrogen-containing surfactants such as polyoxyethylene ethylamine, perfluoroalkyl amine oxide, etc. can be used.

界面活性剤を使用する場合の使用量は特別の制限はない
が、通常媒体に対して0.001〜1重量%程度である
The amount of surfactant used is not particularly limited, but is usually about 0.001 to 1% by weight based on the medium.

本発明において、反応生成物として得られたコバルト微
粒子は媒体から傾斜、濾過、遠心分離等の公知の方法で
分離され、その尽で、または必要なら公知の方法で洗浄
、徐酸化乾燥等の必要な工程を経て空気中で安定な高純
度のコバルト磁性粉となる。なお、未反応の水素ガス、
回収された媒体、必要に応じて使用された洗液はその侭
で又は慣用の方法で精製して再使用することが出来る。
In the present invention, the cobalt fine particles obtained as a reaction product are separated from the medium by known methods such as decanting, filtration, and centrifugation, and if necessary, they are washed by known methods, slow oxidation drying, etc. Through various processes, it becomes a highly pure cobalt magnetic powder that is stable in the air. In addition, unreacted hydrogen gas,
The recovered medium and, if necessary, the used washing liquid can be purified in situ or by conventional methods and reused.

また、スラリーから生成微粉末を分離して取り出すこと
なく、媒体を適当量分離しただけの濃縮スラJ)−の形
で磁気記録媒体の製造原料等の用途に供することも出来
るのである。
Furthermore, without separating and extracting the produced fine powder from the slurry, it is possible to use it as a raw material for manufacturing magnetic recording media in the form of a concentrated slurry in which only an appropriate amount of the medium is separated.

本発明により得られるコバルト微粉末は高純度のコバル
ト微粒子から成り、結晶性のよい六方晶型格子を示すた
め、垂直磁気記録材料用の磁性微粒子粉末として好適に
使用可能なものである。その磁気特性は、飽和磁化10
100e/g以上の安定な強磁性体であり、保磁力20
00e以上の有用な磁性粉末である。なお、反応条件に
よって多少の差は生じろるが、本発明により得られるコ
バルトm粒子は粒径0.01〜数μm特に0.01〜1
μmの比較的粒径の揃って均一に分散した球状に近い微
粒子からなる。
The cobalt fine powder obtained by the present invention is composed of highly pure cobalt fine particles and exhibits a hexagonal lattice with good crystallinity, so that it can be suitably used as a magnetic fine particle powder for perpendicular magnetic recording materials. Its magnetic properties are saturation magnetization 10
It is a stable ferromagnetic material of 100e/g or more, and has a coercive force of 20
It is a useful magnetic powder of 00e or higher. Although some differences may occur depending on the reaction conditions, the cobalt m particles obtained by the present invention have a particle size of 0.01 to several μm, particularly 0.01 to 1 μm.
It consists of nearly spherical fine particles with a relatively uniform particle size of μm and uniformly dispersed.

〔実施例〕〔Example〕

以下、実施例と比較例によって本発明を具体的に説明す
る。
Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples.

実施例1 (81酢酸コバルトCo(OCOC)I3) z4H1
o 494.2 gを17!フラスコに仕込み、下部か
ら窒素を分散して連続的に送入しながら140℃の油浴
で加熱した。この間に発生する酢酸を含む水蒸気はフラ
スコ上部から窒素と共に外部に抜いて凝縮させながら6
時間脱水熱処理を続けた。得られた赤橙色結晶からなる
固体を吸湿させないようにして窒素中で粉砕し、酢酸コ
バルトの脱水処理生成物として淡赤紫色粉末329.0
g得た。
Example 1 (81 Cobalt acetate (OCOC) I3) z4H1
o 494.2 g to 17! The mixture was placed in a flask and heated in an oil bath at 140° C. while dispersing and continuously supplying nitrogen from the bottom. The water vapor containing acetic acid generated during this time is drawn out from the top of the flask together with nitrogen and condensed.
The dehydration heat treatment was continued for an hour. The obtained solid consisting of reddish-orange crystals was pulverized in nitrogen without absorbing moisture, and a pale reddish-purple powder of 329.0% was obtained as a dehydration product of cobalt acetate.
I got g.

(blこの脱水処理生成物15.3g 、界面活性剤と
してジオクチルスルホンこはく酸ナトリウム0.8gお
よびトルエン200m lを500m lのステンレス
オートクレーブに仕込んだ。窒素置換後水素を30Kg
/cm”まで圧入し、攪拌しながら200℃で5時間加
熱した。水素圧は降下して還元反応が起こったことを示
した。冷却、放圧後に内容物を取り出し、黒色微微末を
濾別し、5%含水メタノールで洗浄・乾燥して還元コバ
ルト微粒子4.9gが得られた。
(bl) 15.3 g of this dehydrated product, 0.8 g of sodium dioctyl sulfone succinate as a surfactant, and 200 ml of toluene were charged into a 500 ml stainless steel autoclave. After nitrogen substitution, 30 kg of hydrogen was charged.
/cm" and heated at 200°C for 5 hours with stirring. The hydrogen pressure decreased, indicating that a reduction reaction had occurred. After cooling and releasing the pressure, the contents were taken out and the black fine powder was filtered out. Then, it was washed with 5% aqueous methanol and dried to obtain 4.9 g of reduced cobalt fine particles.

このコバル+−a粒子はX線回折分析によると結晶性の
よい六方晶系結晶格子を有し、電子顕微鏡観察によると
、粒径は0.2〜1mμ未満のよく分散した球状に近い
粒子からなっていた。また振動試料型磁力計により10
KOeまで磁化した飽和磁化は118emu/g、保磁
力は4180eであった。
According to X-ray diffraction analysis, these Kobal+-a particles have a hexagonal crystal lattice with good crystallinity, and according to electron microscopic observation, the particle size ranges from well-dispersed, nearly spherical particles with a diameter of 0.2 to less than 1 mm. It had become. In addition, 10
The saturation magnetization when magnetized to KOe was 118 emu/g, and the coercive force was 4180e.

比較例I 酢酸コバルトCo(OCOCH3) z4)!zoを粉
砕し、この23.3gを脱水処理生成物のかわりに用い
た以外は実方fl’i例1(b)と同様にして水素還元
反応を行った。
Comparative Example I Cobalt acetate (OCOCH3) z4)! A hydrogen reduction reaction was carried out in the same manner as in Fl'i Example 1(b) except that 23.3 g of zo was pulverized and used instead of the dehydrated product.

しかしながら、水素の吸収は実質的に認められず還元コ
バルトは得られなかった。
However, substantially no hydrogen absorption was observed and reduced cobalt was not obtained.

これより、酢酸コバルトを脱水熱処理した生成物を用い
なければ本発明の目的物たる還元コバルトは得られない
ことがわかる。
This shows that reduced cobalt, which is the object of the present invention, cannot be obtained unless a product obtained by heat-dehydrating cobalt acetate is used.

実施例2〜4 還元反応の媒体の種類、温度、圧力若しくは反応時間を
第1表に示すように変えた以外は、実施例1(b)と同
様の実験を行った。同様の結晶型と性状を示す還元コバ
ルト微粉末が得られた。磁気特性を第1表に纏めて示す
Examples 2 to 4 The same experiments as in Example 1(b) were conducted except that the type of medium, temperature, pressure, or reaction time for the reduction reaction were changed as shown in Table 1. A reduced cobalt fine powder exhibiting similar crystal type and properties was obtained. The magnetic properties are summarized in Table 1.

第1表 実施例5 (jll管杖反応器に、酢酸コバルト200.0gを充
填し、100mmHHの減圧下、少量の窒素を流通させ
ながら120℃に3時間加熱した。この間発生する蒸気
成分は反応管端の出口から抜き出し冷却凝縮して分離し
た0反応生成物を実施例1(a)と同様にして、赤紫色
粉末146.0gを得た。
Table 1 Example 5 (200.0 g of cobalt acetate was packed into a JLL tube reactor and heated to 120°C for 3 hours under reduced pressure of 100 mmHH while flowing a small amount of nitrogen. During this time, the vapor components generated were reacted. The 0 reaction product, which was extracted from the outlet of the tube end, cooled and condensed, and was separated, was treated in the same manner as in Example 1(a) to obtain 146.0 g of reddish-purple powder.

山)この脱水処理生成物7.7gとトルエンLoom 
lを、200m j!のステンレスオートクレーブに仕
込み220℃、水素圧力30Kg/c+m”で3時間実
施例1(b)と同様に反応させて後処理した。主として
サブミクロクンのオーダーの粒径の粒子からなる六方晶
系還元コバルト粉末2.1gが得られた。飽和磁化は1
23emu/g、保磁力は2360eであった。
7.7g of this dehydrated product and toluene Loom
l, 200m j! The hexagonal reduced cobalt powder mainly consists of particles with a submicron size. 2.1g was obtained.Saturation magnetization was 1
The coercive force was 23 emu/g and 2360 e.

実施例6〜10 第2表に示した還元媒体Loom 1に、界面活性剤0
.4gを添加した以外は、実施例5(b)と同様の実験
を行い、同表に示す磁性を示すコバルト漱粒子を得た。
Examples 6 to 10 0 surfactant was added to the reducing medium Loom 1 shown in Table 2.
.. The same experiment as in Example 5(b) was conducted except that 4 g was added, and cobalt soot particles exhibiting the magnetism shown in the table were obtained.

実施例11 (al酢酸コバルトCo(OCOCHt) z4Hzo
 150.Ogを500mj!シリンダー型フラスコに
仕込み、下部から窒素を分散して連続的に送入しながら
180℃で1時間加熱した。脱水熱処理により水分と一
部の酢酸分を離脱せしめ、淡赤紫色粉末87.0gを得
た。
Example 11 (al Cobalt acetate (OCOCHt) z4Hzo
150. 500 mj of Og! The mixture was placed in a cylindrical flask and heated at 180° C. for 1 hour while dispersing and continuously introducing nitrogen from the bottom. Water and a portion of acetic acid were removed by dehydration heat treatment to obtain 87.0 g of pale reddish-purple powder.

Cb)この脱水処理生成物7.7g 、ジオクチルスル
ホンこはく酸ナトリウム0.4gおよびトルエン200
m j!を200m 12のステンレスオートクレーブ
に仕込み、200℃、水素圧力100Kg/cm”で5
時間反応を行った0粒径サブミクロクンの球状粒子から
なる六方晶系還元コバルト粉末2.9gが得られた。飽
和磁化は120emu/g、保磁力は3950eであっ
た。
Cb) 7.7 g of this dehydrated product, 0.4 g of sodium dioctyl sulfone succinate and 200 g of toluene.
m j! was placed in a 200 m 12 stainless steel autoclave and heated at 200°C and a hydrogen pressure of 100 kg/cm".
After the time reaction, 2.9 g of hexagonal reduced cobalt powder consisting of spherical particles with a particle size of 0 submicron was obtained. The saturation magnetization was 120 emu/g and the coercive force was 3950 e.

第2表 実施例12 酢酸コバルト脱水処理物30.7gを用いた以外は、実
施例11thlと同様の実験を行い、同様のコバルト微
粉末11.8gを得た。飽和磁化は116emu/g、
保磁力は2920eであった。
Table 2 Example 12 The same experiment as in Example 11thl was conducted, except that 30.7 g of dehydrated cobalt acetate was used, and 11.8 g of the same fine cobalt powder was obtained. Saturation magnetization is 116 emu/g,
The coercive force was 2920e.

実施例13 酢酸コバルト脱水処理物15.3gを用いて280 ℃
で2.5時間反応させた以外は実施例11(blと同様
の実験を行い、飽和磁化112emu/g、保磁力32
80eの同様のコバルトi粉末5.1gを得た。
Example 13 280°C using 15.3g of cobalt acetate dehydrated product
The same experiment as in Example 11 (bl) was carried out except that the reaction was carried out for 2.5 hours with a saturation magnetization of 112 emu/g and a coercive force of 32
5.1 g of a similar cobalt i powder of 80e was obtained.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によれば、酢酸コバルトから粒径0.01
〜1μmを主とする六方晶コバルト微粒子を好収率で製
造することが初めて可能となる。この微粒子は飽和磁化
は10100e/g以上と高く、また保磁力は2000
e以上を有し、磁性材料として、特に垂直磁気記録用磁
性粉として必要な基本的性質を具備するので、これに対
し有益な用途を開くものである。
According to the method of the present invention, from cobalt acetate a particle size of 0.01
For the first time, it has become possible to produce hexagonal cobalt fine particles mainly having a size of ~1 μm with a good yield. These fine particles have a high saturation magnetization of 10,100 e/g or more, and a coercive force of 2,000 e/g or more.
e or more, and has the basic properties necessary as a magnetic material, especially as a magnetic powder for perpendicular magnetic recording, and therefore opens up useful applications for it.

Claims (3)

【特許請求の範囲】[Claims] (1)コバルトの微粒子を製造する方法であって、結晶
水を含む酢酸コバルトを脱水熱処理した後、炭化水素媒
体中で加熱して加圧水素により還元することを特徴とす
る六方晶コバルト微粒子粉末の製法。
(1) A method for producing fine cobalt particles, which comprises subjecting cobalt acetate containing water of crystallization to a dehydration heat treatment, followed by heating in a hydrocarbon medium and reducing with pressurized hydrogen. Manufacturing method.
(2)得られる六方晶コバルト微粒子が粒径0.01〜
1μmの六方晶コバルト微粒子である特許請求の範囲第
1項記載の方法。
(2) The particle size of the obtained hexagonal cobalt fine particles is 0.01~
The method according to claim 1, wherein the hexagonal cobalt fine particles are 1 μm in size.
(3)得られる六方晶コバルト微粒子が垂直磁気記録媒
体用磁性材料として好適に使用しうる特許請求の範囲第
1項もしくは第2項に記載の方法。
(3) The method according to claim 1 or 2, in which the obtained hexagonal cobalt fine particles can be suitably used as a magnetic material for perpendicular magnetic recording media.
JP17670886A 1986-07-29 1986-07-29 Production of fine hexagonal cobalt particle Pending JPS6333509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17670886A JPS6333509A (en) 1986-07-29 1986-07-29 Production of fine hexagonal cobalt particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17670886A JPS6333509A (en) 1986-07-29 1986-07-29 Production of fine hexagonal cobalt particle

Publications (1)

Publication Number Publication Date
JPS6333509A true JPS6333509A (en) 1988-02-13

Family

ID=16018366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17670886A Pending JPS6333509A (en) 1986-07-29 1986-07-29 Production of fine hexagonal cobalt particle

Country Status (1)

Country Link
JP (1) JPS6333509A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7335054B2 (en) 2004-12-15 2008-02-26 Honda Motor Co., Ltd. Wiring connector
JP2014129587A (en) * 2012-12-28 2014-07-10 Sumitomo Electric Ind Ltd Method for producing metal powder, and metal powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7335054B2 (en) 2004-12-15 2008-02-26 Honda Motor Co., Ltd. Wiring connector
JP2014129587A (en) * 2012-12-28 2014-07-10 Sumitomo Electric Ind Ltd Method for producing metal powder, and metal powder

Similar Documents

Publication Publication Date Title
US9969006B2 (en) Method for production of indium nanoparticles
CN102218543B (en) Method for one-step synthesis of FePt nanoparticles with an fct (face centered tetragonal) structure and product thereof
CN109332681B (en) Preparation method of carbon-coated iron-ferroferric carbide magnetic nanoparticles
CN110202166B (en) Chemical Method for Synthesis of fct-FePt Nanoparticles by Liquid-Assisted Solid-Phase Sintering
Veintemillas‐Verdaguer et al. Effect of the oxidation conditions on the maghemites produced by laser pyrolysis
Wu et al. Low temperature synthesis of Fe3O4 nanocrystals by hydrothermal decomposition of a metallorganic molecular precursor
Tong et al. Efficient magnetic CoFe 2 O 4 nanocrystal catalyst for aerobic oxidation of cyclohexane prepared by sol–gel auto-combustion method: effects of catalyst preparation parameters
IL34081A (en) Production of finely divided solid materials
Karami et al. Gold nanoparticles supported on carbon coated magnetic nanoparticles; a robustness and effective catalyst for aerobic alcohols oxidation in water
JP2011184725A (en) Method for synthesizing cobalt nanoparticle by hydrothermal reduction process
JPS6333509A (en) Production of fine hexagonal cobalt particle
CN1103257C (en) Process for preparing superfine powder by thermolyzing metal complex
Yamamuro et al. Monodisperse metallic iron nanoparticles synthesized from noncarbonyl complex
US5925166A (en) Process for obtaining iron or iron-based powders by organic liquid phase precipitation
Pei et al. Controlled monodisperse Fe nanoparticles synthesized by chemical method
Kryazhev et al. Synthesis of metal–carbon nanocomposites containing nanoparticles of transition metals encapsulated in a graphite-like shell
JP4528959B2 (en) Magnetic material and method for producing the same
JPS636806A (en) Manufacture of hexagonal crystal cobalt magnetic powder
JP3896443B2 (en) Method for producing alloy fine particles for magnetic recording medium
JPS6333510A (en) Production of fine hexagonal cobalt particle
JP4385216B2 (en) Method for producing hexagonal ferrite fine particle dispersed fluid
JPH01261805A (en) Manufacture of magnetic hexagonal-cobalt powder
JPS63103830A (en) Production of hexagonal cobalt magnetic powder
JPS63103831A (en) Production of hexagonal cobalt magnetic powder
JPH04202602A (en) Manufacturing method of metal magnetic powder