JPS6331041B2 - - Google Patents
Info
- Publication number
- JPS6331041B2 JPS6331041B2 JP55130292A JP13029280A JPS6331041B2 JP S6331041 B2 JPS6331041 B2 JP S6331041B2 JP 55130292 A JP55130292 A JP 55130292A JP 13029280 A JP13029280 A JP 13029280A JP S6331041 B2 JPS6331041 B2 JP S6331041B2
- Authority
- JP
- Japan
- Prior art keywords
- flow
- vortex generator
- vortex
- flow rate
- fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000012530 fluid Substances 0.000 claims description 14
- 230000007423 decrease Effects 0.000 claims description 5
- 238000001514 detection method Methods 0.000 description 8
- 239000000428 dust Substances 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000001154 acute effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P5/00—Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
- G01P5/01—Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by using swirlflowmeter
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/05—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
- G01F1/20—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
- G01F1/32—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
- G01F1/325—Means for detecting quantities used as proxy variables for swirl
- G01F1/3259—Means for detecting quantities used as proxy variables for swirl for detecting fluid pressure oscillations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/05—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
- G01F1/20—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
- G01F1/32—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
- G01F1/325—Means for detecting quantities used as proxy variables for swirl
- G01F1/3273—Means for detecting quantities used as proxy variables for swirl for detecting fluid speed oscillations by thermal sensors
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Measuring Volume Flow (AREA)
Description
【発明の詳細な説明】
本発明は被測流体が流れる管路の途中に柱状の
渦発生体を設け、該渦発生体から発生する渦を検
出することにより流速または流量を計測するよう
にした流速・流量計測装置に関するものである。[Detailed Description of the Invention] The present invention provides a columnar vortex generator in the middle of a pipe through which a fluid to be measured flows, and measures the flow velocity or flow rate by detecting the vortex generated from the vortex generator. This relates to flow velocity/flow measuring devices.
従来、第1〜2図または第3図に示す流速・流
量検出装置が知られている。即ち、まず第1〜2
図に示すものにおいて、1は管路の途中に設けら
れた柱状の渦発生体で、該渦発生体1は第2図の
如く流れに対向する平面1Aを有すると共に流れ
の下流に向うと共に減小する面1Bを有し、流れ
に対向する面1Aには一対の感温素子2、例えば
サーミスタが設けられている。前記渦発生体1は
管路となる流速・流量計の本体3の直径部分を貫
いて設けられ、密封部材4,4により気液密にシ
ールされている。また、本体3の上部には感温素
子2と接続されるプリアンプ5が設けられてい
る。そして、流体が矢示方向に流れると渦発生体
1により左右交互に渦を発生し、感温素子2表面
の流速が交互に変化するため、この変化分を差動
的に検出することによつて、流速または流量を測
定している。しかし、かかる方式のものは感温素
子2が流れと対向しているため塵埃やゴミが付着
しやすく、また感温素子2に塵埃やゴミが衝突し
て破損するおそれがあり、さらに該感温素子2は
強度的に弱く、電気絶縁も困難である等の欠点を
有し、流体の計測には不向きであつた。 2. Description of the Related Art Conventionally, a flow velocity/flow rate detection device shown in FIGS. 1-2 or 3 is known. That is, first, the first and second
In what is shown in the figure, 1 is a columnar vortex generator provided in the middle of the pipe, and the vortex generator 1 has a plane 1A facing the flow as shown in Figure 2, and decreases as it goes downstream of the flow. A pair of temperature sensing elements 2, such as a thermistor, are provided on the surface 1A facing the flow. The vortex generator 1 is provided through the diameter portion of the main body 3 of the flow rate/flow meter, which serves as a conduit, and is sealed air-liquid-tight by sealing members 4, 4. Further, a preamplifier 5 connected to the temperature sensing element 2 is provided at the upper part of the main body 3. When the fluid flows in the direction of the arrow, the vortex generator 1 generates vortices alternately on the left and right, and the flow velocity on the surface of the temperature sensing element 2 changes alternately, so this change can be detected differentially. and measuring flow rate or flow rate. However, in such a system, since the temperature sensing element 2 faces the flow, dust and dirt are likely to adhere to it, and there is a risk that dust and dirt will collide with the temperature sensing element 2 and cause it to be damaged. Element 2 had drawbacks such as weak strength and difficulty in electrical insulation, and was unsuitable for measuring fluids.
また、第3図に示すものにおいて、11は断面
ほぼ正方形状の柱状をした渦発生体で、該渦発生
体11の流れの下流に向う面11Bの上下位置に
は金属製ダイヤフラム12、電極13、該電極1
3を囲む絶縁材料14、ダイヤフラム12と電極
間に封入された封入液15、連通路16等からな
る一対の静電容量式の渦検出部が設けられてい
る。そして、流体が矢示方向に流れると渦発生体
11により交互に渦が発生し、渦が発生しない側
の静圧が低くなり、この差圧によつて2枚のダイ
ヤフラム12は互いに微小変位し、連通路16を
介して封入液15が流動する。この結果、ダイヤ
フラム12と電極13との間の静電容量は差動的
に変化するから、この変化分を検出することによ
り流速または流量を測定している。しかし、かか
る方式は第1図に示すものに比較して渦検出部、
特に電極13が流れに露出していないので塵埃、
ゴミ等に対しては何ら支障はきたさないが、静圧
の変化を機械的に検出するものであるため、流体
密度の小さい気体等を計測する場合には検出感度
が悪く、実用に適さない欠点があつた。 Further, in the one shown in FIG. 3, reference numeral 11 denotes a columnar vortex generator with a substantially square cross section, and metal diaphragms 12 and electrodes 13 are located above and below a surface 11B of the vortex generator 11 facing downstream of the flow. , the electrode 1
A pair of capacitance-type vortex detection sections are provided, each of which includes an insulating material 14 surrounding the diaphragm 3, a liquid 15 sealed between the diaphragm 12 and the electrode, a communication path 16, and the like. When the fluid flows in the direction of the arrow, vortices are alternately generated by the vortex generators 11, and the static pressure on the side where no vortices are generated is lowered, and this differential pressure causes the two diaphragms 12 to be slightly displaced from each other. , the sealed liquid 15 flows through the communication path 16. As a result, the capacitance between the diaphragm 12 and the electrode 13 changes differentially, and the flow rate or flow rate is measured by detecting this change. However, compared to the system shown in FIG.
In particular, since the electrode 13 is not exposed to the flow, dust and
It does not pose any problem when it comes to dust, etc., but since it mechanically detects changes in static pressure, the detection sensitivity is poor when measuring gases with low fluid density, making it unsuitable for practical use. It was hot.
そこで、発明者らは第2図と第3図とが有する
特徴点を生かすため、第4図に示す形状の渦発生
体を製作して種々実験を行なつた。即ち、第4図
において、渦発生体21は流れに対向する平面2
1Aを有すると共に流れの下流に向うと共に減小
する面21Bを有し、該減小する面21Bの上下
位置に金属製ダイヤフラム22、電極23、絶縁
材料24、封入液25、連通路26等からなる一
対の渦検出部を設ける構成とした。しかし、この
ような方式のものにあつても発生した渦の強度が
弱く、第3図に示すものと同様に気体のように流
体密度の小さい被測流体には適さないことを知つ
た。 Therefore, in order to take advantage of the features of FIGS. 2 and 3, the inventors manufactured a vortex generator having the shape shown in FIG. 4 and conducted various experiments. That is, in FIG. 4, the vortex generator 21 is located on the plane 2 facing the flow.
1A and a surface 21B that decreases as the flow moves downstream, and the metal diaphragm 22, the electrode 23, the insulating material 24, the sealed liquid 25, the communication path 26, etc. at the upper and lower positions of the decreasing surface 21B. The configuration is such that a pair of vortex detection sections are provided. However, even with this type of system, the strength of the generated vortices is weak, and it has been found that, like the system shown in FIG. 3, it is not suitable for measuring fluids with low fluid density such as gases.
本発明は第1〜3図に示す従来方式によるもの
または第4図に示す実験に用いられた流速・流量
検出装置の欠点を改良したもので、以下第5図に
示す実施例と共に説明する。 The present invention improves the drawbacks of the conventional flow rate/flow rate detection apparatus shown in FIGS. 1 to 3 or used in the experiment shown in FIG. 4, and will be described below in conjunction with the embodiment shown in FIG.
第5図において、第4図と同一構成要素には同
一符号を付すものとするに、渦発生体21の流れ
に対向する面21Cは凹面状に形成され、該凹面
21Cの曲率半径Rと凹面21Cの長さdとの
比、即ち
R/d=1.4〜2.5
の範囲において特に強力な渦を発生することを知
つた。 In FIG. 5, the same components as those in FIG. It has been found that particularly strong vortices are generated when the ratio of 21C to the length d, that is, R/d is in the range of 1.4 to 2.5.
そして、かかる形状の渦発生体21は第1図に
示す渦発生体1と同様に管路となる、流速・流量
計の本体3の直径部分を貫いて設けられている。 Similar to the vortex generator 1 shown in FIG. 1, the vortex generator 21 having such a shape is provided through the diameter portion of the main body 3 of the flow rate meter, which serves as a conduit.
本発明はこのように構成されるから、第2〜4
図に示すものと比較すると、第1に発生する渦に
基づく信号が非常に強力である。この理由は第2
〜4図のものに対し、流れに対向する面を凹面2
1Cとしたことにより前面の隅角部Aが鋭角とな
り、該凹面21Cに当つた流体の剥離が一層確実
かつ強力となり、渦の強度が増加するからである
と考えられる。 Since the present invention is configured in this way, the second to fourth
Compared to what is shown in the figure, the signal based on the first generated vortex is very strong. This reason is the second
~For the one in Figure 4, the surface facing the flow is concave 2
1C, the front corner A becomes an acute angle, and the separation of the fluid that hits the concave surface 21C becomes more reliable and strong, and the strength of the vortex increases.
第2に、実験の結果、低流量域まで器差特性が
優れていることを知つた。即ち、第2図または第
4図に示すものと、本発明によるものとの器差特
性線図は第6図に示す如くであり、第2図に示す
ものまたは第4図に示す実験に用いられたものに
対しては勿論のこと、第3図に示すものに比較し
ても低流量域での器差特性が非常に改善されてい
ることを知つた。 Second, as a result of experiments, we found that the instrumental error characteristics are excellent even in the low flow rate range. That is, the instrumental difference characteristic diagram of the one shown in FIG. 2 or 4 and the one according to the present invention is as shown in FIG. It was found that the instrumental error characteristics in the low flow rate range were greatly improved compared to the one shown in FIG. 3 as well as the one shown in FIG.
なお、第5図に示す実施例においては静電容量
式の渦検出部として図示したが、これに限定され
るものではなく第1図に示す感温素子を用いたも
のは勿論、圧電素子、熱線式、歪ゲージ式等周知
の渦検出部を用いよいものである。 Although the embodiment shown in FIG. 5 is illustrated as a capacitance-type vortex detection section, the present invention is not limited to this, and it is possible to use a piezoelectric element, a piezoelectric element, etc. as well as one using the temperature sensing element shown in FIG. A well-known vortex detection unit such as a hot wire type or a strain gauge type may be used.
本発明の流速・流量計測装置は以上詳細に述べ
た如く、被測流体が流れる管路の途中には柱状の
渦発生体を設け、該渦発生体の横方向断面の幅を
流れの下流に向うにしたがつて減小するように形
成してなる流速・流量計測装置において、前記渦
発生体の流れに対向する面を凹面に形成したか
ら、下記各項の効果を奏する。 As described in detail above, the flow rate/flow rate measuring device of the present invention is provided with a columnar vortex generator in the middle of the pipe through which the fluid to be measured flows, and the width of the lateral cross section of the vortex generator is adjusted to the downstream side of the flow. In the flow velocity/flow measuring device formed so as to decrease toward the opposite direction, since the surface of the vortex generating body facing the flow is formed into a concave surface, the following effects can be achieved.
流れと対向する面を凹面とすることにより、
前面の隅角部が鋭角となり、該凹面に当つた流
体の剥離が確実かつ強力となり、渦の強度を増
加させることができる。 By making the surface facing the flow concave,
The front corner has an acute angle, and the separation of the fluid that hits the concave surface is reliable and strong, and the strength of the vortex can be increased.
前項の結果、気体のように流体密度の低い被
測流体にあつても確実に流速または流量計測を
行なうことができる。 As a result of the above, the flow velocity or flow rate can be reliably measured even in the case of a fluid to be measured having a low fluid density such as gas.
流れと対向する面を凹面とすることにより、
低流量域での器差特性を改善することができ
る。 By making the surface facing the flow concave,
It is possible to improve the instrumental error characteristics in the low flow rate region.
前記凹面での曲率半径Rと該凹面の長さdと
の比をR/d=1.4〜2.5とすれば前記各項の効
果は更に顕著である。 If the ratio of the radius of curvature R of the concave surface to the length d of the concave surface is set to R/d=1.4 to 2.5, the effects of each of the above terms will be even more remarkable.
渦検出部を流れの下流に向うにしたがつて減
小する面に設ければ塵埃、ダストを含む被測流
体の計測に支障をきたすことがない。 If the vortex detection section is provided on a surface where the vortex decreases toward the downstream side of the flow, measurement of the fluid to be measured including dirt and dust will not be hindered.
第1〜2図は従来方式による流速・流量計測装
置の第1の実施例を示し、第1図は一部を破断に
した全体図、第2図は渦発生体の横方向断面を示
す第1図の−矢示方向断面図、第3図は従来
方式による渦発生体の他の実施例を示す第2図と
同一方向断面図、第4図は本発明の発明者らによ
り実験に用いられた渦発生体を示す第2図と同一
方向断面図、第5図は本発明による渦発生体を示
す第2図と同一方向断面図、第6図は第4図と第
5図に示す渦発生体の器差特性を示す流量−器差
特性線図である。
21……渦発生体、21B……下流に向う面、
21C……凹面。
Figures 1 and 2 show a first embodiment of a conventional flow velocity/flow rate measuring device, with Figure 1 being a partially cutaway overall view, and Figure 2 being a cross-sectional view of the vortex generator in the transverse direction. 1 is a cross-sectional view in the direction of the − arrow in FIG. 1, FIG. 3 is a cross-sectional view in the same direction as FIG. 2 showing another embodiment of a conventional vortex generator, and FIG. 5 is a cross-sectional view in the same direction as FIG. 2 showing a vortex generator according to the present invention, and FIG. 6 is a cross-sectional view in the same direction as FIG. 2 showing a vortex generator according to the present invention. FIG. 3 is a flow rate-instrument difference characteristic diagram showing the instrumental difference characteristics of the vortex generator. 21... Vortex generator, 21B... Surface facing downstream,
21C...Concave.
Claims (1)
生体を設け、該渦発生体の横方向断面の幅を流れ
の下流に向うにしたがつて減小するように形成し
てなる流速・流量計測装置において、前記渦発生
体の流れに対向する面を凹面に形成したことを特
徴とする流速・流量計測装置。1. A column-shaped vortex generator is provided in the middle of the pipe through which the fluid to be measured flows, and the width of the lateral cross section of the vortex generator is formed to decrease as it goes downstream of the flow. - A flow velocity/flow rate measuring device, characterized in that a surface of the vortex generating body facing the flow is formed into a concave surface.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55130292A JPS5754868A (en) | 1980-09-19 | 1980-09-19 | Flow velocity and flow rate measuring device |
GB8128161A GB2084324B (en) | 1980-09-19 | 1981-09-17 | Vortex shedding fluid flowmeter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55130292A JPS5754868A (en) | 1980-09-19 | 1980-09-19 | Flow velocity and flow rate measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5754868A JPS5754868A (en) | 1982-04-01 |
JPS6331041B2 true JPS6331041B2 (en) | 1988-06-22 |
Family
ID=15030819
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP55130292A Granted JPS5754868A (en) | 1980-09-19 | 1980-09-19 | Flow velocity and flow rate measuring device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPS5754868A (en) |
GB (1) | GB2084324B (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4520678A (en) * | 1983-09-13 | 1985-06-04 | The Foxboro Company | Small line-size vortex meter |
US4694702A (en) * | 1984-09-12 | 1987-09-22 | Tokico Ltd. | Vortex shedding flowmeter |
JPS6235225U (en) * | 1985-08-20 | 1987-03-02 | ||
US4718283A (en) * | 1987-01-30 | 1988-01-12 | Itt Corporation | Vortex meter body |
DE19632198C1 (en) * | 1996-08-09 | 1998-03-12 | Bosch Gmbh Robert | Device for measuring the mass of a flowing medium |
US6938496B2 (en) | 2001-09-04 | 2005-09-06 | Endress + Hauser Flowtec Ag | Vortex flow pickup |
DE10249543A1 (en) * | 2002-10-23 | 2004-05-06 | Endress + Hauser Flowtec Ag, Reinach | vortex |
JP2007147418A (en) * | 2005-11-28 | 2007-06-14 | Oval Corp | Vortex flowmeter having vibration transmitting means |
US7603914B2 (en) | 2006-07-21 | 2009-10-20 | Endress + Hauser Flowtec Ag | Measuring system with a flow conditioner arranged at an inlet of a measuring tube |
US7882751B2 (en) | 2007-07-19 | 2011-02-08 | Endress + Hauser Flowtec Ag | Measuring system with a flow conditioner for flow profile stabilization |
DE102007063372A1 (en) * | 2007-12-30 | 2009-07-02 | Endress + Hauser Flowtec Ag | Measuring system for a medium flowing in a process line |
US8042411B2 (en) * | 2009-06-04 | 2011-10-25 | Invensys Systems, Inc. | Small line size vortex flowmeter |
CN119001140B (en) * | 2024-10-18 | 2024-12-20 | 中交第一航务工程勘察设计院有限公司 | Light-transmitting fluid speed measuring system and method based on image recognition |
-
1980
- 1980-09-19 JP JP55130292A patent/JPS5754868A/en active Granted
-
1981
- 1981-09-17 GB GB8128161A patent/GB2084324B/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
GB2084324A (en) | 1982-04-07 |
GB2084324B (en) | 1984-08-08 |
JPS5754868A (en) | 1982-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0666467B1 (en) | Flow measuring apparatus | |
US3972232A (en) | Vortex flow meter apparatus | |
US5447073A (en) | Multimeasurement replaceable vortex sensor | |
US4085614A (en) | Vortex flow meter transducer | |
JPS6331041B2 (en) | ||
US9046395B2 (en) | Vortex shedding flow meter | |
US7201067B2 (en) | System and method for determining flow characteristics | |
JP3100926B2 (en) | Eddy current sensor with turbulent grid | |
JPS6029046B2 (en) | Flow velocity flow measuring device | |
JP3463241B2 (en) | Vortex flow meter | |
KR890000690B1 (en) | Piezoelectric sensor | |
JPS5953489B2 (en) | Flow velocity flow measuring device | |
JPH0321455Y2 (en) | ||
JPS5928342Y2 (en) | force detector | |
JPS6143205Y2 (en) | ||
JPH01207634A (en) | Differential pressure type flowmeter | |
JPH0578773B2 (en) | ||
KR920009907B1 (en) | Vortex flowmeter | |
JPH01107113A (en) | Vortex flowmeter | |
JPH0327848B2 (en) | ||
JPS6324246B2 (en) | ||
JPH0626815Y2 (en) | Vortex flowmeter | |
JPH037780Y2 (en) | ||
JPS6331726B2 (en) | ||
JPS5997008A (en) | Vortex flowmeter |