JPS6331243B2 - - Google Patents
Info
- Publication number
- JPS6331243B2 JPS6331243B2 JP17988980A JP17988980A JPS6331243B2 JP S6331243 B2 JPS6331243 B2 JP S6331243B2 JP 17988980 A JP17988980 A JP 17988980A JP 17988980 A JP17988980 A JP 17988980A JP S6331243 B2 JPS6331243 B2 JP S6331243B2
- Authority
- JP
- Japan
- Prior art keywords
- hollow fiber
- assembly
- fluid
- hollow
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000012510 hollow fiber Substances 0.000 claims description 108
- 239000012530 fluid Substances 0.000 claims description 64
- 229920005989 resin Polymers 0.000 claims description 48
- 239000011347 resin Substances 0.000 claims description 48
- 239000000835 fiber Substances 0.000 claims description 5
- 239000004744 fabric Substances 0.000 claims description 4
- 238000000926 separation method Methods 0.000 description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 21
- 239000012466 permeate Substances 0.000 description 15
- 239000012528 membrane Substances 0.000 description 14
- 230000000712 assembly Effects 0.000 description 9
- 238000000429 assembly Methods 0.000 description 9
- 238000004804 winding Methods 0.000 description 7
- 230000001681 protective effect Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000001223 reverse osmosis Methods 0.000 description 4
- 238000012856 packing Methods 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 229920002301 cellulose acetate Polymers 0.000 description 2
- 238000010612 desalination reaction Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 235000015203 fruit juice Nutrition 0.000 description 1
- 238000001631 haemodialysis Methods 0.000 description 1
- 230000000322 hemodialysis Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Description
本発明は、膜壁が流体に対して選択透過性を有
する中空繊維を用いた組立体の構成に関するもの
である。
膜分離装置の適用範囲としては、気体分離、液
体透過、透析、限外過、逆浸透法などがあり、
具体的な応用例としては海水の淡水化、かん水の
脱塩、各種廃水の浄化、蛋白の精製、果物ジユー
スの濃縮、油水分離、血液透析などをあげること
ができる。
従来から選択透過性中空繊維を用いた膜分離装
置としては多くの提案があるが、通常のものは一
本の芯管のまわりに多数の中空糸を層状に配列し
た中空繊維組立体を筒状容器に収容したものが代
表的な構造である。この場合、芯管には円筒状の
管の管壁に多数の孔をあけたものが知られてお
り、特公昭47−11696や特開昭47−22387の公報に
その代表例が示されている。このような多数の小
孔を有する連続芯管は膜分離装置に供給された被
処理流体を中空糸層に均一に分散されるのに適し
た構造であるとされているが、実際には次のよう
な欠点がある。即ち
(1) 芯管の孔のあいていない部分に接する中空繊
維層の一部がデツドスペースとなり、その部分
は被処理流体が滞留するために、新たな被処理
流体との接触が不充分となり、透過流量と分離
効率が低下する。また芯管から中空繊維層に流
体を供給する場合に、このデツドスペースは流
体の均一な放射状の流れを阻害し、そのために
偏流を作り、濃度分極を生じて透過性能、分離
効率を大幅に低下させる。
(2) 芯管の小孔から被処理流体を中空繊維層に均
一に分散させて押し出すためには、かなりの圧
力を要し、その際の圧力損失が大きい。
(3) 被処理流体中の僅かな固型粒子によつて芯管
の小孔が目詰まりを起こしやすく、一旦目詰ま
りを起こせばデツドスペースは益々拡がつて分
離効率を一層低下させる。
(4) 芯管の小孔から被処理流体を高圧下で中空繊
維層に押し出す際に、中空繊維層は流体の流動
抵抗により膨張し、個々の中空繊維には張力が
発生する。かかる張力は繊維を固定せしめた樹
脂壁に作用し、組立体の両樹脂壁の間隔、つま
り中空繊維組立体の有効長さは短縮する。この
場合用いる一本の芯管の強度が小さいと組立体
自体は大きい収縮を惹起し終局的には分離性能
が低下する。例えば組立体の収縮がおこれば中
空繊維層の局所的に中空繊維の粗な部分が発生
し、被処理流体が偏流を起し、濃度分極をおこ
すようなトラブルとかあるいは組立体の芯管へ
被処理流体を供給する導管と組立体との間隔が
大きくなり、該導管と端板との接続部が外れて
被処理流体が芯管内に流入しない操業上の不都
合とかが惹起され、いずれの場合も中空繊維組
立体の分離効率、透過性能は著しく低下する。
(5) 一方上記(4)の組立体収縮による性能低下を防
止するため、強度の大きい芯管を用い、収縮を
おこさないようにすることもできるが、この場
合に通水時の全圧がすべて中空繊維に作用し、
中空繊維は流体の流動抵抗により部分伸張さ
れ、一部永久歪が残り、ひいては中空繊維組立
体の分離効率、透過性能を著しく低減させるこ
とになる。
(6) 流動性を有する接着剤を含浸硬化させ中空繊
維円筒状集合体端部を成形する場合、被処理流
体を均一に分散すべく設けられた芯管壁の小孔
の一部を閉塞する故前述した如く分離能、透過
流量低下を招く原因の一つとなる。
本発明は、上記のような従来の連続芯管をもつ
中空繊維組立体の欠点を改良し、透過流量と分離
効率が大きく、耐久性の良好なる中空繊維組立体
を提供するものである。
ちなわち、本発明は選択透過性中空繊維を筒状
に配置した中空繊維組立体であつて、端部に開口
面をもつ中空繊維が交差して配置されて形成され
た中空繊維筒状層と、上記中空繊維の筒状組立体
の内部に存在する空洞部と、上記空洞部の中にあ
つて、相互に離れた複数個の嵌合筒部材と、上記
中空繊維の開口端部にあつて、中空繊維が該繊維
と樹脂壁(A)との間に隙間のない状態で樹脂壁(A)の
外側面に開口する様に配置され、かつ上記嵌合筒
部材と離れて配置された樹脂壁(A)と、上記組立体
の他端にあつて筒状組立体の端部を固定せしめる
樹脂壁(B)と、上記両樹脂壁の間隔を規制する。弾
性支持部材と、流体の導管とから構成されてなる
フレキシブル性を有する選択透過性中空繊維組立
体である。
以下本発明の選択透過性中空繊維組立体の構成
を図面に示したものについて述べる。第1図は本
発明組立体の一例を示す一部破断側面図であり、
第2図は第1図の左側、開口面部を示す正面図、
第3図は第1図の中央縦断面図、第4図は第1図
の組立体を装備した膜分離装置の一例を示す中央
縦断面図、第5図及び第7図は本発明の他の構成
例を示す一部破断側面図、第6図及び第8図は第
5図及び第7図に示した組立体を利用した膜分離
装置の縦断面図、第9図は第8図の一部拡大断面
図、第10図は第9図における切断線X−Xを示
す矢印方向断面図、第11図は膜分離装置の他の
構成例を示す一部破断側面図、第12図は第11
図の要部拡大図、第13図は第12図の一部構成
説明見取図、第14図は中空繊維の交差状配列を
示す一部見取図である。
第1図において、1は中空繊維筒状層で、その
配列は第14図に示されている様に中空繊維が互
にほぼ平行にかつ偏平に並んだテープ状中空繊維
束が交差して積層されている。2は上記交差配置
された中空繊維筒状層の内部に形成される空洞
部、3は相互に離れた複数個の嵌合筒部材であ
る。嵌合部材同士は1〜3cm離れるように配置す
ることが好ましい。4は樹脂壁(A)でその中に中空
繊維が隙間のない状態で樹脂壁(A)の外側に開口す
る様(第2図4a)に配置されており、かつ嵌合
筒部材3とは離れている。その距離は1〜5cmに
することが望ましい。5は樹脂壁(B)で、筒状組立
体の端部を固定し、その中央部に流体の供給導管
8が貫通している。6は樹脂壁(A)と(B)との間隔を
規制する弾性支持部材である。7は中空繊維の外
側に被覆された流体の通過抵抗の少ないネツト状
布帛等からなるフロースクリーンである。
第4図は上記第1図の中空繊維組立体を装備し
た膜分離装置の一例で、被処理流体の流れの一例
を矢印で示している。この図で9は組立体を収容
するケースであり、一方の端に透過流体出力13
を有する端板10と、他端に被処理流体の入口と
出口を有する端板11を有している。端板10,
11は夫々Cリング17で支持され、中空繊維組
立体、端板、供給導管にはOリングが装置され、
供給流体(白黒矢印)、透過流体(白矢印)、濃縮
流体(黒矢印)のそれぞれが混合しないように分
けられ、また装置外部への流体の漏れを防止して
いる。
第5図の実施例では、1は第14図に示されて
いる様に配列された中空繊維筒状層、2は中空繊
維筒状層の内部に存在する空洞部、3は複数個の
嵌合筒部材でその上にネツト状布帛からなる保護
ネツト18が装置されている。4は樹脂壁(A)でそ
の中に中空繊維が該繊維と樹脂壁(A)との間に隙間
のない状態で外側面に開口する様に配置されてお
り、かつ中心部には空洞部2に通じる穴8を有し
ており嵌合筒部材3とは離れている。5は樹脂壁
(B)で筒状組立体の端部を固定している。6は樹脂
壁(A)と(B)との間隔を規制する弾性支持部材、7は
流体の通過抵抗の少ないネツト状布帛等からなる
フロースクリーンである。
第6図は上記第5図の中空繊維組立体を装備し
た膜分離装置の一例で、被処理流体の流れの一例
を矢印で示している。この図で9は上記組立体を
2個収容するケースである。樹脂壁(A)4の中央の
穴へ供給コネクター19をセツトし、受圧集水板
12及び透過水コネクター20を端板10でケー
ス内に固定する。左右同じに組立て、一方の供給
コネクター19から(左側)被処理流体を供給
し、他方の供給コネクターから濃縮流体(黒矢
印)を取り出す。透過流体は左右の透過水コネク
ター20から取り出す(白矢印)。そして左側組
立体は空洞部2側から右側組立体は外周側から被
処理流体を通過させて夫々浸透分離する。
第7図の実施例において、1は中空繊維筒状
層、2は空洞部、3は嵌合筒部材、18は保護ネ
ツトで嵌合筒部材を被覆している。4は樹脂壁(A)
で中心部には空洞部に通じる供給導管挿設用穴8
を有しており、中空繊維が樹脂壁(A)の外側に開口
する様に配置されており、嵌合筒部材3とは離れ
ている。その距離は1〜5cmとすることが分離性
能上好ましい。5は樹脂壁(B)で組立体の端部を固
定し、中心部に穴を有している。6は樹脂壁(A)と
(B)との間隔を規制する弾性支持部材、7はフロー
スクリーンである。
第8図は上記第7図の中空繊維組立体を装備し
た膜分離装置の一例で、被処理流体の流れの一例
を矢印で示している。また第9図は第8図の左側
一部を拡大した断面図で、これらの図でケース9
は上記組立体を3個収容しており、樹脂壁(A)4か
ら出る透過流体は透過液集水ブロツク21に集め
られ、その中央部から透過水導管22へ流入し端
板10へ導かれる。供給流体は端部10から収容
ケース9内へ入り、組立体の樹脂壁(B)5の中心に
設けられた有孔支え板27の穴と透過水導管22
との間を通つて中空繊維組立体の空洞部へ導入さ
れ、中空繊維層1、フロースクリーン7を通過し
て収容ケース9の内壁に至り、続いて透過液集水
ブロツク21と収容ケースとの間を通つて、第2
の中空繊維組立体の樹脂壁(B)5に至る。そして再
び上記したと同様の経路経て、第2の組立体を通
過し、続いて第3の組立体を通過して右端板に至
り、濃縮流体として外へ取り出す。
第10図は第9図の切断線X−Xの矢印方向断
面図で次位の組立体への流体は樹脂壁(B)5に嵌合
された穴あき支え板27によつて導入される。
第11図は上記第7図の中空繊維組立体を装備
した膜分離装置の一例で被処理流体の流れの一例
を矢印で示している。この図で9は上記組立体を
4個収容するケースである。また第12図及び第
13図は該集水部を拡大した断面及び見取図で、
第1の中空繊維組立体の樹脂壁(A)4の中空繊維開
口部から出る透過流体は受圧集水板12の集水部
12aを通り、連結管部23の中の通路を経て透
過水導管22へ流入し、端板へ導かれる。第2の
中空繊維組立体から出る透過流体は、第1の組立
体と共有する受圧集水板12の片面側の集水部1
2aを介して連結管部23の連孔を経て透過水導
管22へ流入して端板へ導かれる。第3、第4の
組立体から出る透過流体も、第1、第2の組立体
から出る透過流体と同様の経路で端板に導かれ
る。また供給流体は端板10から入り、第1の組
立体の外周に導かれ、フロースクリーン7、中空
繊維層1を経て空洞部に至り、樹脂壁(A)の中心に
設けられた連結管部23に設けた通路23aを経
て第2の組立体の空洞部へと導かれる。第2の組
立体の中空繊維層1を通過した流体は収容ケース
9と、第2の組立体の樹脂壁(B)5,5の外周との
間を通り第3の組立体に至る。第3、第4組立体
中を上記第1、第2の組立体と同様の経路を経て
端板11に至り濃縮液流体として外へ流出する。
第14図において26は選択透過性中空繊維の
偏平な集束体で、その幅が15d〜50000d(ただし
dは中空繊維の外径を示す)であり、かつ厚さ/
幅の比が1/20000〜1/5のテープ状物であり、
ほぼ平行なテープ相互間には空隙がない様に配置
されている(図では理解を助けるため空隙を残し
ている)。ほぼ平行なテープで作られる層は5゜〜
60゜の角度で交わり、テープが交差する位置で2
つの層が上下に交差している。
本発明で使用する中空繊維は外径が10〜1000μ
中空率が3〜80%であり、その膜壁が流体に対し
て選択透過性を有するものであれば特に限定はな
い。これらの中空繊維の膜壁は均質、微少多孔
質、異方性、それらを組合せた複合体のいずれで
もよい。通常、セルロースアセテート、芳香族ポ
リアミド等が用いられる。
中空繊維層は、充填密度が45%〜70%で巻き上
げられていることが望ましく、45%未満であると
流体の流れが容易になりすぎて、流体が中空糸層
の空洞の口元(第1図では右側)で中空繊維層の
中に流れこみ、空洞の奥まで届かないために、中
空繊維層内を流体が均等に流れないことによる分
離効率の低下が起こり、かつ中空繊維層が崩れや
すくなる。また、70%を超えると中空繊維層内に
おける流体の流れが悪くなり、これを無理に流そ
うとすれば流体の供給圧を高くする必要があり、
圧力損失も大きくなる。なお、充填密度は50%〜
65%とするのが好ましい。
また中空繊維は、中空繊維層の軸方向に対して
5゜〜60゜の捲き角度を持つて互いに交差している
ことが好ましい。巻き角度が小さくなりすぎると
中空繊維層が崩れやすくなる欠点があり、また巻
き角度が大きくなりすぎると中空繊維の長さが大
きくなつて、透過水の圧力損失が大となり、かつ
透過量が減少する。
更に中空繊維組立体中心部に形成される空洞の
直径は、通常1cm〜10cmであり、中空繊維層の厚
みは5cm〜50cmであることが好ましい。空洞の径
が小さすぎれば、流体の供給圧を大きくする必要
があり、大きすぎれば中空繊維層が崩れやすいう
えに、中空繊維層の長さ方向の全体にわたつて流
体が放射状に供給されない欠点がある。また、中
空繊維層の厚みが小さすぎれば、中空繊維の透過
面積が小さくなつて流体の処理容量が減少し、大
きすぎれば圧力損失が大きくなり、かつ偏流の原
因となる欠点がある。
上記中空繊維筒状層を製造するには、通常、巻
上機のシヤフトに嵌合部材を装着し、必要があれ
ばその上に保護ネットを被覆して、中空糸を所定
の厚みになるまで適度の張力で、糸をトラバース
させながら均一に巻き上げ、その後シヤフトのみ
を抜き出して中心部を空洞化すればよい。むろん
この場合該空洞部には上記嵌合部材、保護ネツト
が存在することはいうまでもない。
本発明で用いられる嵌合部材は、中空繊維筒状
層内部に存在する空洞部の中にあつて、空洞部の
中空繊維層を部分的に支持するものであり、流体
による抵抗の小さいものを用いる必要がある。例
えば網目状部材、リング状部材等が挙げられる。
又樹脂壁(A)、(B)間の間隔に変化がある場合、その
変位を空洞部の1ヶ所に集中して伝えることのな
い様に、1体の部分でなく、複数個好ましくは3
個以上の部材が相互に間隔を有し、全体として流
体を繊維層へ通過させる空洞と同等の機能を有す
る。さらに本発明に用いる嵌合部材3は通水時に
中空繊維層1に作用する張力による収縮力を均一
に分散させる役目をもち、中空繊維が流体の流動
抵抗により過大膨張するのを未然に防止する目的
を有している。よつて嵌合部材3,3間の間隔は
1cm〜3cmとすることが好ましい。
また本発明に用いられる弾性支持部材6は嵌合
部材3を採用するが故の中空繊維組立体の過大な
収縮を防ぐ役割を果し、かつ中空繊維組立体に急
激に被処理流体が供給された場合に中空繊維に加
わるシヨツクを吸収する目的を有している。支持
部材の弾性率E(Kg/cm2)、総断面積S(cm2)、供給
流体の流量(リツトル/min)の間にE×S/Q≧
40の関係が満足されるような材料、形態を選択す
る事が好ましい。即ち弾性支持部材の材質は
ERP、ステンレス−スチール材等からなり、ま
た該支持部材の使用本数は材質の種類、組立体の
大きさ等に依存するが、大略2〜60本の範囲から
採用する。
さらに本発明においては嵌合部材3と樹脂壁(A)
4とを離すことも重要である。またその間隔は1
cm〜5cmとすることが好ましい。かかる構成によ
り、主として前述した芯管への接着剤付与による
デメリツト、つまり被処理流体の滞留による分離
性能の低下をなくすことができる。
なお、本発明の樹脂壁(A)4及び樹脂壁(B)5を構
成する樹脂は硬化前には流動性のある液体であつ
て、硬化によつて硬い固体状となるものが好まし
く、その代表例としてはエポキシ、ポリエステ
ル、シリコン、ポリウレタン系樹脂等が挙げられ
る。
本発明の中空繊維組立体は、上述のような構造
をしているためフレキシブル性があり、中空繊維
層内における流体のデツドスペースがほとんどな
く、また従来の芯管のような障害物がないので圧
力損失が非常に少さく、また中空繊維層内の流れ
もきわめて均等であり、分離効率も非常に大きい
利点がある。さらに、断続運転の繰返し、高流速
で被処理流体を流す運転においても分離性能が低
下せず、耐久性が優れている。また複数個組合わ
せて用いる組立体においても個々の組立体におい
ては、その作用効果は単一組立体の使用の場合と
同様奏し得られる特徴も有する。
次に実施例について説明する。
実施例 1
直径20mmのシヤフトに外径27mm、長さ300mmの
網目状嵌合部材3個を互いに30mmの間隔を置いて
装着し、嵌合部材の表面に軟い保護ネツトを被覆
し、その上に、セルロースアセテートからなる外
径230μ、内径100μの逆浸透用中空繊維を一端か
ら他端へトラバースさせながら充填密度50%、巻
き角度8゜〜30゜でワインド数一定で巻きつけ、外
径118mm、長さ1260mmの中空繊維筒状層を形成し、
表面にフロースクリーンを被覆し、その後シヤフ
トのみを抜き除いて中心部を空洞にした。形成し
た中空繊維層の両端にエポキシ樹脂を嵌合部材3
と20mm離れた位置迄注入し、固化成形して樹脂壁
(A)、(B)を作り、両樹脂壁(A)、(B)の間に巾10mm、厚
さ2mm弾性支持部材(FRP製の棒材)3本を取
りつけ、その一方の樹脂壁(A)4を中空糸層の軸に
対して直角に切断して中空繊維が該樹脂壁を貫通
して外側に開口するようにして中空繊維組立体を
作製した。なお、前記保護ネツト端も樹脂壁(A)4
と20mm離した。
これを第4図に示した膜分離装置に組込んで、
1500ppmの食塩水を供給水として25℃、30Kg/cm2
の圧力で供給水を循環して逆浸透テストを行つ
た。その結果は第1表のとおりである。
比較例 1
実施例1の中空繊維組立体の代わりに、従前の
中空繊維層の中心部に無数の小孔を穿つた一本の
芯管を有し、かつ該管が樹脂壁内に埋めこまれた
構造をもつ中空繊維組立体を作製して第4図に示
した膜分離装置に組み込んで、実施例1と同一条
件下で逆浸透テストを行つた。その結果は第1表
のとおりである。
なお、芯管の直径は27mm、長さ1m、芯管に穿
つた小孔の直径1.7mm、個数70個であり、中空繊
維層の巻き密度、巻き角度は実施例と同じであ
る。
The present invention relates to the construction of an assembly using hollow fibers whose membrane walls are selectively permeable to fluids. The scope of application of membrane separation equipment includes gas separation, liquid permeation, dialysis, ultrafiltration, reverse osmosis, etc.
Specific examples of applications include desalination of seawater, desalination of brine, purification of various wastewater, purification of proteins, concentration of fruit juice, oil/water separation, and hemodialysis. There have been many proposals for membrane separation devices using permselective hollow fibers, but the usual ones are hollow fiber assemblies in which many hollow fibers are arranged in layers around a single core tube. A typical structure is one housed in a container. In this case, it is known that the core tube is a cylindrical tube with many holes drilled in the tube wall, and representative examples are shown in Japanese Patent Publication No. 11696/1982 and Japanese Patent Application Laid-open No. 22387/1983. There is. A continuous core tube with such a large number of small holes is said to have a structure suitable for uniformly dispersing the fluid to be processed supplied to the membrane separation device in the hollow fiber layer, but in reality, the following is true. There are drawbacks such as. That is, (1) a part of the hollow fiber layer in contact with the non-perforated part of the core tube becomes a dead space, and since the fluid to be treated stays in that part, there is insufficient contact with the new fluid to be treated; Permeate flow rate and separation efficiency decrease. Additionally, when fluid is supplied from the core tube to the hollow fiber layer, this dead space obstructs the uniform radial flow of the fluid, creating polarized flow and concentration polarization, which significantly reduces permeation performance and separation efficiency. . (2) In order to uniformly disperse and extrude the fluid to be treated through the small holes in the core tube into the hollow fiber layer, a considerable amount of pressure is required, and the pressure loss at this time is large. (3) Small pores in the core tube are likely to become clogged by small amounts of solid particles in the fluid to be treated, and once clogged, the dead space will further expand, further reducing separation efficiency. (4) When the fluid to be treated is forced out from the small holes in the core tube to the hollow fiber layer under high pressure, the hollow fiber layer expands due to the flow resistance of the fluid, and tension is generated in each hollow fiber. Such tension acts on the resin walls to which the fibers are fixed, reducing the distance between the resin walls of the assembly, and thus the effective length of the hollow fiber assembly. In this case, if the strength of the single core tube used is low, the assembly itself will undergo large shrinkage, ultimately resulting in a decrease in separation performance. For example, if the assembly shrinks, rough hollow fibers will occur locally in the hollow fiber layer, causing problems such as uneven flow of the fluid to be treated and concentration polarization, or to the core pipe of the assembly. The distance between the conduit that supplies the fluid to be treated and the assembly becomes large, and the connection between the conduit and the end plate comes off, causing operational inconveniences in which the fluid to be treated does not flow into the core pipe. However, the separation efficiency and permeation performance of the hollow fiber assembly are significantly reduced. (5) On the other hand, in order to prevent performance deterioration due to assembly shrinkage as described in (4) above, it is possible to use a strong core pipe to prevent shrinkage, but in this case, the total pressure during water flow All work on hollow fibers,
The hollow fibers are partially stretched due to the fluid flow resistance, and some permanent deformation remains, which significantly reduces the separation efficiency and permeation performance of the hollow fiber assembly. (6) When forming the end of a hollow fiber cylindrical aggregate by impregnating and curing a fluid adhesive, close off some of the small holes in the core tube wall that are provided to uniformly disperse the fluid to be treated. Therefore, as mentioned above, this is one of the causes of a decrease in separation ability and permeation flow rate. The present invention improves the drawbacks of the conventional hollow fiber assembly having a continuous core tube as described above, and provides a hollow fiber assembly which has a large permeation flow rate and separation efficiency, and has good durability. Specifically, the present invention is a hollow fiber assembly in which permselective hollow fibers are arranged in a cylindrical shape, and the hollow fiber cylindrical layer is formed by intersectingly arranging hollow fibers having an open end. a hollow portion existing inside the cylindrical assembly of hollow fibers; a plurality of fitting cylindrical members located within the hollow portion and spaced apart from each other; and an open end portion of the hollow fibers. The hollow fibers are arranged so as to open on the outer surface of the resin wall (A) without any gaps between the fibers and the resin wall (A), and are arranged apart from the fitting cylinder member. The resin wall (A), the resin wall (B) at the other end of the assembly and fixing the end of the cylindrical assembly, and the interval between the two resin walls are regulated. This is a flexible permselective hollow fiber assembly composed of an elastic support member and a fluid conduit. The configuration of the permselective hollow fiber assembly of the present invention shown in the drawings will be described below. FIG. 1 is a partially cutaway side view showing an example of the assembly of the present invention;
Figure 2 is the left side of Figure 1, a front view showing the opening section;
FIG. 3 is a central vertical sectional view of FIG. 1, FIG. 4 is a central vertical sectional view showing an example of a membrane separation device equipped with the assembly shown in FIG. 1, and FIGS. 6 and 8 are longitudinal sectional views of a membrane separation device using the assembly shown in FIGS. 5 and 7, and FIG. 9 is a partially cutaway side view showing an example of the configuration. FIG. 10 is a partially enlarged cross-sectional view, FIG. 10 is a cross-sectional view taken along the cutting line X-X in FIG. 11th
FIG. 13 is an enlarged view of the main part of the figure, FIG. 13 is a sketch diagram explaining a partial configuration of FIG. 12, and FIG. 14 is a partial diagram showing a cross-shaped arrangement of hollow fibers. In Fig. 1, 1 is a hollow fiber cylindrical layer, and its arrangement is as shown in Fig. 14, in which tape-shaped hollow fiber bundles in which hollow fibers are arranged substantially parallel to each other and flat are intersected and laminated. has been done. Reference numeral 2 indicates a cavity formed inside the hollow fiber cylindrical layers intersectingly arranged, and 3 indicates a plurality of fitting cylindrical members spaced apart from each other. It is preferable that the fitting members be arranged at a distance of 1 to 3 cm from each other. 4 is a resin wall (A) in which hollow fibers are arranged so as to open to the outside of the resin wall (A) without any gaps (see Fig. 2, 4a), and are different from the fitting cylinder member 3. is seperated. It is desirable that the distance be 1 to 5 cm. A resin wall (B) 5 fixes the end of the cylindrical assembly, and a fluid supply conduit 8 passes through the center thereof. 6 is an elastic support member that regulates the distance between the resin walls (A) and (B). Reference numeral 7 denotes a flow screen made of a net-like cloth or the like which is coated on the outside of hollow fibers and has low resistance to passage of fluid. FIG. 4 shows an example of a membrane separation apparatus equipped with the hollow fiber assembly shown in FIG. 1, and arrows indicate an example of the flow of the fluid to be treated. In this figure 9 is the case housing the assembly, with permeate output 13 at one end.
The end plate 10 has an end plate 10 having an inlet and an outlet for a fluid to be treated at the other end. end plate 10,
11 are supported by C-rings 17, respectively, and O-rings are installed on the hollow fiber assembly, the end plate, and the supply conduit,
The supply fluid (black and white arrow), permeate fluid (white arrow), and concentrated fluid (black arrow) are separated so that they do not mix, and leakage of fluids to the outside of the device is prevented. In the embodiment shown in FIG. 5, 1 is a hollow fiber cylindrical layer arranged as shown in FIG. 14, 2 is a cavity existing inside the hollow fiber cylindrical layer, and 3 is a plurality of fittings. A protective net 18 made of a net-like fabric is disposed on the joint tube member. 4 is a resin wall (A) in which hollow fibers are arranged so as to open to the outer surface without any gaps between the fibers and the resin wall (A), and there is a hollow part in the center. 2 and is separated from the fitting cylinder member 3. 5 is a resin wall
(B) fixes the end of the cylindrical assembly. Reference numeral 6 designates an elastic support member that regulates the distance between the resin walls (A) and (B), and 7 designates a flow screen made of a net-like cloth or the like that has little resistance to passage of fluid. FIG. 6 shows an example of a membrane separation apparatus equipped with the hollow fiber assembly shown in FIG. 5, and arrows indicate an example of the flow of the fluid to be treated. In this figure, 9 is a case that accommodates two of the above assemblies. The supply connector 19 is set in the center hole of the resin wall (A) 4, and the pressure receiving water collection plate 12 and the permeated water connector 20 are fixed in the case with the end plate 10. The left and right sides are assembled in the same way, and the fluid to be treated is supplied from one supply connector 19 (left side), and the concentrated fluid (black arrow) is taken out from the other supply connector. The permeated fluid is taken out from the left and right permeated water connectors 20 (white arrows). The fluid to be treated is passed through the left assembly from the cavity 2 side and from the outer peripheral side of the right assembly to permeate and separate them. In the embodiment shown in FIG. 7, 1 is a hollow fiber cylindrical layer, 2 is a cavity, 3 is a fitting cylindrical member, and 18 is a protective net covering the fitting cylindrical member. 4 is a resin wall (A)
In the center there is a hole 8 for inserting a supply conduit leading to the cavity.
The hollow fibers are arranged so as to open to the outside of the resin wall (A), and are separated from the fitting cylinder member 3. In terms of separation performance, it is preferable that the distance is 1 to 5 cm. 5 fixes the end of the assembly with a resin wall (B) and has a hole in the center. 6 is the resin wall (A)
The elastic support member 7 that regulates the distance from (B) is a flow screen. FIG. 8 shows an example of a membrane separation apparatus equipped with the hollow fiber assembly shown in FIG. 7, and arrows indicate an example of the flow of the fluid to be treated. Also, Figure 9 is an enlarged cross-sectional view of the left side part of Figure 8, and these figures show case 9.
accommodates three of the above-mentioned assemblies, and the permeate fluid coming out of the resin wall (A) 4 is collected in the permeate water collection block 21, flows into the permeate water conduit 22 from the center thereof, and is guided to the end plate 10. . The supply fluid enters the housing case 9 from the end 10 and passes through a hole in a perforated support plate 27 provided in the center of the resin wall (B) 5 of the assembly and a permeate conduit 22.
The permeated liquid is introduced into the cavity of the hollow fiber assembly through the hollow fiber layer 1 and the flow screen 7 to reach the inner wall of the storage case 9, and then between the permeate water collection block 21 and the storage case. through the second
The resin wall (B) 5 of the hollow fiber assembly is reached. It then passes through the second assembly and then through the third assembly to the right end plate, again following the same path as described above, and is removed as a concentrated fluid. FIG. 10 is a cross-sectional view taken along section line X-X in FIG. . FIG. 11 is an example of a membrane separation apparatus equipped with the hollow fiber assembly shown in FIG. 7, and an example of the flow of the fluid to be treated is shown by arrows. In this figure, 9 is a case that accommodates four of the above assemblies. In addition, Figures 12 and 13 are enlarged cross-sections and sketches of the water collection area,
The permeate fluid coming out of the hollow fiber openings of the resin wall (A) 4 of the first hollow fiber assembly passes through the water collection part 12a of the pressure receiving water collection plate 12, passes through the passage in the connecting pipe part 23, and then passes through the permeate water conduit. 22 and is guided to the end plate. The permeate fluid coming out of the second hollow fiber assembly is directed to the water collecting section 1 on one side of the pressure receiving water collecting plate 12 which is shared with the first assembly.
2a, the water flows into the permeated water conduit 22 through the continuous hole of the connecting pipe portion 23, and is guided to the end plate. The permeate fluid exiting the third and fourth assemblies is also directed to the end plate along a similar path as the permeate fluid exiting the first and second assemblies. Further, the supply fluid enters from the end plate 10, is guided to the outer periphery of the first assembly, passes through the flow screen 7, the hollow fiber layer 1, and reaches the cavity, and is connected to the connecting pipe section provided at the center of the resin wall (A). 23 into the cavity of the second assembly. The fluid that has passed through the hollow fiber layer 1 of the second assembly passes between the housing case 9 and the outer periphery of the resin walls (B) 5, 5 of the second assembly and reaches the third assembly. It passes through the third and fourth assemblies through the same path as in the first and second assemblies, reaches the end plate 11, and flows out as a concentrated liquid fluid. In Fig. 14, 26 is a flat bundle of permselective hollow fibers, the width of which is 15d to 50000d (d indicates the outer diameter of the hollow fibers), and the thickness /
It is a tape-like material with a width ratio of 1/20000 to 1/5,
The approximately parallel tapes are arranged so that there are no gaps between them (gaps are left in the figure to aid understanding). The layer made of almost parallel tape is 5°~
Intersect at an angle of 60°, and at the point where the tape intersects 2
The two layers intersect one above the other. The hollow fiber used in the present invention has an outer diameter of 10 to 1000μ.
There is no particular limitation as long as the hollow ratio is 3 to 80% and the membrane wall has permselectivity for fluids. The membrane wall of these hollow fibers may be homogeneous, microporous, anisotropic, or a composite of any of these. Usually, cellulose acetate, aromatic polyamide, etc. are used. It is preferable that the hollow fiber layer is rolled up with a packing density of 45% to 70%; if it is less than 45%, the fluid will flow too easily, and the fluid will be rolled up at the mouth of the cavity of the hollow fiber layer (the first Since the fluid flows into the hollow fiber layer (on the right side in the figure) and does not reach the depths of the cavity, the separation efficiency decreases due to the fluid not flowing uniformly within the hollow fiber layer, and the hollow fiber layer is likely to collapse. Become. Additionally, if it exceeds 70%, the flow of fluid within the hollow fiber layer will deteriorate, and if you want to force it to flow, you will need to increase the fluid supply pressure.
Pressure loss also increases. In addition, the packing density is 50% ~
Preferably it is 65%. In addition, the hollow fibers are
Preferably, they intersect with each other at a winding angle of 5° to 60°. If the winding angle is too small, the hollow fiber layer will easily collapse, and if the winding angle is too large, the length of the hollow fibers will increase, which will increase the pressure loss of permeated water and reduce the amount of permeation. do. Further, the diameter of the cavity formed in the center of the hollow fiber assembly is usually 1 cm to 10 cm, and the thickness of the hollow fiber layer is preferably 5 cm to 50 cm. If the diameter of the cavity is too small, it is necessary to increase the fluid supply pressure, and if it is too large, the hollow fiber layer tends to collapse, and the fluid cannot be supplied radially throughout the length of the hollow fiber layer. There is. Furthermore, if the thickness of the hollow fiber layer is too small, the permeation area of the hollow fibers becomes small and the fluid processing capacity is reduced, and if it is too thick, pressure loss becomes large and there is a drawback that it causes uneven flow. To manufacture the above-mentioned hollow fiber cylindrical layer, a fitting member is usually attached to the shaft of a winding machine, and if necessary, a protective net is covered on top of the fitting member, and the hollow fibers are rolled until the specified thickness is reached. It is sufficient to uniformly wind the thread while traversing it with an appropriate tension, and then pull out only the shaft to make the center hollow. Of course, in this case, the above-mentioned fitting member and protective net are present in the cavity. The fitting member used in the present invention is located in a hollow portion existing inside the hollow fiber cylindrical layer, partially supports the hollow fiber layer in the hollow portion, and uses a fitting member with low resistance due to fluid. It is necessary to use it. Examples include a mesh member, a ring member, and the like.
In addition, if there is a change in the distance between the resin walls (A) and (B), in order to prevent the displacement from being concentrated in one part of the cavity, the resin walls (A) and (B) should be disposed not in one part but in a plurality of parts, preferably three parts.
The two or more members are spaced apart from each other and collectively function as a cavity for allowing fluid to pass through the fiber layer. Furthermore, the fitting member 3 used in the present invention has the role of uniformly dispersing the contractile force due to the tension that acts on the hollow fiber layer 1 during water passage, and prevents the hollow fibers from expanding excessively due to fluid flow resistance. Have a purpose. Therefore, it is preferable that the interval between the fitting members 3, 3 be 1 cm to 3 cm. Furthermore, since the elastic support member 6 used in the present invention employs the fitting member 3, it serves to prevent excessive contraction of the hollow fiber assembly, and prevents the fluid to be treated from being suddenly supplied to the hollow fiber assembly. Its purpose is to absorb the shock that is applied to the hollow fibers when A material that satisfies the relationship E×S/Q≧40 between the elastic modulus E (Kg/cm 2 ) of the support member, the total cross-sectional area S (cm 2 ), and the flow rate (liters/min) of the supply fluid. , it is preferable to select the form. In other words, the material of the elastic support member is
It is made of ERP, stainless steel, etc., and the number of support members used depends on the type of material, the size of the assembly, etc., but is generally in the range of 2 to 60. Furthermore, in the present invention, the fitting member 3 and the resin wall (A)
It is also important to keep distance between 4 and 4. Also, the interval is 1
It is preferable to set it as cm - 5 cm. With this configuration, it is possible to mainly eliminate the above-described disadvantages caused by applying adhesive to the core tube, that is, the deterioration in separation performance due to retention of the fluid to be treated. The resin constituting the resin wall (A) 4 and the resin wall (B) 5 of the present invention is preferably a fluid liquid before curing and becomes a hard solid upon curing. Typical examples include epoxy, polyester, silicone, and polyurethane resins. The hollow fiber assembly of the present invention has the above-mentioned structure, so it is flexible, and there is almost no fluid dead space within the hollow fiber layer, and there is no obstruction like the conventional core tube, so there is no pressure. It has the advantages of very low loss, very uniform flow within the hollow fiber layer, and very high separation efficiency. Furthermore, the separation performance does not deteriorate even in repeated intermittent operation and operation in which the fluid to be treated flows at a high flow rate, and the durability is excellent. In addition, even if a plurality of assemblies are used in combination, each individual assembly has the same function and effect as when a single assembly is used. Next, an example will be described. Example 1 Three mesh-like fitting members with an outer diameter of 27 mm and a length of 300 mm were attached to a shaft with a diameter of 20 mm at a distance of 30 mm from each other, the surfaces of the fitting members were covered with a soft protective net, and then A hollow fiber for reverse osmosis made of cellulose acetate with an outer diameter of 230μ and an inner diameter of 100μ is wound while traversing from one end to the other with a packing density of 50%, a winding angle of 8° to 30°, and a constant number of winds. Forming a hollow fiber cylindrical layer with a length of 118 mm and a length of 1260 mm,
The surface was coated with a flow screen, and then only the shaft was removed to form a cavity in the center. Fitting member 3 applies epoxy resin to both ends of the formed hollow fiber layer.
Inject the resin to a position 20mm away from the wall, solidify and form the resin wall.
(A) and (B), and attach three elastic support members (FRP bars) with a width of 10 mm and a thickness of 2 mm between both resin walls (A) and (B), and one of the resin walls ( A hollow fiber assembly was prepared by cutting A) 4 at right angles to the axis of the hollow fiber layer so that the hollow fibers penetrated the resin wall and opened outward. Note that the end of the protective net is also covered with resin wall (A) 4.
and 20mm apart. Incorporating this into the membrane separation device shown in Figure 4,
25℃, 30Kg/cm 2 using 1500ppm salt water as feed water
Reverse osmosis tests were conducted by circulating the feed water at a pressure of . The results are shown in Table 1. Comparative Example 1 Instead of the hollow fiber assembly of Example 1, a single core tube with numerous small holes bored in the center of the previous hollow fiber layer was used, and the tube was buried in the resin wall. A hollow fiber assembly having a similar structure was prepared and installed in the membrane separation apparatus shown in FIG. 4, and a reverse osmosis test was conducted under the same conditions as in Example 1. The results are shown in Table 1. The diameter of the core tube was 27 mm, the length was 1 m, the diameter of the small holes drilled in the core tube was 1.7 mm, and the number of holes was 70, and the winding density and winding angle of the hollow fiber layer were the same as in the examples.
【表】【table】
【表】
供給流量
〓 透過液中〓
[Table] Supply flow rate
〓 In permeate〓
Claims (1)
維組立体であつて、端部に開口面をもつ中空繊維
が交差配置されて形成された中空繊維筒状層と、
上記中空繊維筒状層の内部に存在する空洞部と、
該空洞部にあつて相互に離れた複数個の嵌合筒部
材と、上記中空繊維の開口端部にあつて中空繊維
が該繊維と樹脂壁(A)との間に隙間のない状態で樹
脂壁(A)の外側面に開口するように配置され、かつ
上記嵌合部材と離れて配置された樹脂壁(A)と、上
記組立体の他の端部にあつて該組立体の端部を固
定せしめる樹脂壁(B)と、両樹脂壁(A)、(B)の間隔を
規制する弾性支持部材と、流体の供給導管とから
構成されてなる選択透過性中空繊維組立体。 2 特許請求の範囲第1項において、空洞部にあ
つて相互に離れた複数個の嵌合筒部材は筒部材同
士が互いに1〜3cm離れて構成される選択透過性
中空繊維組立体。 3 特許請求の範囲第1又は2項において、空洞
部にあつて樹脂壁(A)側に位置する嵌合筒部材は、
樹脂壁(A)から1〜5cm離れて構成される選択透過
性中空繊維組立体。 4 特許請求の範囲第1、2又は3項において、
空洞部にあつて相互に離れた複数個の嵌合筒部材
の外周には、ネツト状布帛を被覆して構成したも
のである選択透過性中空繊維組立体。 5 特許請求の範囲第1〜3又は4項において、
両樹脂壁(A)、(B)の間隔を規制する弾性支持部材の
弾性率E(Kg/cm2)、総断面積S(cm2)、供給流体の
流量(リツトル/min)の間にE×S/Q≧40の関 係が満足される選択透過性中空繊維組立体。[Scope of Claims] 1. A hollow fiber assembly in which permselective hollow fibers are arranged in a cylindrical shape, and a hollow fiber cylindrical layer formed by cross-arranging hollow fibers having an open end surface;
A cavity existing inside the hollow fiber cylindrical layer;
A plurality of fitting cylindrical members spaced apart from each other in the hollow portion and the hollow fibers at the open ends of the hollow fibers are made of resin with no gap between the fibers and the resin wall (A). a resin wall (A) disposed so as to open on the outer surface of the wall (A) and disposed apart from the fitting member; and an end of the assembly at the other end of the assembly. A permselective hollow fiber assembly comprising a resin wall (B) that fixes the resin wall (B), an elastic support member that regulates the distance between the resin walls (A) and (B), and a fluid supply conduit. 2. The permselective hollow fiber assembly according to claim 1, wherein the plurality of mutually spaced fitting cylindrical members in the hollow portion are configured such that the cylindrical members are spaced from each other by 1 to 3 cm. 3 In claim 1 or 2, the fitting cylinder member located in the cavity and on the resin wall (A) side is
A permselective hollow fiber assembly configured 1 to 5 cm away from the resin wall (A). 4 In claim 1, 2 or 3,
A permselective hollow fiber assembly comprising a plurality of mutually spaced fitting cylinder members in a hollow portion, the outer periphery of which is covered with a net-like fabric. 5 In claims 1 to 3 or 4,
Between the elastic modulus E (Kg/cm 2 ) of the elastic support member that regulates the distance between both resin walls (A) and (B), the total cross-sectional area S (cm 2 ), and the flow rate of the supplied fluid (liters/min). A permselective hollow fiber assembly that satisfies the relationship E×S/Q≧40.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17988980A JPS57102201A (en) | 1980-12-18 | 1980-12-18 | Perm selective hollow fiber assembly |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17988980A JPS57102201A (en) | 1980-12-18 | 1980-12-18 | Perm selective hollow fiber assembly |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57102201A JPS57102201A (en) | 1982-06-25 |
JPS6331243B2 true JPS6331243B2 (en) | 1988-06-23 |
Family
ID=16073663
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17988980A Granted JPS57102201A (en) | 1980-12-18 | 1980-12-18 | Perm selective hollow fiber assembly |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57102201A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61291007A (en) * | 1985-06-17 | 1986-12-20 | Toyobo Co Ltd | Hollow yarn type separation membrane element |
JP2641341B2 (en) * | 1991-06-28 | 1997-08-13 | 株式会社日立製作所 | Multi-stage hollow fiber membrane module assembly |
EP0815926A4 (en) * | 1995-03-22 | 2001-04-18 | Mechano Chemical Res Inst Ltd | Method of desalinating saline water and apparatus therefor |
AU2003220774A1 (en) * | 2002-04-03 | 2003-10-27 | Toyo Boseki Kabushiki Kaisha | Hollow fiber membrane module |
WO2020138096A1 (en) * | 2018-12-28 | 2020-07-02 | Dic株式会社 | Degassing system, method for degassing liquids, degassing unit, degassing module, and degassing-system manufacturing method and method of production from natural resources |
-
1980
- 1980-12-18 JP JP17988980A patent/JPS57102201A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS57102201A (en) | 1982-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4352736A (en) | Wound flattened hollow fiber assembly having plural spaced core sections | |
US4451369A (en) | Fluid separation apparatus | |
JPS631404A (en) | Hollow yarn type membrane separation device | |
EP0044075B1 (en) | Fluid separation element | |
US5580452A (en) | Moving liquid membrane modules | |
US4802982A (en) | Spiral-wound membrane with improved permeate carrier | |
US4033878A (en) | Spiral wound membrane module for direct osmosis separations | |
CA1294563C (en) | Tubesheet for spiral wound hollow fiber permeator | |
EP0513207A1 (en) | Spiral-wound membrane separation device with feed and permeate/sweep fluid flow control | |
CH500742A (en) | Membrane assembly for a cutting system | |
US10358366B2 (en) | Spiral wound filtration assembly including integral bioreactor | |
US20050023207A1 (en) | Filtration system and dynamic fluid separation method | |
HU197223B (en) | Candle filter of coil diaphragm | |
JPS6331243B2 (en) | ||
JPH11114381A (en) | Spiral type membrane element | |
US4036760A (en) | Fluid fractionating membrane apparatus | |
US4707261A (en) | Tubular membrane ultrafiltration module | |
JPS6241764B2 (en) | ||
JP2000271457A (en) | Operation of spiral type membrane element and spiral type membrane module and spiral type membrane module | |
JP2012183464A (en) | Telescope prevention plate for fluid separation element, and fluid separation element | |
CA1155067A (en) | Hollow fiber assembly having selective permeability | |
JP4107724B2 (en) | Spiral membrane element | |
JPH038348Y2 (en) | ||
JPS609841B2 (en) | fluid separation device | |
JPH0924255A (en) | Spiral membrane module |