JPS6331135A - Manufacture of semiconductor device - Google Patents
Manufacture of semiconductor deviceInfo
- Publication number
- JPS6331135A JPS6331135A JP17613886A JP17613886A JPS6331135A JP S6331135 A JPS6331135 A JP S6331135A JP 17613886 A JP17613886 A JP 17613886A JP 17613886 A JP17613886 A JP 17613886A JP S6331135 A JPS6331135 A JP S6331135A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- wiring
- layer
- coating film
- electrodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 21
- 238000004519 manufacturing process Methods 0.000 title claims description 17
- 229920002120 photoresistant polymer Polymers 0.000 claims abstract description 28
- 239000000463 material Substances 0.000 claims abstract description 25
- 238000000034 method Methods 0.000 claims abstract description 20
- 238000002955 isolation Methods 0.000 claims abstract description 18
- 239000011248 coating agent Substances 0.000 claims description 28
- 238000000576 coating method Methods 0.000 claims description 28
- 239000000758 substrate Substances 0.000 claims description 6
- 238000005530 etching Methods 0.000 claims description 5
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 2
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 2
- 239000010408 film Substances 0.000 abstract description 62
- 229910021420 polycrystalline silicon Inorganic materials 0.000 abstract description 21
- 229920005591 polysilicon Polymers 0.000 abstract description 20
- 238000000059 patterning Methods 0.000 abstract description 6
- 239000010409 thin film Substances 0.000 abstract description 5
- 239000006185 dispersion Substances 0.000 abstract description 3
- 238000010422 painting Methods 0.000 abstract 1
- 238000001312 dry etching Methods 0.000 description 7
- 238000007796 conventional method Methods 0.000 description 6
- 238000000206 photolithography Methods 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
Landscapes
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、半導体装置の製造方法に関し、さらに詳し
くは、半導体基板上に写真製版技術を用いて形成される
電極、配線層の寸法精度向上のための改良された製造方
法に係るものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor device, and more specifically, to improving the dimensional accuracy of electrodes and wiring layers formed on a semiconductor substrate using photolithography. This invention relates to an improved manufacturing method for.
従来例でのこの種の半導体装置における電極。 Electrodes in a conventional semiconductor device of this type.
配線層の製造方法の概要を第2図(a)ないしくd)に
工程順に示しである。An outline of the method for manufacturing the wiring layer is shown in the order of steps in FIGS. 2(a) to 2(d).
これらの従来例方法各図を参照し、その製造工程につい
て述べる。The manufacturing process of these conventional methods will be described with reference to each figure.
まず、シリコン半導体基板l上に素子間分離絶縁膜2を
選択的に形成したのち、その全面にゲート絶縁膜3を形
成させ、また、このゲート絶縁膜3の全面に、後述する
それぞれの電極、配線材料となるポリシリコン層4を、
CVD法などで形成させ、さらに、このポリシリコン層
4上には、同ポリシリコン層4を所定の電極パターンに
仕上げるための、写真製版工程ならびに乾式エツチング
工程を行なう。First, an inter-element isolation insulating film 2 is selectively formed on a silicon semiconductor substrate l, and then a gate insulating film 3 is formed on the entire surface thereof, and each electrode, which will be described later, The polysilicon layer 4, which is the wiring material,
The polysilicon layer 4 is formed by a CVD method or the like, and then a photolithography process and a dry etching process are performed on the polysilicon layer 4 in order to finish the polysilicon layer 4 into a predetermined electrode pattern.
すなわち、写真製版工程では、前記ポリシリコン層4の
全面にフォトレジスト層5を塗着させる(第2図(a)
)が、この時、前記分離絶縁膜2を含む部分のポリシリ
コン層4上でのレジスト層5の膜厚t1と、分離絶縁膜
2を含まない部分のポリシリコン層4上でのレジスト層
5の膜厚t2との関係は1次式の通りである。That is, in the photolithography process, a photoresist layer 5 is coated on the entire surface of the polysilicon layer 4 (see FIG. 2(a)).
), at this time, the thickness t1 of the resist layer 5 on the polysilicon layer 4 in the portion including the isolation insulating film 2, and the thickness t1 of the resist layer 5 on the polysilicon layer 4 in the portion not including the isolation insulating film 2. The relationship between the film thickness t2 and the film thickness t2 is expressed by a linear equation.
tl<t2 ・・・・・・(i
t)ついで、その後、フォトマスク8を通して露光用の
光7がフォトレジスト層5の全面に照射される(同1f
fl(b))が、一般にこのフォトレジスト層5内では
、入射される光と、前記ポリシリコン層4の表面で反射
される光とが干渉し合って、いわゆる、光の定在波が発
生し、その結果、このレジスト層5に与えられる光エネ
ルギー量が、同層5の膜厚に対応して変化する。tl<t2...(i
t) Then, the entire surface of the photoresist layer 5 is irradiated with exposure light 7 through the photomask 8 (see 1f
fl(b)), but generally within the photoresist layer 5, the incident light and the light reflected on the surface of the polysilicon layer 4 interfere with each other, and a so-called standing wave of light is generated. As a result, the amount of light energy given to this resist layer 5 changes in accordance with the thickness of the resist layer 5.
のって、この場合、第3図に示したように、前記フォト
レジスト層5の該当各部の膜厚が11.12のとき、パ
ターニング後のこれらの各部、つまり分離絶縁膜2を含
む部分のレジストパターン5aの幅寸法はL11分離絶
縁膜2を含まない部分のレジストパターン5bの幅寸法
はL2となり、これらの各幅寸法L1.L2の関係は、
Ll#L2 ・・・・・・(1−2
)となって、両者が同一寸法に設定されることはない(
同図(c))。In this case, as shown in FIG. 3, when the film thickness of each part of the photoresist layer 5 is 11.12 mm, the thickness of each part after patterning, that is, the part including the isolation insulating film 2 is The width dimension of the resist pattern 5a is L11, and the width dimension of the resist pattern 5b in the portion not including the isolation insulating film 2 is L2, and each of these width dimensions L1. The relationship of L2 is Ll#L2 (1-2
), and both will not be set to the same size (
Figure (c)).
続いて、前記各レジストパターン5a、5bをエツチン
グマスクとして、乾式エツチングにより、前記ポリシリ
コン層4を選択的にエツチングした上で、これらの各レ
ジストパターン5a、5bを除去する(同図(d))が
、このようにして得た分離絶縁膜2を含む部分の電極、
配線層4dの幅寸法はL1′1分離絶縁膜2を含まない
部分の電極(ゲート電極)層4bの幅寸法はL 2’と
なり、各幅寸法り、’、L2’の関係は次式で表わされ
る。Subsequently, the polysilicon layer 4 is selectively etched by dry etching using each of the resist patterns 5a and 5b as an etching mask, and then each of these resist patterns 5a and 5b is removed (FIG. 4(d)). ) is the electrode of the part containing the isolation insulating film 2 obtained in this way,
The width dimension of the wiring layer 4d is L1', the width dimension of the electrode (gate electrode) layer 4b in the part not including the isolation insulating film 2 is L2', and the relationship between ' and L2' is expressed by the following equation. expressed.
L1′=L1−Δ見 叫・・(1−3)L2’
=L2−Δ見 叫司1−4)(1−1)、(
1−3)、(1−4)からL’#L’
・・・・・・(1−5)こ〜で、Δ旦は乾式エツチ
ングによって生ずるレジストパターン寸法と電極、配線
寸法とのシフト量である。L1' = L1 - Δ Look... (1-3) L2'
=L2-ΔKiji 1-4) (1-1), (
1-3), (1-4) to L'#L'
(1-5) Here, ΔD is the amount of shift between the resist pattern dimensions and the electrode and wiring dimensions caused by dry etching.
このように、前記した従来例での製造方法においては、
(1−5)式に示したように、半導体装置各部に形成
されるそれぞれの電極、配線層の寸法が所期通りに一定
とはならず、その結果、設計通りに装置を仕上げること
が困難で、装置に要求される機能を完全には果し得ない
と云う問題点があった。In this way, in the conventional manufacturing method described above,
As shown in equation (1-5), the dimensions of each electrode and wiring layer formed in each part of a semiconductor device are not constant as expected, and as a result, it is difficult to finish the device as designed. However, there was a problem in that the functions required of the device could not be fully fulfilled.
この発明は従来のこのような問題点を解消するためにな
されたものであって、その目的とするところは、半導体
装置の各部に形成される電極、配線寸法を、設計値通り
正確に仕上げ得るようにした。この種の半導体装置の製
造方法を提供することである。This invention was made to solve these conventional problems, and its purpose is to accurately finish the dimensions of electrodes and wiring formed in each part of a semiconductor device as designed. I did it like that. An object of the present invention is to provide a method for manufacturing this type of semiconductor device.
前記目的を達成するために、この発明に係る半導体装置
の製造方法は、電極、配線材料層上に、−旦、この電極
、配線材料層とは屈折率の異なる材料を用いた薄い電極
、配線被覆膜を形成させたのちに、基本的なパターニン
グのためのフォトレジスト層を均一で薄い膜厚に塗着形
成させるようにしたものである。In order to achieve the above-mentioned object, the method for manufacturing a semiconductor device according to the present invention includes: - first forming a thin electrode and wiring on an electrode and wiring material layer using a material having a refractive index different from that of the electrode and wiring material layer; After forming the coating film, a photoresist layer for basic patterning is applied and formed to have a uniform and thin film thickness.
すなわち、この発明方法においては、電極、配線材料層
での薄い電極、配線被覆膜のために、フォトレジスト層
を均一で薄い膜厚に塗着でき、かつフォトレジスト層内
での露光時における定在波の発生を防止できて、装置各
部でのゲート電極を含む各電極、配線層の寸法のバラツ
キを抑制し得るのである。That is, in the method of the present invention, the photoresist layer can be coated to a uniform and thin film thickness due to the thin electrode and wiring coating film in the electrode and wiring material layer, and the photoresist layer can be coated with a thin film thickness during exposure within the photoresist layer. It is possible to prevent the generation of standing waves, and it is possible to suppress variations in the dimensions of each electrode including the gate electrode and the wiring layer in each part of the device.
以下、この発明に係る半導体装置の製造方法の一実施例
につき、第1図(a)ないしくe)を参照して詳細に説
明する。Hereinafter, one embodiment of the method for manufacturing a semiconductor device according to the present invention will be described in detail with reference to FIGS. 1(a) to 1(e).
第1図(a)ないしく8)はこの実施例方法を工程順に
示す断面図であり、これらの第1図(a)ないしくe)
実施例方法において、前記第2図(a)ないしくd)従
来例方法と同一符号は同一または相当部分を示している
。FIGS. 1(a) to 8) are cross-sectional views showing the method of this embodiment in the order of steps, and these FIGS. 1(a) to 8)
In the method of the embodiment, the same reference numerals as in the conventional method of FIGS. 2(a) to d) indicate the same or corresponding parts.
この実施例方法においては、まず、前記した従来例方法
と同様に、シリコン半導体基板1上に素子間分離絶縁膜
2を選択的に形成したのち、その全面にゲート絶縁膜3
を形成し、かつこのゲート絶縁膜3の全面に、電極、配
線材料層となるポリシリコン層4をCVD法などで形成
する。ついで。In this embodiment method, first, like the conventional method described above, an element isolation insulating film 2 is selectively formed on a silicon semiconductor substrate 1, and then a gate insulating film 3 is formed on the entire surface thereof.
A polysilicon layer 4, which will become an electrode and wiring material layer, is formed on the entire surface of the gate insulating film 3 by CVD or the like. Next.
面記ポリシリコン層4上の全面には、同ポリシリコン層
4とは屈折率の異なる材料、こへでは、例えばシリコン
酸化膜、シリコン窒化膜からなる電極、配線被覆膜8を
形成した上で、さらに、前記ポリシリコン層4を所定の
電極、配線パターンに仕北げるための、フォトレジスト
層5を全面に塗着させる。On the entire surface of the polysilicon layer 4, an electrode and a wiring coating film 8 made of a material having a different refractive index from that of the polysilicon layer 4, such as a silicon oxide film or a silicon nitride film, are formed. Further, a photoresist layer 5 is applied over the entire surface of the polysilicon layer 4 to form a predetermined electrode and wiring pattern.
しかして、この場合、前記フォトレジスト5としては、
例えば20cps程度以下の粘性の低いものを選択する
のがよく、前記電極、配線被覆膜8の存在によって、そ
の全面に薄くかつ均一に塗着させることができる。また
、前記電極、配線被覆膜8の膜厚は、前記電極、配線材
料層であるポリシリコン層4の膜厚よりも薄く、 10
0〜100OA程度とし、前記フォトレジスト層5の膜
厚は、前記電極、配線被覆膜8の膜厚よりも厚くするこ
とが好ましい(第1図(a))。In this case, the photoresist 5 is
For example, it is preferable to select a material with a low viscosity of about 20 cps or less, and due to the presence of the electrode and wiring coating film 8, it is possible to coat the entire surface thinly and uniformly. Further, the film thickness of the electrode/wiring covering film 8 is thinner than the film thickness of the polysilicon layer 4 which is the electrode/wiring material layer;
It is preferable that the photoresist layer 5 has a thickness of about 0 to 100 OA, and that the thickness of the photoresist layer 5 is thicker than that of the electrode and wiring coating film 8 (FIG. 1(a)).
次に、電極、配線バターニングのために選択された所定
のフォトマスク6を用いて、前記フォトレジスト層5の
全面を光照射7しく同図(b))、露光、現像して、所
期のパターニングされたレジストパターン、つまり分離
絶縁膜2を含む部分のレジストパターン5a、および分
離絶縁膜2を含まない部分のレジストパターン5’bを
それぞれに得るのであるが、この時、前記電極、配線被
覆膜8にポリシリコン層4とは屈折率の異なる材料を用
い。Next, using a predetermined photomask 6 selected for electrode and wiring patterning, the entire surface of the photoresist layer 5 is irradiated with light (7 (b) in the same figure), exposed, and developed to achieve desired results. In other words, a resist pattern 5a for a portion including the isolation insulating film 2 and a resist pattern 5'b for a portion not including the isolation insulating film 2 are obtained, respectively.At this time, the electrodes and wiring A material having a different refractive index from that of the polysilicon layer 4 is used for the coating film 8 .
かつ電極、配線被覆膜8上でフォトレジスト層5の膜厚
を均一にしであるために、前記第3図に示した従来例方
法でのような、定在波の発生による各レジストパターン
5a 、 5bでの幅寸法のバラツキがなく、両レジス
トパターン5a、5b共、同一の幅寸法L3に仕上げる
ことができる(同図(C))。In addition, in order to make the film thickness of the photoresist layer 5 uniform on the electrode and wiring coating film 8, each resist pattern 5a is formed by generating a standing wave as in the conventional method shown in FIG. , 5b, and both resist patterns 5a and 5b can be finished to have the same width L3 (FIG. 5(C)).
その後、前記した従来例方法と同様に、前記各レジスト
パターン5a、5bをエツチングマスクとして、乾式エ
ツチングにより、前記電極、配線被覆膜8を選択的に除
去し、かつ各レジストパターン5a、5bを除去して、
各パターン該当部分に電極。Thereafter, similarly to the conventional method described above, the electrodes and wiring coating film 8 are selectively removed by dry etching using the resist patterns 5a and 5b as etching masks, and the resist patterns 5a and 5b are removed selectively. remove and
Electrode on the corresponding part of each pattern.
配線被覆膜パターン8a、8bを得る(同図(d))の
であるが、この時、電極、配線被覆膜8の膜厚を、フォ
トレジスト層5の膜厚よりも薄く形成しであるために、
エツチングマスクとしての役割りを充分に果して、こ−
でも各電極、配線被覆膜パターン8a、8bでの幅寸法
のバラツキがなく、これらの両電極、配線被覆膜パター
ン8a、8bの仕上がり寸法1..1.は、共に次式の
ように等しくなる。Wiring coating film patterns 8a and 8b are obtained (FIG. 2(d)), but at this time, the electrode and wiring coating film 8 are formed thinner than the photoresist layer 5. for,
It fully fulfills its role as an etching mask.
However, there is no variation in the width dimensions of each electrode and wiring coating film pattern 8a, 8b, and the finished dimensions of both electrodes and wiring coating film patterns 8a, 8b are 1. .. 1. are both equal as shown in the following equation.
禎=L3−Δ鮨 ・・・・・・(2−1)こ−
で、6文1は乾式エツチングによって生ずるレジストパ
ターン寸法と電極、配線被覆膜寸法とのシフト量である
。Tei = L3 - Δ Sushi ...... (2-1) Ko-
6, sentence 1 is the amount of shift between the resist pattern dimensions and the electrode and wiring coating film dimensions caused by dry etching.
最後に、今度は、前記寸法交1にそれぞれ仕上がった各
電極、配線被覆膜パターン8a、8bをエツチングマス
クとして、同様に乾式エツチングにより、前記ポリシリ
コン層4を選択的に除去し、かつこれらの各電極、配線
被覆膜パターン8a、8bについては、これを必要に応
じ除去(図においては除去)して、目的とするところの
それぞれの各電極、配線層4a、4bを、各パターン該
当部分、つまり分離絶縁膜2を含む部分、実質的には、
分離絶縁膜2上に電極、配線層4aを、分離絶縁膜2を
含まない部分、実質的には、ゲート絶縁膜3上に電極(
ゲート電極)層4bを形成できるのである(同図(e)
)。Finally, the polysilicon layer 4 is selectively removed by dry etching using the electrode and wiring coating film patterns 8a and 8b finished at the dimensional intersection 1 as etching masks, and The electrodes and wiring coating film patterns 8a and 8b are removed as necessary (removed in the figure), and the desired electrodes and wiring layers 4a and 4b are coated with each pattern. The part, that is, the part including the isolation insulating film 2, is substantially
An electrode and a wiring layer 4a are formed on the isolation insulating film 2, and an electrode (
(gate electrode) layer 4b can be formed ((e) in the same figure).
).
そして、このようにして形成されるそれぞれの電極、配
線層4a、4bについても、その形成部分である分離絶
縁膜2上、およびゲート絶縁膜3上の如何に拘らず、共
に次式のように等しくなる。For each of the electrodes and wiring layers 4a and 4b formed in this way, regardless of whether they are formed on the isolation insulating film 2 or the gate insulating film 3, the following equations are used. be equal.
1、=見1−Δ旦2 ・・・・・・(2−2)
こ〜で、6文2は乾式エツチングによって生ずる電極、
配線被覆膜パターン寸法と電極、配線層寸法とのシフト
量である。1, = 1-Δdan2 ・・・・・・(2-2)
Here, 6th sentence 2 is an electrode produced by dry etching,
This is the amount of shift between the wiring coating film pattern dimensions and the electrode and wiring layer dimensions.
従って、この実施例方法においては、目的とする各電極
、配線層4a、4bの形成のための電極、配線材料層、
こへではポリシリコン層4上に、同層4とは屈折率の異
なる材料を用いた薄い電極、配線被覆膜8を形成させて
おくことにより、基本的なパターニングのためのフォト
レジスト層5を、均一で薄い膜厚に塗着できると共に、
露光時の定在波を防止でき、これによって、装置各部で
の所期の同一寸法による電極、配線層4aおよび電極(
ゲート電極)層4bを実現し得るのである。Therefore, in this embodiment method, each of the intended electrodes, electrodes for forming the wiring layers 4a and 4b, the wiring material layer,
Here, on the polysilicon layer 4, a thin electrode and wiring coating film 8 made of a material with a different refractive index from that of the polysilicon layer 4 are formed, thereby forming a photoresist layer 5 for basic patterning. can be applied to a uniform and thin film thickness, and
It is possible to prevent standing waves during exposure, and as a result, the electrodes, wiring layer 4a, and electrodes (
This makes it possible to realize the gate electrode layer 4b.
以上詳述したようにこの発明方法によれば、半導体基板
上に形成させた分離絶縁膜とゲート絶縁膜、すなわち一
般的には相互間に段差のある各別の膜もしくは領域上に
あって、それぞれに電極。As detailed above, according to the method of the present invention, an isolation insulating film and a gate insulating film formed on a semiconductor substrate, that is, generally on separate films or regions with a step difference between them, electrodes on each.
配線層を形成させる場合、これらの相互間に段差のある
膜もしくは領域上に、電極、配線材料層を形成させると
共に、この電極、配線材料層上に、−旦、同電極、配線
材料層とは屈折率の異なる材料を用いた薄い電極、配線
被覆膜を形成させたの 〜ちに、本来の基本的
なパターニングのためのフォトレジスト層を形成させる
ようにしたから、このフォトレジスト層を均一で薄い膜
厚に塗着できると共に、フォトレジスト層内での露光時
における定在波の発生を防止できるのであり、これによ
って結果的には、装置各部でのゲート電極を含む各電極
、配線層の寸法のバラツキを、効果的かつ良好に抑制し
得て、所期の同一寸法による各電極。When forming a wiring layer, an electrode and a wiring material layer are formed on a film or a region that has a step between them, and then a layer of the same electrode and wiring material is formed on the electrode and wiring material layer. We formed thin electrodes and wiring coating films using materials with different refractive indexes.Later, we formed a photoresist layer for basic patterning, so we changed this photoresist layer. In addition to coating the photoresist layer with a uniform and thin thickness, it is possible to prevent the generation of standing waves during exposure within the photoresist layer. Dispersion in layer dimensions can be effectively and favorably suppressed, and each electrode has the same intended dimensions.
配線層を比較的容易に形成でき、ひいてはこの種の半導
体装置での高性能化、高信頼性などを達成し、併せて製
造歩留りを格段に向上し得るのである。The wiring layer can be formed relatively easily, and this type of semiconductor device can achieve high performance and high reliability, and at the same time, the manufacturing yield can be significantly improved.
第1図(a)ないしくe)はこの発明に係る半導体装置
の製造方法を工程順に示すそれぞれ断面図であり、また
第2図(a)ないしくd)は同上従来例による製造方法
を工程順に示すそれぞれ断面図、第3図は同上従来例方
法におけるフォトレジストの膜厚とレジストパターンの
寸法との関係を示すグラフである。
1・・・・半導体基板、2・・・・素子間分離絶縁膜、
3・・・・ゲート絶縁膜、4・・・・ポリシリコン層(
電極、配線材料層)、4aおよび4b・・・・電極、配
線層および電極(ゲート電極)層、5・・・・フォトレ
ジスト層、 5a、5b・・・・レジストパターン、6
、・・・・フォトマスク、7・・・・露光のための照射
光、8・・・・電極、配線被覆膜、 8a、8b・・・
・電極、配線被覆膜パターン。
第1図・
(d)
4b二 re (’r−L th)’PI第2図
(b)
第2図
(c)
(d)FIGS. 1(a) to 1e) are cross-sectional views showing the manufacturing method of a semiconductor device according to the present invention in the order of steps, and FIGS. The cross-sectional views shown in order and FIG. 3 are graphs showing the relationship between the film thickness of the photoresist and the dimensions of the resist pattern in the conventional method. 1... Semiconductor substrate, 2... Inter-element isolation insulating film,
3... Gate insulating film, 4... Polysilicon layer (
electrode, wiring material layer), 4a and 4b...electrode, wiring layer and electrode (gate electrode) layer, 5...photoresist layer, 5a, 5b...resist pattern, 6
,... Photomask, 7... Irradiation light for exposure, 8... Electrode, wiring coating film, 8a, 8b...
・Electrode and wiring coating film patterns. Figure 1 (d) 4b2 re ('r-L th)'PI Figure 2 (b) Figure 2 (c) (d)
Claims (5)
ち、全面にゲート絶縁膜、ついで電極、配線材料層をそ
れぞれに形成し、電極、配線材料層上の全面には、同層
とは屈折率の異なる材料を用いた電極、配線被覆膜を、
また、フォトレジスト層を均一な膜厚で形成し、かつ所
定のフォトマスクを用い、フォトレジスト層を露光、現
像して、所期の各レジストパターンを形成すると共に、
各レジストパターンをマスクに用い、前記電極、配線被
覆膜を選択的にエッチング除去して、それぞれの電極、
配線被覆膜パターンを形成し、さらに、各電極、配線被
覆膜パターンをマスクに用い、前記電極、配線材料層を
選択的にエッチング除去して、それぞれの電極、配線層
を形成することを特徴とする半導体装置の製造方法。(1) After selectively forming an isolation insulating film on the semiconductor substrate, a gate insulating film is formed on the entire surface, and then an electrode and wiring material layer are formed respectively, and the same layer and the same layer are formed on the entire surface of the electrode and wiring material layer. is an electrode and wiring coating film using materials with different refractive indexes.
In addition, a photoresist layer is formed with a uniform thickness, and using a predetermined photomask, the photoresist layer is exposed and developed to form each desired resist pattern.
Using each resist pattern as a mask, the electrodes and wiring coating film are selectively etched away, and each electrode,
Forming a wiring coating film pattern, and using each electrode and wiring coating film pattern as a mask, selectively etching away the electrode and wiring material layer to form respective electrodes and wiring layers. A method for manufacturing a featured semiconductor device.
を特徴とする特許請求の範囲第1項に記載の半導体装置
の製造方法。(2) The method for manufacturing a semiconductor device according to claim 1, wherein the electrode and wiring coating film are silicon oxide films.
を特徴とする特許請求の範囲第1項に記載の半導体装置
の製造方法。(3) The method for manufacturing a semiconductor device according to claim 1, wherein the electrode and wiring coating film are silicon nitride films.
膜厚よりも薄く、100〜1000Å程度であることを
特徴とする特許請求の範囲第1項、第2項、または第3
項に記載の半導体装置の製造方法。(4) The thickness of the electrode and wiring coating film is thinner than the thickness of the electrode and wiring material layer, and is approximately 100 to 1000 Å, or Third
A method for manufacturing a semiconductor device according to paragraph 1.
ることを特徴とする特許請求の範囲第1項、第2項、第
3項、または第4項に記載の半導体装置の製造方法。(5) The method for manufacturing a semiconductor device according to claim 1, 2, 3, or 4, wherein the photoresist has a viscosity of 20 cps or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17613886A JPS6331135A (en) | 1986-07-24 | 1986-07-24 | Manufacture of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17613886A JPS6331135A (en) | 1986-07-24 | 1986-07-24 | Manufacture of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6331135A true JPS6331135A (en) | 1988-02-09 |
Family
ID=16008325
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17613886A Pending JPS6331135A (en) | 1986-07-24 | 1986-07-24 | Manufacture of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6331135A (en) |
-
1986
- 1986-07-24 JP JP17613886A patent/JPS6331135A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20030186138A1 (en) | Photomask and method for forming micro patterns of semiconductor device using the same | |
JPH0210362A (en) | Fine pattern forming method | |
US6627388B2 (en) | Method for reducing roughness of photoresist through cross-linking reaction of deposit and photoresist | |
JPH0458167B2 (en) | ||
JPS6331135A (en) | Manufacture of semiconductor device | |
JPH01220829A (en) | Pattern forming method | |
WO1983003485A1 (en) | Electron beam-optical hybrid lithographic resist process | |
GB2046463A (en) | Process for the production of structured positive photo-lacquer layers on a substrate | |
KR960000184B1 (en) | Manufacturing method of phase shift mask | |
KR0126878B1 (en) | Half tone mask fabrication method using cr mask | |
KR960000183B1 (en) | Phase reversal mask to which chromium film is added and manufacturing method thereof | |
JP2583986B2 (en) | Method of forming resist pattern | |
JPS63308316A (en) | Manufacture of semiconductor device | |
KR0159012B1 (en) | Method for forming double layer photoresist pattern | |
JPS61294821A (en) | Method for forming fine pattern | |
KR960000185B1 (en) | Method for manufacturing automatic batch phase shift mask | |
KR100399889B1 (en) | Method for Forming Photosensitive Layer Pattern of Semiconductor Device | |
JPS58171818A (en) | Method and apparatus for manufacturing semiconductor device | |
JPH06148862A (en) | Manufacture for phase inversion mask | |
JPS5912437A (en) | Formation of resist pattern | |
KR100289664B1 (en) | Manufacturing Method of Exposure Mask | |
JPS61271838A (en) | Manufacture of semiconductor device | |
JPH04127149A (en) | Photomask and its manufacturing method | |
JPS58151024A (en) | Manufacture of semiconductor device | |
JPH0513325A (en) | Pattern formation method |