[go: up one dir, main page]

JPS63310922A - Manufacturing method of 2CR material for welded cans with excellent flange workability by continuous annealing - Google Patents

Manufacturing method of 2CR material for welded cans with excellent flange workability by continuous annealing

Info

Publication number
JPS63310922A
JPS63310922A JP14419487A JP14419487A JPS63310922A JP S63310922 A JPS63310922 A JP S63310922A JP 14419487 A JP14419487 A JP 14419487A JP 14419487 A JP14419487 A JP 14419487A JP S63310922 A JPS63310922 A JP S63310922A
Authority
JP
Japan
Prior art keywords
continuous annealing
temperature
cold rolling
less
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14419487A
Other languages
Japanese (ja)
Inventor
Seiichi Tanaka
聖一 田中
Senkichi Tsujimura
辻村 銑吉
Hideo Ono
大野 英雄
Masaaki Shibata
政明 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP14419487A priority Critical patent/JPS63310922A/en
Publication of JPS63310922A publication Critical patent/JPS63310922A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は連続焼鈍によるフランジ加工性に優れた浴接缶
用ZCR材の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a ZCR material for bath welding cans that has excellent flanging properties by continuous annealing.

(従来の技術) 従来よりスリーピース缶胴の接合はハンダ付け、樹脂接
着による方法、溶接によ7る方法で行なわれている。
(Prior Art) Conventionally, three-piece can bodies have been joined by soldering, resin bonding, and welding.

その中で溶接による方法はハンダ付け、樹脂接着に比べ
、 (1)接合代が少ないので材料歩留が良い。
Among these methods, welding has a better material yield than soldering or resin bonding because (1) the joining cost is smaller;

(2)ラップ部が薄いので気密性、捲締め性が良い。(2) Since the wrap portion is thin, airtightness and rollability are good.

(3)サイドシーム部が強い。(3) Strong side seams.

(4)印刷よけが狭くできるので印刷効果に優れる。(4) Excellent printing effect because the printing clearance can be narrowed.

(5)ハンダ飛びこみかない。(5) Solder may not jump in.

等の数多くの利点があるために近年スリーピース缶製造
の主流になって3す、その適用分野も食缶用スリーピー
ス缶からエアゾール缶、雑缶等にムがっている。(以下
溶接缶と称す) この溶接缶の製造法は2つの電極ロールから銅線を介し
て高周波、高電圧の電流を流し、同時に加圧し、缶材が
抵抗となって発熱し、0.5mm程度のラップ代で溶着
する電気抵抗溶接法が一般的である。
Because of the numerous advantages such as these, three-piece can production has become mainstream in recent years, and its application has expanded from three-piece food cans to aerosol cans, miscellaneous cans, and the like. (Hereinafter referred to as a welded can) The manufacturing method for this welded can is to pass a high-frequency, high-voltage current through a copper wire from two electrode rolls, pressurize it at the same time, and the can material becomes a resistance and generates heat. Electric resistance welding is common, which involves welding with a lap thickness of about 100 mL.

このような溶接缶の素材としては、焼鈍板に高強度化及
び極薄化を目的として15%以上の圧下率で2次冷延を
施こす、いわゆる2CR法で製造する板厚0.20mm
前後の極薄鋼板とした20R材が、その後メッキされ使
用されている。
The material for such welded cans is a plate with a thickness of 0.20 mm manufactured by the so-called 2CR method, in which an annealed plate is subjected to secondary cold rolling at a reduction rate of 15% or more for the purpose of increasing strength and making it extremely thin.
The front and rear parts are made of ultra-thin 20R steel plates, which are then plated and used.

しかしながら2CR法による溶接缶はサイドシーム後の
缶胴に缶蓋を取りつけるためのフランジ加工を施した際
に溶接部近傍でフランジ加工による割れを生ずる場合が
ある。
However, when a welded can manufactured by the 2CR method is subjected to flange processing for attaching a can lid to the can body after the side seam, cracks may occur in the vicinity of the welded portion due to the flange processing.

(発明が解決しようとする問題点) この原因は、溶接による接合不良、鋼板の加工性不良、
鋼板の介〜在物、溶接部の硬化、熱影響部の軟化などで
あるが、このうち溶接による熱影響部の軟化が原因で生
じるフランジ割れが最も多く、溶接缶のフランジ加工に
おける最大の課題となっている。
(Problem to be solved by the invention) This is caused by poor welding, poor workability of the steel plate,
These include inclusions in the steel plate, hardening of the weld, and softening of the heat-affected zone, but among these, flange cracking is the most common cause due to softening of the heat-affected zone due to welding, and is the biggest problem in processing flanges of welded cans. It becomes.

この熱影響部の軟化は、素材を高強度としている2次冷
延の加工歪が溶接時の加熱によシ消滅して起るものと考
えられており、フランジ割れはこの軟化部にフランジ加
工の際の加工歪が集中し、発生するとの知見が得られて
いる。
It is thought that this softening of the heat-affected zone occurs when the processing strain of the secondary cold rolling, which gives the material high strength, disappears due to the heating during welding. It has been found that machining distortion occurs when it is concentrated.

通常このフランジ割れの発生傾向は箱焼鈍による2CR
材よりも結晶粒径が小さく、固溶C量が多いために焼鈍
後の冷延による歪を蓄積しやすい連続焼鈍による2CR
材で著しい。
Normally, this tendency for flange cracking to occur is 2CR due to box annealing.
2CR by continuous annealing, which tends to accumulate strain due to cold rolling after annealing because the grain size is smaller than that of the material and the amount of solid solute C is large.
Significant in wood.

このため品質の均一性、生産性に勝る連続焼鈍材の適用
範囲が著しく制約されており、現在フランジ加工性に優
れた連続焼鈍による溶接缶用2CR材の出現が関連業界
から待望される状況にある。
For this reason, the scope of application of continuous annealing materials, which have superior quality uniformity and productivity, is severely restricted, and the appearance of continuously annealed 2CR materials for welded cans with excellent flangeability is currently eagerly awaited by related industries. be.

これに対して、これまでに連続焼鈍法においてフランジ
加工性を向上させる技術について、特開昭58−164
752号公報などにより素材の結晶粒を粗大化してフラ
ンジ加工性を同上させる方法や、特開昭61−3415
9号公報などによりセメンタイトの微細化によるフラン
ジ加工性に優れた鋼板の製造法などが既に提案されてい
る。
On the other hand, Japanese Patent Application Laid-Open No. 58-164 has developed a technique for improving flange workability in continuous annealing.
A method of coarsening the crystal grains of the material to improve flange workability is disclosed in Japanese Patent Application Laid-Open No. 61-3415.
No. 9 and other publications have already proposed a method of manufacturing a steel plate with excellent flange workability by making cementite finer.

しかしながら上述の技術のうち前者の製法は2次冷延前
の焼鈍板を粗粒化する方法によるため連続焼鈍材の特性
である品質の均一性を確保する上で製造管理に難点があ
シ、更には素材の硬質化を図るため焼鈍後の2次冷延率
を高くする必要から溶接時の素材の再結晶温度が下がり
熱影響部の軟化が著しく、フランジ割れ改善効果が低減
する等の欠点を持っている。
However, among the above-mentioned technologies, the former manufacturing method involves coarsening the annealed plate before the secondary cold rolling, so there are difficulties in manufacturing control in ensuring uniformity of quality, which is a characteristic of continuously annealed materials. Furthermore, in order to harden the material, it is necessary to increase the secondary cold rolling rate after annealing, which lowers the recrystallization temperature of the material during welding, significantly softening the heat affected zone, and reducing the effect of improving flange cracking. have.

まだ後者の製法は、C量を増し、熱間圧延後に急冷し、
400〜600℃の低温捲取りすることでセメンタイト
の微細分散を図り軟化抑制効果を得るものであるが、セ
メンタイトの微細分散化はセメンタイト粒子による結晶
粒成長の抑制にも働き、更に増量による溶接時の散り(
スパッタリング)が発生しゃすくなシ、散りによる溶接
熱影響部の局部的軟化でフランジ加工性が低下するなど
の欠点を有している。
However, the latter manufacturing method involves increasing the amount of C, rapidly cooling after hot rolling,
By rolling at a low temperature of 400 to 600°C, cementite is finely dispersed to obtain a softening suppressing effect, but finely dispersing cementite also works to suppress crystal grain growth due to cementite particles, and furthermore, by increasing the amount of cementite during welding. scattering (
It has drawbacks such as less occurrence of sputtering and local softening of the weld heat-affected zone due to spatter, which reduces flange workability.

本発明の目的は上記の難点を克服し、浴接によって缶の
接合を行なった後のフランジ加工性に後れた連続焼鈍に
よる溶接缶用2CR極薄鋼板を提供することにめる。
The object of the present invention is to overcome the above-mentioned difficulties and to provide a 2CR ultra-thin steel sheet for welded cans by continuous annealing, which has poor flange workability after cans are joined by bath welding.

(問題点を解決するための手段) 本発明の要旨とするところは重量係で、c ; O。(Means for solving problems) The gist of the present invention is the weight factor, c;

03〜0.08%、Si;0.03%以下、 Mn ;
 0.05〜0.6%、P;0.06%以下、 u ;
 O;02〜0.1%。
03-0.08%, Si; 0.03% or less, Mn;
0.05-0.6%, P; 0.06% or less, u;
O: 02-0.1%.

N;o、ox%以下を含有し、残部が鉄および不可避的
元素からなる鋼を熱間圧延し熱間仕上圧延温度をA8点
以上で行ない、次いで630〜710’(:の温度で捲
取りもしくは均熱保持した後、脱スケール、冷延を行な
い連続焼鈍によって焼鈍し、引き続き300〜450℃
で30秒以上の過時効処理を行ない15係以上の2次冷
延を行ないメッキ用素材とするフランジ加工性に優れた
溶接缶用2CR材の製造方法でめる。
A steel containing N; o, ox% or less, with the balance consisting of iron and other unavoidable elements, is hot-rolled at a hot finish rolling temperature of A8 or higher, and then rolled at a temperature of 630 to 710' (: Alternatively, after soaking and holding, descaling, cold rolling, and continuous annealing are performed at 300 to 450°C.
The material is subjected to over-aging treatment for 30 seconds or more, and then subjected to secondary cold rolling to a rolling strength of 15 or more.The material is then used as a plating material to produce 2CR material for welded cans, which has excellent flange workability.

又、本発明は比較的低Cに成分限定した鋼片を熱延に先
立ち、950〜1150℃の温度範囲にて加熱した後、
熱延の熱間仕上圧延温度をA8点以上にすることで素材
の延性向上を図り、捲取温度を630℃以上710℃に
規制することで熱延板結晶粒の適正な粒成長を進め、ま
た熱延板の炭化物の均一分散による冷延蓄積歪の不均一
化を抑え、焼鈍後の結晶粒を大きくして溶接時の軟化防
止を行なう。
In addition, the present invention heats a steel slab whose composition is limited to a relatively low C in a temperature range of 950 to 1150°C prior to hot rolling.
We aim to improve the ductility of the material by setting the hot finishing hot rolling temperature to A8 point or higher, and by regulating the winding temperature to 630°C or higher and 710°C, we promote appropriate grain growth of hot-rolled sheet crystal grains. It also suppresses non-uniform cold rolling accumulated strain due to uniform dispersion of carbides in the hot rolled sheet, and enlarges crystal grains after annealing to prevent softening during welding.

更に焼鈍後において300−450℃で30秒以上過時
効処理を行なうことにより固溶炭素を減少させて2次冷
延による冷延蓄積歪を低減し溶接時の軟化の抑制を図り
、フランジ加工性に優れた極薄鋼板を得ようとするもの
である。
Furthermore, by performing overaging treatment at 300-450℃ for 30 seconds or more after annealing, solute carbon is reduced, cold rolling accumulated strain due to secondary cold rolling is reduced, softening during welding is suppressed, and flange workability is improved. The aim is to obtain an ultra-thin steel sheet with excellent properties.

(作用) 以下に本発明について詳細に説明する。(effect) The present invention will be explained in detail below.

まずC量の下限をo、o3%としたのは、そ−れ以下で
は鋼中の固溶Cが増加する領域が存在し、更に極薄鋼板
の強度を得られないためである。
First, the lower limit of the C content is set to o, o3% because below this, there is a region where solid solution C in the steel increases, and furthermore, the strength of an ultra-thin steel plate cannot be obtained.

また、C量の上限を0.08%としたのは、それ以上で
はセメンタイト粒子による結晶粒成長の抑制作用が大き
くなり素材(鋼板)の結晶粒が大きくならず、フランジ
加工において割れの発生が容易に起り得るとともにC量
の増加による溶接時の散シ(スパッタリング)が発生し
やすくなるためである。
In addition, the upper limit of the C content was set at 0.08% because if it exceeds this value, the suppressing effect of grain growth by cementite particles becomes large, and the crystal grains of the material (steel plate) do not become large, and cracks may occur during flange processing. This is because sputtering can easily occur and sputtering during welding is likely to occur due to an increase in the amount of C.

S1量の上限を0.03%としたのはSl量が多くなる
と固溶体強化による素材の硬化でフランジ加工性が劣化
するとともに、Siの表面富化によるメッキ原板として
のメッキ密着性の劣化が生じるためである。
The upper limit of the S1 content was set at 0.03% because as the S1 content increases, flange workability deteriorates due to hardening of the material due to solid solution strengthening, and the plating adhesion as a plating original plate deteriorates due to surface enrichment of Si. It's for a reason.

Mn量を0.05〜o、6%と限定したのはMn量を少
なくすると軟質化しフランジ加工性は良くなるが、缶用
素材としての強度が得られず、逆にMn量を多くすると
コスト的に不利であるとともにフランジ加工における割
れの原因になるためである。
The reason why the amount of Mn is limited to 0.05 to 6% is because if the amount of Mn is reduced, it will become softer and the flange workability will be improved, but the strength as a material for cans will not be obtained, and conversely, if the amount of Mn is increased, the cost will increase. This is because it is disadvantageous in terms of performance and also causes cracks during flange processing.

P量を0゜06%以下にしたのはPは固溶体強化元素と
して硬質化の程度に応じて所要量を添加するが、必要以
上の添加はフランジ加工性に悪影響を与え、更に素材の
耐食性の劣化を生ずるため上限を0.06%とした。
The reason why the amount of P was set to 0.06% or less is because P is a solid solution strengthening element and is added in the required amount according to the degree of hardening, but adding more than necessary will have a negative effect on flange workability and will also reduce the corrosion resistance of the material. Since this causes deterioration, the upper limit was set at 0.06%.

M量を0.02〜0.1%に限定し、下限を0.02係
としたのはNを固定するのに必要な量であり、上限を0
.1%としたのは、それ以上の添加はMの過剰を招き、
更にはNを固定した余剰Mがフランジ加工性を劣化させ
、まだMの表面富化による素材の耐食性劣化を招くため
上限を0.1%とした。
The amount of M is limited to 0.02 to 0.1%, and the lower limit is set to 0.02, which is the amount necessary to fix N, and the upper limit is set to 0.02%.
.. The reason why it is set at 1% is because adding more than that will lead to excess M.
Furthermore, the excess M with fixed N deteriorates the flange workability, and the surface enrichment of M still causes deterioration of the corrosion resistance of the material, so the upper limit was set at 0.1%.

Nは、AgNとして析出し、析出強化による高強度化の
効果を付加するために必要であるが、余り多く含有され
るとフランジ加工性を劣化させるので、0.01チ以下
とする。
N is necessary to precipitate as AgN and add the effect of increasing the strength by precipitation strengthening, but if too much is contained, the flange workability will be deteriorated, so the content should be 0.01 inch or less.

熱゛間圧延に先立ち、必要に応じて、鋼片の再加熱温度
を950〜1150℃の範囲として加熱する。これは鋼
片の製造過程で析出したAINの再溶解を抑制するとと
もにAANを熱間圧延工程もしくはそれ以降の工程で結
晶粒成長を阻害しないように比較的大きな形態で維持す
るためであり、これを奏するには上限は1150℃であ
る。一方、その温度が余りにも低いと熱間圧延が円滑に
できないので下限を950℃とする。この鋼片の加熱を
行うと更に粒成長による軟質化で2次冷延率の自由度が
大きくなり2CR材としての強度を効率的に確保するこ
とができる。また、MをAINの形態−で析出固定する
ことにより製造過程におけるMの表面富化を抑え素材の
耐食性向上も期待される。
Prior to hot rolling, the steel billet is heated to a reheating temperature in the range of 950 to 1150°C, if necessary. This is to suppress the re-melting of AIN precipitated during the manufacturing process of steel slabs, and to maintain AAN in a relatively large form so as not to inhibit grain growth during the hot rolling process or subsequent processes. The upper limit for achieving this is 1150°C. On the other hand, if the temperature is too low, hot rolling cannot be performed smoothly, so the lower limit is set at 950°C. When this steel billet is heated, it becomes softer due to grain growth, which increases the degree of freedom in the secondary cold rolling rate, making it possible to efficiently ensure the strength of a 2CR material. Furthermore, by precipitating and fixing M in the form of AIN, it is expected that surface enrichment of M during the manufacturing process will be suppressed and the corrosion resistance of the material will be improved.

熱間仕上圧延温度をA3点以上に限定したのは、素材の
延性向上を目的とするが、仕上温度をA3点以下とした
場合にα+γ域あるいはα域圧延となって熱延鋼板の組
織が粗粒化し材質の軟化が著しいため、2次冷延率を高
くとらねばならず、溶接時の軟化温度が低下しフランジ
加工性が劣化する点を配慮したものである。
The purpose of limiting the hot finishing rolling temperature to the A3 point or higher is to improve the ductility of the material, but if the finishing temperature is set to the A3 point or lower, rolling will occur in the α+γ region or α region and the structure of the hot rolled steel sheet will change. This is done in consideration of the fact that the grains become coarse and the material softens significantly, so the secondary cold rolling rate must be set high, which lowers the softening temperature during welding and deteriorates flange workability.

次に熱間捲取温度を630〜710 ’Cに限定したの
は、素材のフランジ加工性には適度の粒成長が好ましい
ため熱延板において結晶粒の成長を促進させるとともに
AINの析出を図るためである。
Next, the hot rolling temperature was limited to 630 to 710'C, because moderate grain growth is preferable for the flange workability of the material, so the purpose is to promote the growth of crystal grains in the hot rolled sheet and to promote the precipitation of AIN. It's for a reason.

捲取温度の下限を630℃とするのは、鋼片で残った固
溶Nを析出させるためと粒成長を促進させ粗粒化を図る
ためである。
The lower limit of the winding temperature is set to 630° C. in order to precipitate the solid solution N remaining in the steel slab and to promote grain growth to coarsen the grains.

また上限を710℃としたのは、710℃を越える高温
になると結晶粒はより粗粒化するが、同時に炭化物が凝
集し塊状化するため素材の耐食性及びフランジ加工性が
劣化するとともに鋼板の長手方向、巾方向の材質バラツ
キが大きくなり製品の均一性を要求される溶接缶用素材
として実用上好ましくない点を考慮したものである。
In addition, the upper limit was set at 710°C because when the temperature exceeds 710°C, crystal grains become coarser, but at the same time, carbides aggregate and form into lumps, which deteriorates the corrosion resistance and flange workability of the material and also reduces the longitudinal strength of the steel sheet. This is done in consideration of the fact that the variation in the material in the direction and width direction is large, which is undesirable in practice as a material for welded cans, which requires uniformity of the product.

熱延後、脱スケール、冷延、連続焼鈍を行なう。After hot rolling, descaling, cold rolling, and continuous annealing are performed.

連続焼鈍温度は特定する必要はないけれども高い方が結
晶粒は大きくなり好ましい。また焼鈍時間は長い方が結
晶粒は大きくなり好ましい。
Although the continuous annealing temperature does not need to be specified, it is preferable that the temperature is higher because the crystal grains become larger. Further, the longer the annealing time, the larger the crystal grains become, which is preferable.

連続焼鈍後、過時効処理を行なうことにより鋼中の固溶
Cが減少しフランジ加工性が格段に向上する。
By performing overaging treatment after continuous annealing, solid solution C in the steel is reduced and flange workability is significantly improved.

過時効処理温度を300〜450℃に限定したのは、3
00℃未満では過飽和固溶Cを十分析出させるのに極め
て長時間を要し能率の上で実用的でなく、450℃を越
える条件では昇温・冷却に時間がかかり、更にその温度
ではCの固溶限が大きく、固溶Cが過時効処理後も多く
残留しフランジ加工性が劣化する点で好ましくないため
である。
The reason why the overaging treatment temperature was limited to 300 to 450°C was 3.
At temperatures below 00°C, it takes an extremely long time to extract enough supersaturated solid solution C, making it impractical in terms of efficiency. At temperatures above 450°C, it takes time to heat up and cool down, and furthermore, at that temperature, C This is because the solid solubility limit of C is large, and a large amount of solid solute C remains even after overaging treatment, which is undesirable in that flange workability deteriorates.

この温度範囲内であれば、鋼中の固溶Cを析出されるの
に必要な処理時間は30秒以上あればよい。
Within this temperature range, the treatment time required to precipitate solid solution C in the steel may be 30 seconds or more.

本発明の2次冷延率の下限を15%に限定したの′は、
固溶Cを有する連続焼鈍材においては15チ未満の低圧
下冷延率では、時効特性を多少とも残す素材となってし
まい、溶接後の高速フランジ成型加工の際に、時効によ
ってリューダース帯(及び熱影響部)のみが大きく変形
してしまいフランジ割れを起す現象があるためである。
The reason why the lower limit of the secondary cold rolling ratio of the present invention is limited to 15% is as follows.
Continuously annealed materials with solid solution C at low rolling reductions of less than 15 inches will result in materials that retain some aging characteristics, and during high-speed flange forming processing after welding, aging will cause Lüders bands ( This is because there is a phenomenon in which only the heat-affected zone (and heat-affected zone) deforms significantly, resulting in flange cracking.

このようにして得た2CR高強度極薄鋼板を素材として
、目的に応じた表面のメッキを選択し、フランジ加工性
に優れた溶接缶用2CR材を製造することができる。
Using the 2CR high-strength ultra-thin steel plate thus obtained as a raw material, a 2CR material for welded cans with excellent flange workability can be manufactured by selecting surface plating according to the purpose.

本発明の製造法では、巾広く各種のメッキにおいても同
様の効果を発揮するので、メッキ層の成分、性状を特に
限定することはない。
Since the manufacturing method of the present invention exhibits similar effects in a wide variety of platings, the components and properties of the plating layer are not particularly limited.

以下に実施例について述べる。Examples will be described below.

N11l〜6は本発明の実施例で、随7〜12は比較例
である。
N11l-6 are examples of the present invention, and Nos. 7-12 are comparative examples.

第1表に示す成分にて連続鋳造後、熱延にて23〜3.
0fiまで熱間圧延を行ない、次いで通常の酸洗処理後
、0.207 %−0,243鵡までタンデム式冷間圧
延機にて圧延した。この鋼板を連続焼鈍炉にて焼鈍後、
引き続き過時効処理を行ない(但し随10〜12は過時
効処理なし)、錫メッキを施した。
After continuous casting with the ingredients shown in Table 1, hot rolling was performed at 23 to 3.
Hot rolling was carried out to 0fi, followed by ordinary pickling treatment and rolling to 0.207% - 0.243mm in a tandem cold rolling mill. After annealing this steel plate in a continuous annealing furnace,
Subsequently, over-aging treatment was performed (however, No. 10 to 12 were not over-aging treated), and tin plating was performed.

メッキ板の硬さ、SBi値を第1表に示す。Table 1 shows the hardness and SBi value of the plated plate.

このメッキ鋼板をスリット後、スードロニツク溶接機(
ABM−270機)にて缶胴として成型しディスクフラ
ンシャーにてフランジ加工を行なった。
After slitting this plated steel plate, use a Sudronik welding machine (
ABM-270 machine) was used to form the can body, and a disc flancher was used to perform flange processing.

各水準毎の総製倍数に占めるフランジ割れ倍数をフラン
ジ割れ発生率として百分率で第1表に示す。
Table 1 shows the number of flange cracks in the total manufacturing number for each level as a percentage of the flange crack occurrence rate.

凡例、溶接条件 溶接機: ABM−270 ワイヤースピード: 30 m/分 製缶スピード  :270缶/分 オーバーラツプ巾 二〇、5憩 フランジ加工デイスクアランジヤー使用本発明り   
比較材○ (2G1日9第1表の本発明法に従って製造
されたN11l〜6の鋼板はフランジ割れ缶は皆無であ
シ、比較のように本発明範囲を外れた随7〜12の鋼板
とは明らかな差が認められる。
Legend, welding conditions Welding machine: ABM-270 Wire speed: 30 m/min Can making speed: 270 cans/min Overlap width 20, 5-way flange processing Disk square gear used This invention
Comparative material ○ (2G1 day 9 Steel plates of N11l~6 manufactured according to the method of the present invention in Table 1 had no flange cracks, and as compared to steel plates of No. 7~12 which were outside the scope of the present invention as in comparison) There is a clear difference.

本発明法による溶接缶用2CR材(銅板)は、フランジ
加工性の点で極めて優れていることを第1表は示してお
り、これによって鋼板の歩留が向上するばかりでなく、
鋼板の厚さを薄くできる点で省資源、省エネルギーに寄
与するところ大であリ、本発明から生じる経済的価値は
極めて大きい。
Table 1 shows that the 2CR material (copper plate) for welded cans produced by the method of the present invention is extremely excellent in terms of flange workability, which not only improves the yield of steel plates but also
The ability to reduce the thickness of the steel plate greatly contributes to resource and energy conservation, and the economic value resulting from the present invention is extremely large.

(発明の効果) 本発明に従えばフランジ加工性に優れた極薄鋼板の溶接
缶用2CR材の製造が可能になるばかりでなく、鋼板の
板厚減少をおぎなう高強度極薄鋼板とすることが可能で
あり、本発明の範囲内においてC,Mn、Hの含有量を
変えることにより、また2次冷延率を変えることにより
缶材としての所要強度範囲において強度レベルの異なっ
た鋼板をフランジ加工性を損うことなしに容易に製造す
ることができる。
(Effects of the Invention) According to the present invention, it is not only possible to manufacture a 2CR material for welded cans made of an ultra-thin steel plate with excellent flanging properties, but also to produce a high-strength ultra-thin steel plate that can reduce the thickness of the steel plate. By changing the contents of C, Mn, and H within the scope of the present invention, and by changing the secondary cold rolling rate, it is possible to flange steel sheets with different strength levels within the required strength range for can stock. It can be easily manufactured without impairing processability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、極薄鋼板0.17〜O,18mの2次冷延率
と缶胴成型後のディスクフランシャーによるフランジ割
れ発生率との関係を示す図である。 第1図 2銑さ
FIG. 1 is a diagram showing the relationship between the secondary cold rolling rate of an ultra-thin steel plate of 0.17 to 0.18 m and the incidence of flange cracking caused by a disk flancher after forming the can body. Figure 1 2 Pig

Claims (2)

【特許請求の範囲】[Claims] (1)重量%で、〔C〕:0.03〜0.08%〔Mn
〕:0.05〜0.6% 〔Si〕:0.03%以下 〔P〕:0.06%以下 〔Al〕:0.02〜0.1% 〔N〕:0.01%以下 残部鉄および不可避的不純物元素からなる鋼を熱間圧延
し、熱間仕上圧延をA_3点以上の温度で行ない、次い
で630〜710℃の温度で捲取りもしくは均熱保持し
た後、脱スケール、冷延を行ない連続焼鈍によつて焼鈍
し、引き続き300〜450℃で30秒以上の過時効処
理を行ない、15%以上の2次冷延を行ないメッキ用素
材とする連続焼鈍によるフランジ加工性に優れた溶接缶
用2CR材の製造方法。
(1) In weight%, [C]: 0.03 to 0.08% [Mn
]: 0.05-0.6% [Si]: 0.03% or less [P]: 0.06% or less [Al]: 0.02-0.1% [N]: 0.01% or less balance Steel consisting of iron and inevitable impurity elements is hot rolled, hot finish rolled at a temperature of A_3 or higher, then rolled or soaked at a temperature of 630 to 710°C, followed by descaling and cold rolling. The material is then annealed by continuous annealing, followed by over-aging treatment at 300-450°C for 30 seconds or more, and then subjected to secondary cold rolling of 15% or more to provide excellent flange formability through continuous annealing to make it into a plating material. Method for manufacturing 2CR material for welded cans.
(2)重量%で、〔C〕:0.03〜0.08%〔Mn
〕:0.05〜0.6% 〔Si〕:0.03%以下 〔P〕:0.06%以下 〔Al〕:0.02〜0.1% 〔N〕:0.01%以下 残部鉄および不可避的不純物元素からなる鋼を950〜
1150℃の温度範囲で加熱し、熱間仕上圧延をA_3
点以上の温度で行ない、次いで630〜710℃の温度
で捲取もしくは均熱保持した後、脱スケール、冷延を行
ない連続焼鈍によつて焼鈍し、引き続き300〜450
℃で30秒以上の過時効処理を行ない、15%以上の2
次冷延を行ないメッキ用素材とする連続焼鈍によるフラ
ンジ加工性に優れた溶接缶用2CR材の製造方法。
(2) In weight%, [C]: 0.03 to 0.08% [Mn
]: 0.05-0.6% [Si]: 0.03% or less [P]: 0.06% or less [Al]: 0.02-0.1% [N]: 0.01% or less balance Steel consisting of iron and unavoidable impurity elements from 950 to
Heating in the temperature range of 1150℃, hot finish rolling A_3
After rolling or soaking at a temperature of 630 to 710°C, descaling and cold rolling are performed and annealed by continuous annealing to 300 to 450°C.
Perform overaging treatment at ℃ for 30 seconds or more, and
A method for manufacturing a 2CR material for welded cans that has excellent flange workability by continuous annealing and subsequent cold rolling to produce a material for plating.
JP14419487A 1987-06-11 1987-06-11 Manufacturing method of 2CR material for welded cans with excellent flange workability by continuous annealing Pending JPS63310922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14419487A JPS63310922A (en) 1987-06-11 1987-06-11 Manufacturing method of 2CR material for welded cans with excellent flange workability by continuous annealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14419487A JPS63310922A (en) 1987-06-11 1987-06-11 Manufacturing method of 2CR material for welded cans with excellent flange workability by continuous annealing

Publications (1)

Publication Number Publication Date
JPS63310922A true JPS63310922A (en) 1988-12-19

Family

ID=15356397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14419487A Pending JPS63310922A (en) 1987-06-11 1987-06-11 Manufacturing method of 2CR material for welded cans with excellent flange workability by continuous annealing

Country Status (1)

Country Link
JP (1) JPS63310922A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009125876A1 (en) * 2008-04-11 2009-10-15 Jfeスチール株式会社 High-strength steel sheet for container and process for production thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151426A (en) * 1982-03-04 1983-09-08 Kawasaki Steel Corp Manufacture of ultrathin steel sheet for can having low anisotropy in plane
JPS6024327A (en) * 1983-07-20 1985-02-07 Nippon Steel Corp Manufacturing method of ultra-thin steel plate for welded cans with excellent flangeability
JPS6033317A (en) * 1983-08-01 1985-02-20 Nippon Steel Corp Manufacture of 2cr material for welded can good in flange workability
JPS637336A (en) * 1986-06-27 1988-01-13 Nippon Steel Corp Manufacturing method of ultra-thin steel plate for welded cans with excellent flangeability

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151426A (en) * 1982-03-04 1983-09-08 Kawasaki Steel Corp Manufacture of ultrathin steel sheet for can having low anisotropy in plane
JPS6024327A (en) * 1983-07-20 1985-02-07 Nippon Steel Corp Manufacturing method of ultra-thin steel plate for welded cans with excellent flangeability
JPS6033317A (en) * 1983-08-01 1985-02-20 Nippon Steel Corp Manufacture of 2cr material for welded can good in flange workability
JPS637336A (en) * 1986-06-27 1988-01-13 Nippon Steel Corp Manufacturing method of ultra-thin steel plate for welded cans with excellent flangeability

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009125876A1 (en) * 2008-04-11 2009-10-15 Jfeスチール株式会社 High-strength steel sheet for container and process for production thereof
JP2010043349A (en) * 2008-04-11 2010-02-25 Jfe Steel Corp Steel sheet for high-strength container, and method for manufacturing therefor

Similar Documents

Publication Publication Date Title
JP4538914B2 (en) Manufacturing method of hot-rolled steel sheet for ultra-thin steel sheet
JP3931455B2 (en) Steel plate for can and manufacturing method thereof
JP3852210B2 (en) Steel plate for modified 3-piece can and manufacturing method thereof
JP2000273577A (en) High tensile strength hot rolled steel plate excellent in stretch-flanging workability and material stability and its production
JPH08165538A (en) Highly recyclable aluminum alloy rolled sheet for automobile body sheet and method for producing the same
CN103436778B (en) There is low-temperature flexibility flux-cored wire cold rolled strip and production method thereof
JPS637336A (en) Manufacturing method of ultra-thin steel plate for welded cans with excellent flangeability
JP4779737B2 (en) Manufacturing method of steel sheet for ultra thin can and steel sheet for ultra thin can
JPH04350A (en) Cold rolled high tensile strength steel sheet excellent in stretch flange characteristic, hot-dip galvanized steel sheet, and their production
JP4276388B2 (en) Thin steel plate for high-strength welding cans excellent in flange formability and method for producing the same
JP5256818B2 (en) Method for producing high toughness steel
JPS63310922A (en) Manufacturing method of 2CR material for welded cans with excellent flange workability by continuous annealing
JPH07118792A (en) High strength hot rolled steel sheet and method for producing the same
JPH0582458B2 (en)
JPS6024327A (en) Manufacturing method of ultra-thin steel plate for welded cans with excellent flangeability
JPH05295432A (en) Production of steel plate having high strength and high toughness by online thermomechanical treatment
JP3573389B2 (en) Double cold rolled steel plate for weld can with easy flange forming and method of manufacturing the same
JP3700280B2 (en) Manufacturing method of steel plate for cans
CN118147549B (en) Cold heading steel wire rod and production method thereof
JPS6114216B2 (en)
JPH1088230A (en) Production of high tensile strength steel material excellent in toughness
JPS61207520A (en) Production of soft blank plate for surface treatment
JP3240843B2 (en) Steel plate excellent in spot weldability and surface properties and method for producing the same
JPS6134159A (en) Steel plate for welded cans with excellent flange workability
JPS6033317A (en) Manufacture of 2cr material for welded can good in flange workability