[go: up one dir, main page]

JPS63309863A - Determination of dna base sequence - Google Patents

Determination of dna base sequence

Info

Publication number
JPS63309863A
JPS63309863A JP14561887A JP14561887A JPS63309863A JP S63309863 A JPS63309863 A JP S63309863A JP 14561887 A JP14561887 A JP 14561887A JP 14561887 A JP14561887 A JP 14561887A JP S63309863 A JPS63309863 A JP S63309863A
Authority
JP
Japan
Prior art keywords
reaction
reaction reagent
dna
reagent
sequencing method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14561887A
Other languages
Japanese (ja)
Inventor
Masato Furuichi
古市 正人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP14561887A priority Critical patent/JPS63309863A/en
Publication of JPS63309863A publication Critical patent/JPS63309863A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Saccharide Compounds (AREA)

Abstract

PURPOSE:To determine DNA base sequence in a short period of operation by bringing a reaction reagent into reaction specifically into 4 kinds of bases of labeled DNA and cleaning the nucleic acid bases in the N-glycoxide conjugated site. CONSTITUTION:The 1st regent is added to the labeled DNA and is brought into reaction specifically with 4 kinds of the bases at 20-37 deg.C in accordance with the principal of a Maxiam-Gilbert method, then the bases are subjected to the cleaning reaction in the N-glycoxide conjugated site. The 2nd reagent is in succession added to the sugar removed of the base parts to hydrolyze the phosphate bond, by which the base sequence of the DNA is determined. For example, NaIO4 is used for the G specific reaction reagent, diethyl pyrocarbonate for the G+A specific reaction reagent, iodosuccinimide for the C+T specific reaction reagent, and KMnO4, etc. for the T specific reaction reagent as the 1st reagent. Piperazine, etc., are used for the 2nd regent. Since the 1st reagent which reacts specifically with 4 kinds of the DNA bases is brought into reaction with said bases, the need for an ethanol precipitation operation is eliminated and the reaction temp. is lowered. The faster measurement is thus enabled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、Maxarr+−Gi IbCrt法による
DNA塩基特異的切断反応操作に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to DNA base-specific cleavage reaction operation using the Maxarr+-Gi IbCrt method.

〔発明の概要〕[Summary of the invention]

本発明は、Maxam−Gi Ibert法によるDN
A塩基特異的切断反応において、塩基特異的に塩基を除
去または修飾する第1の反応に続いて、該反応に必要な
反応試薬、緩衝剤および塩類をエタノール沈澱によって
除去する必要がなく、前記第1の反応によって得られる
反応液に直接第2類の切断反応試薬を添加して、しかも
従来の切断反応温度よりも低い温度で切断反応を行うこ
とができるという従来法より安全な第1類の修飾反応用
試薬類、第2類の切断反応用試薬、緩衝液および反応条
件を提供するものである。
The present invention is based on the Maxam-Gi Ibert method.
In the A base-specific cleavage reaction, following the first reaction of removing or modifying a base in a base-specific manner, there is no need to remove reaction reagents, buffers, and salts necessary for the reaction by ethanol precipitation. The first method is safer than the conventional method, in that the second class cleavage reaction reagent is directly added to the reaction solution obtained by the first reaction, and the cleavage reaction can be carried out at a temperature lower than the conventional cleavage reaction temperature. The present invention provides reagents for modification reactions, class 2 cleavage reaction reagents, buffer solutions, and reaction conditions.

〔従来の技術〕[Conventional technology]

Maxam−Gilbert法は化学的塩基特異的部分
分解法によるDNA塩基配列決定である。
The Maxam-Gilbert method is a DNA base sequence determination method using a chemical base-specific partial decomposition method.

塩基特異的切断反応操作は、第1に4種類の塩基に対し
て塩基特異的にしかも部分的に塩基を除去または修飾す
る反応を行った後、各々の塩基特異的反応に対する反応
停止液とエタノールを添加し、低温処理してから遠心操
作によってDNAと沈澱として濃縮すると共に、上清を
捨てることによっ−3〜 で、反応試薬類を除去していた。前記塩存在下でのエタ
ノールを用いるDNAの濃縮法をエタノール沈澱操作と
称している。本エタノール沈澱操作はさらにもう1回繰
り返す必要がある。エタノール沈澱操作の仕上げとして
エタノールによってDNAの沈澱をリンスしエタノール
を減圧によって蒸発せしめDNAを乾燥させる。続いて
第2の切断反応用試薬としてピペリジン水溶液を添加し
て溶解し、90℃にて反応を行っていた。以上の操作を
図のa従来法に示す。これまでMaxam−Gilbe
rt法では、C特異的反応としてDMS(ジメチル硫酸
)によるグアニンのメチル化反応、G十A特異的反応と
して酸(特に蟻酸)による脱プリン反応、C十T特異的
反応としてヒドラジンによるピリミジンのヒドラジツリ
シス、C特異的反応として塩存在下のヒドラジンによる
ヒドラジツリシスの各反応が推奨され、実際よく用いら
れている(MaxamA、M、G11bert W、:
Methods inenzym。
In the base-specific cleavage reaction operation, first, a reaction is performed to base-specifically and partially remove or modify four types of bases, and then a reaction stop solution and ethanol are added for each base-specific reaction. The reaction reagents were removed by adding DNA, treating at low temperature, concentrating the DNA and precipitate by centrifugation, and discarding the supernatant. The method of concentrating DNA using ethanol in the presence of a salt is called an ethanol precipitation operation. This ethanol precipitation operation needs to be repeated one more time. To finish the ethanol precipitation operation, the DNA precipitate is rinsed with ethanol, and the ethanol is evaporated under reduced pressure to dry the DNA. Subsequently, a piperidine aqueous solution was added and dissolved as a second cleavage reaction reagent, and the reaction was carried out at 90°C. The above operation is shown in Figure A, Conventional Method. Until now, Maxam-Gilbe
In the rt method, a guanine methylation reaction with DMS (dimethyl sulfate) is a C-specific reaction, a depurination reaction with an acid (especially formic acid) is a G0A-specific reaction, and a hydrazitolysis of pyrimidine with hydrazine is a C1T-specific reaction. , hydrazitolysis using hydrazine in the presence of salt is recommended as a C-specific reaction, and is actually often used (Maxam A, M, G11bert W,:
Methods inenzym.

1ogy、Vol  65:Nuclic  Ac1d
s、Part  1.八cadmic  PressH
1980:499−560)。
1ogy, Vol 65:Nuclic Ac1d
s, Part 1. 8cadmic PressH
1980:499-560).

=4− 〔発明が解決しようとする問題点〕 従来法によれば、第1の修飾反応後、試薬類除去のため
に停止液とエタノールとを必要とし、低温処理操作、遠
心操作、上清液の除去操作および減圧乾燥操作を第2の
切断反応の前に行なわせなくてはならず、手間と時間が
掛かる上に経済的にも好ましくなかった。また第2の切
断反応では、90℃という高温が必須であり、空気の熱
膨張によりスナソプキ中ツブは開いてしまい、試薬が蒸
発する、キャンプの開く勢いでチューブが飛んでしまう
という問題が生じ、キャップを押さえるために特別なラ
ックが必要であるか、スクリューキャンプ付の反応チュ
ーブを使用する必要があった。
=4- [Problems to be solved by the invention] According to the conventional method, after the first modification reaction, a stop solution and ethanol are required to remove reagents, and low-temperature treatment, centrifugation, and supernatant are required. The liquid removal operation and vacuum drying operation had to be performed before the second cleavage reaction, which was not only laborious and time-consuming but also economically unfavorable. In addition, the second cleavage reaction requires a high temperature of 90°C, which causes problems such as the tube inside the sunasopuki opening due to thermal expansion of the air, the reagent evaporating, and the tube flying off due to the force of the camp opening. Either a special rack was required to hold the cap down, or a reaction tube with a screw camp had to be used.

また従来法の第1の修飾試薬として専ら用いられるDM
Sとヒドラジンは毒性が強く、安全上の問題があった。
In addition, DM, which is exclusively used as the first modification reagent in the conventional method,
S and hydrazine are highly toxic and pose safety problems.

〔問題点を解決するための手段〕[Means for solving problems]

前記問題点を解決するため、まず第1に、第1類の修飾
反応試薬と第2類の切断反応試薬のいずれも毒性が低く
、かフ第1Mの修飾反応試薬として、第2類の切断反応
試薬と反応しないまたは反応しても第2類の切断反応試
薬としての力価を失わせることのない量で第1の修飾反
応を行うことが可能でかつ試薬量そのものおよび第2類
の切断反応試薬との反応生成物が塩基特異的切断反応に
続いて行われる電気泳動に対して悪影響を与えない量に
なる試薬を検索し、併せて、第1の修飾反応環境を与え
る緩衝液組成について検討加え、第2の切断反応試薬に
ついても濃度と反応温度を下げられるものを検索して、
本発明に至った。
In order to solve the above problems, first of all, both the first class modification reaction reagent and the second class cleavage reaction reagent have low toxicity, and the second class cleavage reagent is used as the first class modification reaction reagent. It is possible to carry out the first modification reaction in an amount that does not react with the reaction reagent or does not cause a loss of potency as a class 2 cleavage reaction reagent even if it reacts, and the amount of the reagent itself and the class 2 cleavage reagent. Searching for a reagent whose reaction product with the reaction reagent is in an amount that does not adversely affect the electrophoresis performed following the base-specific cleavage reaction, and also regarding the buffer composition that provides the first modification reaction environment. In addition to consideration, we also searched for a second cleavage reaction reagent that could lower the concentration and reaction temperature.
This led to the present invention.

〔作用〕[Effect]

新しい反応試薬、反応系の導入によって上記の目的に合
った反応条件が得られ、第1の修飾反応後エタノール沈
澱操作を行う必要がなく、直接第2類の反応試薬を添加
して第2の反応を行える。
By introducing a new reaction reagent and reaction system, reaction conditions that meet the above objectives can be obtained, and there is no need to perform ethanol precipitation after the first modification reaction, and the second reaction reagent can be directly added to the second modification reaction. Can perform reactions.

この時90℃の反応温度が下げられることにより、キャ
ンプを反応時間中にしっかりと固定する特別の工夫が不
要となり、安定した結果が得られやすくなる。
At this time, by lowering the reaction temperature of 90°C, there is no need for special measures to securely fix the camp during the reaction time, making it easier to obtain stable results.

(実施例〕 以下に本発明の詳細な説明する。第1図に本発明による
方法と従来法の操作上の差異を示す。
(Example) The present invention will be described in detail below. Fig. 1 shows the operational differences between the method according to the present invention and the conventional method.

図中においてDNAと記された軸に向かう矢印は試薬の
添加、軸から外へ出ている矢印は除去操作”9″は遠心
操作、Δはインキュベーションをそれぞれ表わしている
。本発明による操作方法は、大別して2つに別けられる
。図中011)で示されるタイプIの操作は、DNAに
緩衝液と第1類の反応試薬を添加後、所定時間インキュ
ベーションし、その後、第2類の反応試薬を添加、再び
所定時間インキュベーションを行い更に反応液を除去す
ることにより成っている。それに対しタイプ■の操作は
、DNAに緩衝液、第1類の反応試薬、第2類の反応試
薬をほぼ同時に加え、その後所定時間インキエーベーシ
ョンし、更に反応液を除去することにより成っている。
In the figure, the arrow pointing toward the axis labeled DNA represents addition of reagent, the arrow pointing outward from the axis represents removal, "9" represents centrifugation, and Δ represents incubation. The operating method according to the present invention can be roughly divided into two types. Type I operation, indicated by 011) in the figure, involves adding a buffer solution and a first-class reaction reagent to the DNA, incubating it for a predetermined time, then adding a second-class reaction reagent, and incubating again for a predetermined time. Furthermore, the reaction solution is removed. On the other hand, Type 2 operation consists of adding a buffer solution, a Class 1 reaction reagent, and a Class 2 reaction reagent to the DNA almost simultaneously, then incubating for a predetermined period of time, and then removing the reaction solution. .

タイプ■の反応方法は、タイプIをより簡略化したもの
と言える。本発明の実施例を塩基特異性毎に一覧表にま
とめたものが下表である。
Type (2) reaction method can be said to be a simpler version of Type I. The table below summarizes examples of the present invention by base specificity.

表中○で囲まれた塩基特異性は、反応タイプが同一でか
つ信頼性が高い組み合わせであり、以下に詳述するもの
である。
The base specificities surrounded by circles in the table are combinations with the same reaction type and high reliability, and are detailed below.

G特異的反応:標11DNA5u[に70mMNa1O
G-specific reaction: 5u of standard 11 DNA [70mM Na1O
.

lOμlを添加し、37℃15分間インキュベージロン
し、200a+Mピペラジン100ul!を加え、80
℃30分間処理した後、蒸発乾固さ廿る。80℃の処理
はキャンプをして行う。40μlの水を添加し、試料を
溶解させ蒸発乾固させる。前記水に溶解、乾燥させる操
作をさらに2回以上繰り返す。
Add 10μl, incubate at 37°C for 15 minutes, and add 100ul of 200a+M piperazine! Add 80
After treatment at ℃ for 30 minutes, it is evaporated to dryness. Treatment at 80°C is carried out by camping. Add 40 μl of water, dissolve the sample and evaporate to dryness. The above operations of dissolving in water and drying are repeated two or more times.

G十A特異的反応:標識DNA5plに30mMNaO
H。
G0A specific reaction: 30mM NaO to 5pl of labeled DNA
H.

1sMEDTA10μpを添加混合した後、3%ジエチ
ルピロカーボネート−エタノール溶液を添加する。以下
はG特異的反応に準じる。
After adding and mixing 10 μp of 1s MEDTA, a 3% diethylpyrocarbonate-ethanol solution is added. The following is based on the G-specific reaction.

C+T特異的反応:標識DNA溶液5μlに100mM
酢酸アンモニウムP” 4.0を1(Ntll添加し、
続いて20.01mMブロモサクシニミド水溶液を添加
する。以下はG特異的反応に準じる。
C+T specific reaction: 100mM in 5μl of labeled DNA solution
Add 1 (Ntll) of ammonium acetate P”4.0,
Subsequently, a 20.01 mM aqueous bromosuccinimide solution is added. The following is based on the G-specific reaction.

T特異的反応:標識DNA5μlに25+wMNa01
16mMEDTAを添加混合した後、1 mMKMno
、もしくはNaMn0nlOμlを添加する。以下はG
特異的反応に準する。
T-specific reaction: 25+wMNa01 to 5 μl of labeled DNA
After adding and mixing 16mM EDTA, 1mM KMno
, or add 0nlOμl of NaMn. The following is G
It corresponds to a specific reaction.

一覧表の他の反応についても、同様の操作を行えばよく
、DNA溶液に対して反応条件を設定する緩衝液もしく
は変性液を添加し、第illの反応試薬を添加して反応
を行わせる。上記の推奨反応の場合、9種の溶液だけで
よいことになり、ピペッティング操作も基本的には4つ
の反応に共通で10μlずつの文注すれば良いという特
徴を有している。
Similar operations may be performed for other reactions in the list, such as adding a buffer solution or a denaturing solution to set the reaction conditions to the DNA solution, and adding the ill reaction reagent to carry out the reaction. In the case of the above-mentioned recommended reaction, only 9 kinds of solutions are required, and the pipetting operation is basically common to all 4 reactions, and the characteristic is that 10 μl each can be ordered.

〔発明の効果〕〔Effect of the invention〕

本手法の導入に伴い、エタノール沈澱操作が除けること
、90℃という従来の反応温度が下げられることによっ
て、操作時間の短縮、省力化でき、低温恒温槽、遠心棒
が不要となる。さらに自動化する場合、装置が簡略化さ
れ、大幅なコストダウン、大量処理が可能となり、操作
および反応の信頼性向上が期待される。
With the introduction of this method, the ethanol precipitation operation is eliminated and the conventional reaction temperature of 90° C. is lowered, thereby shortening the operation time and saving labor, and eliminating the need for a low-temperature bath or centrifugal rod. Further automation is expected to simplify the equipment, significantly reduce costs, enable mass processing, and improve reliability of operation and reaction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ta)〜(c)は従来法と本発明による方法の違
いを明らかにするための操作の流れを示すスキーム図で
ある。 以上
FIGS. 1(a) to 1(c) are schematic diagrams showing the flow of operations to clarify the differences between the conventional method and the method according to the present invention. that's all

Claims (9)

【特許請求の範囲】[Claims] (1)Maxam−Gilbert法の原理に基づく塩
基特異的切断反応操作において、標識されたDNAに対
して、PH、イオン強度、イオン種、キレート剤につい
て所定の組成で調整した緩衝液を4種の塩基に応じて添
加し、続いて前記4種の塩基に対して20℃〜37℃で
特異的に反応し、核酸塩基を特異的にN−グリコシド結
合部位で切断する、もしくは引き続く課程で取り除き得
る形に修飾する第1類の反応試薬を部分修飾または部分
分解する濃度で添加し、所定の条件で反応させ、しかる
後塩基部が除去または修飾された糖に対して、結合また
は修飾された塩基と置換して、該糖が関与する2つのリ
ン酸エステル結合をβ−脱離反応によって加水分解し得
る第2類の反応試薬を所定量所定濃度で添加し、70℃
〜95℃で所定時間反応させることを特徴とするDNA
塩基配列決定法。
(1) In a base-specific cleavage reaction operation based on the principle of the Maxam-Gilbert method, four types of buffer solutions adjusted with predetermined compositions in terms of pH, ionic strength, ionic species, and chelating agent are applied to labeled DNA. It is added depending on the base, and then reacts specifically with the four types of bases at 20°C to 37°C, and can specifically cleave the nucleobase at the N-glycoside bonding site or remove it in a subsequent process. A type 1 reaction reagent that modifies the shape is added at a concentration that causes partial modification or partial decomposition, and the reaction is carried out under predetermined conditions. After that, the base moiety is removed or modified, and the base moiety is bound or modified to the sugar. A predetermined amount and a predetermined concentration of a second class reaction reagent capable of hydrolyzing the two phosphate ester bonds involved in the sugar by β-elimination reaction were added at 70°C.
DNA characterized by reacting at ~95°C for a predetermined time
Base sequencing method.
(2)前記第1類の反応試薬にG特異的反応試薬として
過酸化水素、過硫酸アンモニウム、シドロキシルアミン
、過沃素酸ナトリウム、ジメチル硫酸、プロピレンオキ
サイド、ヨードサクシニミド、ブロモサクシニミド、三
塩化タリウム、モノ過フタル酸のいずれかを用いる特許
請求の範囲第1項記載のDNA塩基配列決定法。
(2) Hydrogen peroxide, ammonium persulfate, cidroxylamine, sodium periodate, dimethyl sulfate, propylene oxide, iodosuccinimide, bromosuccinimide, and the like as G-specific reaction reagents in the above-mentioned Class 1 reaction reagent. The DNA base sequencing method according to claim 1, which uses either thallium chloride or monoperphthalic acid.
(3)前記第1類の反応試薬にG+A特異的反応試薬と
して溶液、ジエチルピロカーボネート、ジメチル硫酸の
いずれかを用いる特許請求の範囲第1項記載のDNA塩
基配列決定法。
(3) The DNA base sequencing method according to claim 1, wherein the first class reaction reagent is a G+A-specific reaction reagent, which is any one of a solution, diethylpyrocarbonate, and dimethyl sulfate.
(4)前記第1類の反応試薬にC特異的反応試薬として
、ヒドロキシルアミン、過酸化水素のいずれかを用いる
特許請求の範囲第1項記載のDNA塩基配列決定法。
(4) The DNA base sequencing method according to claim 1, wherein either hydroxylamine or hydrogen peroxide is used as the C-specific reaction reagent in the first class reaction reagent.
(5)前記第1類の反応試薬にT特異的反応試薬として
、過マンガン酸ナトリウム、過マンガン酸カリウム、過
酸化水素のいずれかを用いる特許請求の範囲第1項記載
のDNA塩基配列決定法。
(5) The DNA base sequencing method according to claim 1, in which the first class reaction reagent is any one of sodium permanganate, potassium permanganate, and hydrogen peroxide as a T-specific reaction reagent. .
(6)前記第1類の反応試薬にC+T特異的反応試薬と
して過酸化水素、ヨードサクシミド、ブロモサクシニミ
ドのいずれかを用いる特許請求の範囲第1項記載のDN
A塩基配列決定法。
(6) DN according to claim 1, in which the first category reaction reagent is one of hydrogen peroxide, iodosuccimide, and bromosuccinimide as a C+T-specific reaction reagent.
A base sequencing method.
(7)前記第2類の反応試薬にピペリジン、ピペラジン
、キヌクレインのいずれかを用いる特許請求の範囲第1
項記載のDNA塩基配列決定法。
(7) Claim 1 in which any one of piperidine, piperazine, and kinuclein is used as the reaction reagent of the second category.
DNA base sequencing method described in section.
(8)前記緩衝液に特にDNAを1本鋭に変性させる必
要のある反応において、アルカリを用いる特許請求の範
囲第1項記載のDNA塩基配列決定法。
(8) The DNA base sequencing method according to claim 1, in which an alkali is used in the reaction in which it is necessary to sharply denature one DNA strand in the buffer solution.
(9)前記第1類の反応試薬と前記第2類の反応試薬と
を引き続いてまたは同時に添加して、所定の条件で反応
させる特許請求の範囲第1項記載のDNA塩基配列決定
法。
(9) The DNA base sequencing method according to claim 1, wherein the first class reaction reagent and the second class reaction reagent are added successively or simultaneously and reacted under predetermined conditions.
JP14561887A 1987-06-11 1987-06-11 Determination of dna base sequence Pending JPS63309863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14561887A JPS63309863A (en) 1987-06-11 1987-06-11 Determination of dna base sequence

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14561887A JPS63309863A (en) 1987-06-11 1987-06-11 Determination of dna base sequence

Publications (1)

Publication Number Publication Date
JPS63309863A true JPS63309863A (en) 1988-12-16

Family

ID=15389191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14561887A Pending JPS63309863A (en) 1987-06-11 1987-06-11 Determination of dna base sequence

Country Status (1)

Country Link
JP (1) JPS63309863A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5288644A (en) * 1990-04-04 1994-02-22 The Rockefeller University Instrument and method for the sequencing of genome

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5288644A (en) * 1990-04-04 1994-02-22 The Rockefeller University Instrument and method for the sequencing of genome
US5643798A (en) * 1990-04-04 1997-07-01 The Rockefeller University Instrument and method for the sequencing of genome

Similar Documents

Publication Publication Date Title
Ribeiro-Neto et al. [45] ADP-ribosylation of membrane components by pertussis and cholera toxin
EP0357336B1 (en) Method for detection of specific nucleic acid sequences
Diamandis et al. The biotin-(strept) avidin system: principles and applications in biotechnology
EP0266399B1 (en) Replicative rna reporter systems
US5972618A (en) Detection of mutations in nucleic acids by chemical cleavage
Yu et al. A hydrolytic procedure for ribonucleosides and its possible application to the sequential degradation of RNA
US5830658A (en) Convergent synthesis of branched and multiply connected macromolecular structures
US6465639B1 (en) Method for the isolation of nucleic acid
JPS60262055A (en) Hybrid forming alalysis method of nucleic acid and reagent system used for said method
JPH07184696A (en) Nucleic acid fixation method
WO1989004375A1 (en) Lanthanide chelate-tagged nucleic acid probes
McDonald [32] Yeast hexokinase: ATP+ Hexose→ Hexose-6-phosphate+ ADP
Weinberger A test for aldehydes using dimethylcyclohexanedione
CN110358817A (en) 5- carboxyl cytimidine modifies single base resolution ratio method for positioning analyzing in the DNA of deaminase auxiliary
Krell et al. A DNA‐unwinding enzyme induced in bacteriophage‐T4‐infected Escherichia coli cells
CN113493932A (en) Method and kit for constructing capture library with high detection performance
CN112226484A (en) Fluorescent biosensor of beta-glucose transferase, detection method and application
JPS63309863A (en) Determination of dna base sequence
WO1987002708A1 (en) Lanthanide chelate-tagged nucleic acid probes
JPH04211400A (en) Method for producing modified nucleic acids
Lukens et al. [96] intermediates in purine nucleotide synthesis
Sun et al. An amplified fluorescence detection of T4 polynucleotide kinase activity based on coupled exonuclease III reaction and a graphene oxide platform
Evangelista et al. Characterization of fluorescent nucleoside triphosphates by capillary electrophoresis with laser-induced fluorescence detection: action of alkaline phosphatase and DNA polymerase
CN110468182A (en) It is a kind of detect Platelet-derived growth factor BB homogeneous bioanalytical method and its application
JPH01215300A (en) Detection of nucleic acid of defined sequence due to hybrid formation