[go: up one dir, main page]

JPS63308880A - Anisotropic conductive adhesive - Google Patents

Anisotropic conductive adhesive

Info

Publication number
JPS63308880A
JPS63308880A JP14552587A JP14552587A JPS63308880A JP S63308880 A JPS63308880 A JP S63308880A JP 14552587 A JP14552587 A JP 14552587A JP 14552587 A JP14552587 A JP 14552587A JP S63308880 A JPS63308880 A JP S63308880A
Authority
JP
Japan
Prior art keywords
conductive
pattern
adhesive
conductive adhesive
patterns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14552587A
Other languages
Japanese (ja)
Inventor
Yoshio Fujiwara
良夫 藤原
Takashi Ando
尚 安藤
Yukio Yamada
幸男 山田
Shiko Kanisawa
蟹沢 士行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Sony Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Chemicals Corp filed Critical Sony Chemicals Corp
Priority to JP14552587A priority Critical patent/JPS63308880A/en
Publication of JPS63308880A publication Critical patent/JPS63308880A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Combinations Of Printed Boards (AREA)

Abstract

PURPOSE:To stabilize the connection between patterns and improve the reliability of electrical conductivity by specifying the grain size of conductive grains contained in a conductive adhesive. CONSTITUTION:The grain size of conductive grains contained in a conductive adhesive is set to 1-5 times as large as the thickness of a high-resistance layer formed on the surface of the first conductive pattern. The conductive grains are contained at the range of 1-50wt.% in the conductive adhesive. The conductive grains have the specific resistance of 10<-6>OMEGAcm or less, the Vickers hardness of 50 or more, and a rugged grain shape.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、ファインピンチの導電パターン同士を電気的
に接続するとともに、これら導電パターンの配された配
線基板同士を機械的に接続するのに好適な異方性導電接
着体に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is useful for electrically connecting fine-pinch conductive patterns and mechanically connecting wiring boards on which these conductive patterns are arranged. The present invention relates to a suitable anisotropic conductive adhesive.

(発明の概要〕 本発明は、表面に高抵抗層を有するファインピッチの導
電パターンを電気的に接続するとともに、それら導電パ
ターンの配された配線基板同士を機械的に接続する異方
性導電接着体において、前記異方性導電接着体を構成す
る絶縁性接着剤中に上記高抵抗層の厚みよりも大きな粒
子径を有する導電性粒子を分散させることにより、パタ
ーン間の安定した接続が可能で、信鯨性に優れた電気的
導通が図れる異方性導電接着体を提供しようとするもの
である。
(Summary of the Invention) The present invention is an anisotropic conductive adhesive that electrically connects fine-pitch conductive patterns having a high resistance layer on the surface and mechanically connects wiring boards on which these conductive patterns are arranged. In the body, by dispersing conductive particles having a particle size larger than the thickness of the high resistance layer in the insulating adhesive constituting the anisotropic conductive adhesive, stable connection between patterns is possible. The present invention aims to provide an anisotropic conductive adhesive that can achieve electrical conduction with excellent reliability.

〔従来の技術〕[Conventional technology]

従来、導電パターン同士を重ねて導通を取りながら電気
的接続を図るとともに、これら導電パターンの配された
配線基板同士を4a械的に接続する場合には、導電層と
絶縁層を順次積層してなるゼブラコネクタ、繊維状の導
電体を所定方向に配向した異方性導電膜、あるいは筋状
にパターン化された導電性接着剤を使用していた。これ
らの接続材料を使用した場合には、対応する導電パター
ン同士の導電性及び隣接導電パターン間の絶縁性は通常
の導電パターン(数ミリ程度のピッチを有する導電パタ
ーン)である限りはほぼ満足されるものであった。しか
しながら、超小型のプリント基板同士の接続のように、
ファインピッチ(0,3〜0.4fi程度のピッチ)の
導電パターン同士の接続を考えた場合には隣接導電パタ
ーン間の絶縁性を確保することは難しく応用の場が少な
いものであった。
Conventionally, electrical connections were made by overlapping conductive patterns to maintain continuity, and when wiring boards on which these conductive patterns were arranged were to be mechanically connected to each other, conductive layers and insulating layers were sequentially laminated. A zebra connector, an anisotropic conductive film with fibrous conductors oriented in a predetermined direction, or a conductive adhesive patterned in stripes was used. When these connection materials are used, the conductivity between corresponding conductive patterns and the insulation between adjacent conductive patterns are almost satisfied as long as the conductive patterns are normal conductive patterns (conductive patterns with a pitch of several millimeters). It was something that However, like connecting ultra-small printed circuit boards,
When considering connections between conductive patterns with a fine pitch (a pitch of about 0.3 to 0.4 fi), it is difficult to ensure insulation between adjacent conductive patterns, and there are few applications.

そこで、絶縁性接着剤中に金属等の導電性粉末等を分散
した異方性導電接着体を用いて導電パターン同士を接続
することが提案されている。上記絶縁性接着剤中に分散
される導電性粉末は、ファインピッチパターンに対応す
ることができるように非常に微細なものであり、これら
導電性粉末を導電パターン間で押しつぶすことによって
導通を図るようにしている。このように導電性粉末等を
分散した異方性導電接着体によって導電パターン同士を
接続した場合には、前記導電性粉末が非常に微細である
ことによりファインピッチの導電パターンへの応用が容
易となった。
Therefore, it has been proposed to connect conductive patterns using an anisotropic conductive adhesive in which conductive powder of metal or the like is dispersed in an insulating adhesive. The conductive powder dispersed in the above-mentioned insulating adhesive is extremely fine so that it can correspond to fine pitch patterns, and the conductive powder is crushed between the conductive patterns to achieve electrical conduction. I have to. When conductive patterns are connected to each other using an anisotropic conductive adhesive in which conductive powder or the like is dispersed, it is easy to apply it to fine-pitch conductive patterns because the conductive powder is extremely fine. became.

ところで、上述のように各種導電膜を用いて接続される
配線基板の金属導電パターンは、その表面が露出してお
り、該金属導電パターンの表面は酸化され易く錆等が発
生する虞がある。このように配線基板の金属導電パター
ン表面上に錆が発生した場合には、導電パターン同士を
間に導電膜を介して接続した場合にも充分な接続が行え
ず、導通不良を起こす虞がある。そのため、上記金属導
電パターン上にカーボン層パターン等の酸化防止用の高
抵抗層を形成することが提案されている。
By the way, the surface of the metal conductive pattern of the wiring board connected using various conductive films as described above is exposed, and the surface of the metal conductive pattern is easily oxidized and there is a possibility that rust or the like may occur. If rust occurs on the surface of the metal conductive pattern of the wiring board, even if the conductive patterns are connected with a conductive film in between, there is a risk that a sufficient connection will not be made, resulting in poor continuity. . Therefore, it has been proposed to form a high resistance layer for preventing oxidation, such as a carbon layer pattern, on the metal conductive pattern.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、前述のように異方性導電接着体中に分散され
ている導電性粒子は、その粒子径が非常に微細であるた
め、圧着によって金属導電パターン同士を接続しようと
しても該金属導電パターン上に形成されたカーボン層パ
ターンの存在によって、直接金属導電パターンとの接続
を行うことが非常に難しいものとなっている。即ち、例
えば金属導電パターン上にカーボン層パターンが形成さ
れた基板と金属導電パターンが形成された基板同士を極
めて黴細な導電性粒子を分散した異方性導電接着体を用
いて接続した場合、異方性導電接着体中の導電性粒子は
、前記カーボン層パターンを突き破ることはなく、これ
ら金属導電パターン間は、上記カーボン層パターンを介
して接続されることになる。その結果、上記カーボン層
パターンが、前述の如く高抵抗層であることに起因して
、これら金属導電パターン間の導通抵抗が高くなってし
まい安定した導通が図れなくなってしまう。
However, as mentioned above, the conductive particles dispersed in the anisotropic conductive adhesive have a very fine particle size, so even if you try to connect the metal conductive patterns by pressure bonding, the conductive particles will not touch the metal conductive patterns. The presence of the carbon layer pattern formed on the substrate makes it extremely difficult to connect directly to the metal conductive pattern. That is, for example, when a substrate on which a carbon layer pattern is formed on a metal conductive pattern and a substrate on which a metal conductive pattern is formed are connected using an anisotropic conductive adhesive in which extremely fine conductive particles are dispersed, The conductive particles in the anisotropic conductive adhesive do not penetrate the carbon layer pattern, and these metal conductive patterns are connected via the carbon layer pattern. As a result, since the carbon layer pattern is a high-resistance layer as described above, the conduction resistance between these metal conductive patterns becomes high, making it impossible to achieve stable conduction.

また、例え上記カーボン層パターンを突き破って金属導
電パターンに到達した導電性粒子があったとしても8i
+僅かでしかなく、その部分のみで導通を図ることとな
るため信頼性に欠ける導通となってしまう等各種の問題
があった。
Furthermore, even if there are conductive particles that break through the carbon layer pattern and reach the metal conductive pattern, 8i
+ There were various problems such as conduction lacking in reliability because it was only a small amount and conduction was to be achieved only in that part.

そこで、本発明は上述の問題点を解決するために提案さ
れたもので、導電パターン間の安定した接続が可能で、
信頼性に優れた電気的導通が図れる異方性導電接着体を
提供することを目的とする。
Therefore, the present invention was proposed to solve the above-mentioned problems, and enables stable connection between conductive patterns.
An object of the present invention is to provide an anisotropic conductive adhesive that can achieve electrical continuity with excellent reliability.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は、上述の目的を達成せんものと鋭意研究の
結果、導電性接着体内に含有される導電性粒子の粒子径
及び含有量を所定の範囲内に設定することで、金属パタ
ーン同士を良好に接続することができるとの知見を得た
。本発明は上述の知見に基づいて提案されたもので、絶
縁性接着剤に導電性粒子を分散させてなり、表面に高抵
抗層を有する第1の導電パターンと該第1の導電パター
ンに対応する第2の導電パターンとを電気的に接続する
とともに、前記第1の導電パターンの配された第1の配
線基板と前記第2の導電パターンの配された第2の配線
基板とを機械的に接続する異方性導電接着体において、
上記導電性粒子は上記第1の導電パターン表面に形成さ
れる高抵抗層の厚みの1〜5倍の粒子径を有することを
特徴とするものである。
As a result of intensive research to achieve the above-mentioned purpose, the present inventors have found that by setting the particle diameter and content of conductive particles contained in the conductive adhesive within a predetermined range, metal patterns can be It was found that the connection can be made well. The present invention was proposed based on the above-mentioned knowledge, and is made by dispersing conductive particles in an insulating adhesive, and corresponds to a first conductive pattern having a high resistance layer on the surface and the first conductive pattern. electrically connecting the second conductive pattern, and mechanically connecting the first wiring board on which the first conductive pattern is arranged and the second wiring board on which the second conductive pattern is arranged. In the anisotropic conductive adhesive connected to
The conductive particles are characterized in that they have a particle diameter that is 1 to 5 times the thickness of the high-resistance layer formed on the surface of the first conductive pattern.

上記導電性接着体を構成する導電性粒子としては、溶融
金属粉、カーボンファイバー、金属粉等が使用可能であ
り、所定の条件を満足するものを適宜選択して使用すれ
ばよい。
As the conductive particles constituting the conductive adhesive, molten metal powder, carbon fiber, metal powder, etc. can be used, and those satisfying predetermined conditions may be appropriately selected and used.

また、上記導電性粒子は、その粒子径を導電パターン表
面に形成される高抵抗層の厚みの1〜5倍とすることが
好ましい。導電性粒子の粒子径が高抵抗層の厚みよりも
小さい場合には、導電パターンを圧着接続した時に高抵
抗層を容易且つ確実に突き破ることが難しく、接続の信
転性を確保することができない。また、導電性粒子の粒
子径が高抵抗層の厚みよりも5倍以上大きい場合には、
隣接する導電パターンと接続し短絡を生ずる虞があるた
めである。尚、上記導電性粒子の粒径は、粒子単体とし
て満足するものであってもよく、又小径の粒子が二次凝
集等によって凝集した状態で所定の粒径を満足するもの
であってもよい。
Moreover, it is preferable that the particle diameter of the conductive particles is 1 to 5 times the thickness of the high-resistance layer formed on the surface of the conductive pattern. If the particle size of the conductive particles is smaller than the thickness of the high-resistance layer, it is difficult to easily and reliably penetrate the high-resistance layer when the conductive pattern is crimped and connected, making it impossible to ensure the reliability of the connection. . In addition, if the particle diameter of the conductive particles is 5 times or more larger than the thickness of the high resistance layer,
This is because there is a possibility that the conductive pattern may connect with an adjacent conductive pattern and cause a short circuit. The particle size of the conductive particles may be satisfied as a single particle, or may satisfy a predetermined particle size in a state where small-diameter particles are aggregated by secondary aggregation or the like. .

又、導電性粒子の粒子径は、導電パターン間距離の1/
3以下であることが好ましい。これは上述したように隣
接する導電パターンとの間で、該導電体粒子が接続し、
短絡が発生する可能性を防止するためである。
In addition, the particle diameter of the conductive particles is 1/ of the distance between the conductive patterns.
It is preferably 3 or less. As mentioned above, the conductive particles connect with adjacent conductive patterns,
This is to prevent the possibility of short circuits occurring.

さらに、導電性粒子は、導電性接着剤中に1〜50重量
%の範囲で含有することが好ましい。上述したように本
発明に係る導電性接着体中に含有される導電性粒子は、
比較的大きな粒子であるため、接着剤中に多量に含有さ
れると該導電性粒子同士が接続し、隣接する導電パター
ン同士の間で導通されてしまう虞があるからである。
Furthermore, it is preferable that the conductive particles be contained in the conductive adhesive in an amount of 1 to 50% by weight. As mentioned above, the conductive particles contained in the conductive adhesive according to the present invention are
This is because, since they are relatively large particles, if they are contained in a large amount in an adhesive, there is a risk that the conductive particles will connect with each other and conduction will occur between adjacent conductive patterns.

さらにまた、導電性接着体中に含有される導電性粒子は
、その比抵抗が10−’Ω1以下、ビッカース硬度50
以上、粒子形状は凹凸の多いものが好ましい、比抵抗が
10−hΩcm以上の場合には、導電パターン間の導通
が導電性粒子自身の抵抗により良好で無くなってしまう
虞がある。又、ビッカース硬度が50以下及び凹凸のな
い導電性粒子では、酸化防止層として設けられている高
抵抗層を容易に突き破ることができず、導電パターン同
士を良好に接続することができなくなってしまうからで
ある。
Furthermore, the conductive particles contained in the conductive adhesive have a specific resistance of 10-'Ω1 or less and a Vickers hardness of 50
As mentioned above, it is preferable that the particle shape has many irregularities.If the specific resistance is 10-hΩcm or more, there is a risk that the conductivity between the conductive patterns may be poor due to the resistance of the conductive particles themselves. In addition, conductive particles with a Vickers hardness of 50 or less and without irregularities cannot easily penetrate the high resistance layer provided as an oxidation prevention layer, making it impossible to connect conductive patterns well. It is from.

一方、導電性接着体を構成する絶縁性接着剤としては、
通常の接着剤が使用可能であり、所定の特性を有するよ
うに適宜選択して使用することができる。
On the other hand, as an insulating adhesive that constitutes a conductive adhesive,
Ordinary adhesives can be used, and can be appropriately selected and used so as to have predetermined properties.

〔作用〕[Effect]

第1図に示すように、絶縁性接着剤(8)中に第1の導
電パターン(3)上に形成された高抵抗層(5)の厚み
より大きな粒子径を有する導電性粒子(7)を分散した
異方性導電接着体(6)を介して前記高抵抗層(5)を
有する第1の導電パターン(3)と第2の導電パターン
(4)とを圧着すると、上記導電性粒子(7)は上記高
抵抗N(5)を突き破り、導電パターン(3) 、 (
4)間で押しつぶされる。したがって、第1の導電パタ
ーン(3)と第2の導電パターン(4)とは上記導電性
粒子(7)によって直接電気的に接続されることとなり
、導電パターン(3) 、 (4)間の安定した接続が
可能となる。
As shown in FIG. 1, conductive particles (7) having a particle size larger than the thickness of the high-resistance layer (5) formed on the first conductive pattern (3) in the insulating adhesive (8) When the first conductive pattern (3) having the high resistance layer (5) and the second conductive pattern (4) are bonded together via the anisotropic conductive adhesive (6) in which the conductive particles are dispersed, the conductive particles (7) breaks through the high resistance N(5) and conductive patterns (3), (
4) Being crushed between. Therefore, the first conductive pattern (3) and the second conductive pattern (4) are directly electrically connected by the conductive particles (7), and the distance between the conductive patterns (3) and (4) is A stable connection is possible.

また、導電性粒子(7)の粒子径を導電パターン間距離
の1/3以下に制限することにより、これら導電性粒子
(7)が隣接する導電パターン間にまたがって接触する
ことがなく、隣接する導電パターン間での短絡が防止可
能となり、信転性に優れた電気的導通が図れる。
Furthermore, by limiting the particle diameter of the conductive particles (7) to 1/3 or less of the distance between the conductive patterns, these conductive particles (7) do not straddle and contact between adjacent conductive patterns. Short circuits between the conductive patterns can be prevented, and electrical continuity with excellent reliability can be achieved.

〔実施例〕〔Example〕

以下、本発明の実験例について図面を参照しながら説明
する。
Experimental examples of the present invention will be described below with reference to the drawings.

叉慧勇土 エポキシ系熱硬化型バインダー中に20〜32μmに分
級したNi粉(インコニソケル、タイプ123)を20
phr (樹脂100重量部に対して20重量部、以下
同じ、)加え攪拌した後、乾燥後の厚みが35μmとな
るようにフィルム化したサンプル異方性導電接着体を作
製した。
Ni powder (Inconisokel, type 123) classified to 20 to 32 μm was added to 20 μm in a thermosetting epoxy binder.
After adding phr (20 parts by weight to 100 parts by weight of resin, the same applies hereinafter) and stirring, a sample anisotropic conductive adhesive was prepared by forming a film to have a thickness of 35 μm after drying.

又、エポキシ系熱硬化型バインダー中に5〜10μmに
分級したNi粉(インコニッケル、タイプ123)を2
Qphr加え攪拌した後、乾燥後の厚みが35μmとな
るようにフィルム化したサンプル異方性導電接着体を作
製した。
In addition, Ni powder (Inco Nickel, type 123) classified into 5 to 10 μm was added to the epoxy thermosetting binder.
After adding Qphr and stirring, a sample anisotropic conductive adhesive was prepared by forming a film to have a thickness of 35 μm after drying.

上述のようにして作製したサンプル異方性導電接着体を
使用して配線基板を接着した。
A wiring board was bonded using the sample anisotropic conductive adhesive produced as described above.

第1図に示すように、0.5μmピンチで9μm厚のア
ルミニウムパターン(3)とその上部に厚さ15μmの
カーボン層パターン(5)が形成された厚さ38μmの
ポリエチレンテレフタレート(PET)フィルムからな
る第1の配線基板(1)と、0.5μmピッチの銅パタ
ーン(4)が形成された厚さ38μmのPETフィル°
ムからなる第2の配線基板(2)とを上述のようにして
作製したサンプル異方導電性接着体(6)を介して17
0℃、30KgIc−8,15秒の条件で圧着接続した
As shown in Figure 1, a 38 μm thick polyethylene terephthalate (PET) film is formed with a 9 μm thick aluminum pattern (3) with a 0.5 μm pinch and a 15 μm thick carbon layer pattern (5) formed on top of the aluminum pattern (3). A first wiring board (1) and a 38 μm thick PET film on which a 0.5 μm pitch copper pattern (4) are formed.
17 through the sample anisotropically conductive adhesive (6) produced as described above.
Crimp connection was carried out under the conditions of 0° C. and 30 kg Ic for 8.15 seconds.

同様に、0.5μmピッチで3μm厚の銅パターン(3
)とその上部に厚さ18μmのカーボン層パターン(5
)が形成された厚さ38μmのPETフィルムからなる
第1の配線基板(1)と、0.5μmピンチの銅パター
ン(4)が形成された厚さ38μmのPETフィルムか
らなる第2の配線基板(2)とを上述のようにして作製
したサンプル異方導電性接着体(6)を介して170℃
、30KgIcl11!、15秒の条件で圧着接続した
Similarly, a 3 μm thick copper pattern (3
) and a carbon layer pattern with a thickness of 18 μm (5
) is formed on a 38 μm thick PET film (1), and a 0.5 μm pinch copper pattern (4) is formed on a 38 μm thick PET film (2nd wiring board). (2) and the sample anisotropically conductive adhesive (6) produced as described above at 170°C.
,30KgIcl11! The crimping connection was made for 15 seconds.

これらについて、初期状態、250時間エージング後、
500時間エージング後、1000時間エージング後の
導通抵抗試験を行い圧着信頼性を測定した。その結果を
第1表及び第2表に示す。
Regarding these, initial state, after 250 hours aging,
After aging for 500 hours and after aging for 1000 hours, a continuity resistance test was conducted to measure the crimping reliability. The results are shown in Tables 1 and 2.

第1表 (以下余白) 第2表 づ Ni粉がカーボン層パターンの厚みよりも大きなものを
使用した場合にはエージング後も安定した導通抵抗性を
示している。これに対してNi粉がカーボン層パターン
の厚みよりも小さいものはエージング500時間以上で
不良が発生した。又、Ni粉がカーボン層パターンの厚
みよりも小さいものの場合には、初期状態あるいはエー
ジング250時間でもNi粉がカーボン層パターンの厚
みよりも大きなものを使用した場合に比べ導通抵抗は非
常に大きなものである。
Table 1 (blank below) Table 2 shows that when the Ni powder used was larger than the thickness of the carbon layer pattern, stable conduction resistance was exhibited even after aging. On the other hand, in the case where the Ni powder was smaller than the thickness of the carbon layer pattern, defects occurred after aging for 500 hours or more. Furthermore, when the Ni powder is smaller than the thickness of the carbon layer pattern, the conduction resistance is much larger than when the Ni powder is larger than the thickness of the carbon layer pattern even in the initial state or after 250 hours of aging. It is.

大緩桝l エポキシ系熱硬化型バインダー中に20〜32μmに分
級したN1粉(インコニソケル、タイプ123)を20
phr加え攪拌した後、乾燥後の厚みが35μmとなる
ようにフィルム化したサンプル異方性導電接着体を作製
した。
20 μm of N1 powder (Inconisokel, type 123) classified into 20-32 μm in a large epoxy thermosetting binder.
After adding phr and stirring, a sample anisotropic conductive adhesive was prepared by forming it into a film so that the thickness after drying was 35 μm.

上述のようにして作製したサンプル異方性導電接着体を
使用して配線基板を接着した。
A wiring board was bonded using the sample anisotropic conductive adhesive produced as described above.

第1図に示すように、0.5μmピッチで9μm厚のア
ルミニウムパターン(3)とその上部に厚さ5μm、1
5μm、30um、40μmと変化させたカーボン層パ
ターン(5)を形成した厚さ38μmのPETフィルム
からなる第1の配線基板(1)と、0.5μmピッチの
銅パターン(4)を形成した厚さ38μmのPETフィ
ルムからなる第2の配線基板(2)とを上述のようにし
て作製したサンプル異方導電性接着体(6)を介して1
70℃、30KgIcm”、15秒の条件で圧着接続し
た。
As shown in Figure 1, there is a 9 μm thick aluminum pattern (3) with a 0.5 μm pitch and a 5 μm thick
A first wiring board (1) made of a PET film with a thickness of 38 μm on which a carbon layer pattern (5) with a thickness of 5 μm, 30 μm, and 40 μm was formed, and a copper pattern (4) with a pitch of 0.5 μm. A second wiring board (2) made of a PET film with a diameter of 38 μm is connected to the sample anisotropically conductive adhesive (6) produced as described above.
Crimp connection was performed under the conditions of 70° C., 30 KgIcm”, and 15 seconds.

これらについて、初期状態、250時間エージング後、
500時間エージング後、1000時間エージング後の
導通抵抗試験を行い圧着信鎖性を測定した。その結果を
第3表及び第4表に示す。
Regarding these, initial state, after 250 hours aging,
After aging for 500 hours and after aging for 1000 hours, a continuity resistance test was conducted to measure the crimp chain properties. The results are shown in Tables 3 and 4.

第3表 第4表 第3表及び第4表より明らかなように、Ni粉の大きさ
は少な(ともカーボン層パターンの厚さよりも大きいも
のを使用しなければエージング時間の経過につれ導通抵
抗は劣化する。
As is clear from Tables 3 and 4, the size of the Ni powder is small (if not larger than the thickness of the carbon layer pattern, the conduction resistance will decrease as the aging time progresses). to degrade.

大狼炭主 エポキシ系熱硬化型バインダー中に5〜10μmに分級
したNi粉(インコニッケル、タイプ123)を20p
hr加え攪拌した後、乾燥後の厚みが35μmとなるよ
うにフィルム化したサンプル異方性導電接着体を作製し
た。
20p of Ni powder (Inco Nickel, type 123) classified into 5-10 μm in Daorou Charcoal epoxy thermosetting binder
After adding and stirring for hr, a sample anisotropic conductive adhesive was prepared by forming it into a film so that the thickness after drying was 35 μm.

上述のようにして作製したサンプル異方性導電接着体を
使用して配線基板を接着した。
A wiring board was bonded using the sample anisotropic conductive adhesive produced as described above.

第1図に示すように、0.5μmピッチで9μm厚のア
ルミニウムパターン(3)とその上部に厚さ5μm、、
15μmと変化させたカーボン層パターン(5)を形成
した厚さ38μmのPETフィルムからなる第1の配線
基板(1)と、0.5μmピッチの銅パターン(4)を
形成した厚さ38μmのPETフィルムからなる第2の
配線基板(2)とを上述のようにして作製したサンプル
異方導電性接着体(6)を介して170℃、30Kg/
c++”、 15秒の条件で圧着接続した。
As shown in Figure 1, there is a 9 μm thick aluminum pattern (3) with a 0.5 μm pitch and a 5 μm thick aluminum pattern (3) on top of it.
A first wiring board (1) made of a PET film with a thickness of 38 μm on which a carbon layer pattern (5) of varying thickness of 15 μm was formed, and a PET film with a thickness of 38 μm on which a copper pattern (4) with a pitch of 0.5 μm was formed. A second wiring board (2) consisting of a film was connected to the sample anisotropically conductive adhesive (6) produced as described above at 170°C and 30 kg/kg.
C++”, crimped and connected for 15 seconds.

これらについて、初期状態、1000時間エージング後
の導通抵抗試験を行い圧着体転性を測定した。その結果
を第5表に示す。
Continuity resistance tests were conducted on these in the initial state and after aging for 1000 hours to measure the crimped body rollability. The results are shown in Table 5.

第5表 第5表よりNi粉の大きさは少なくともカーボン層パタ
ーンの厚さよりも大きいものを使用しなければエージン
グ時間の経過につれ導通抵抗は劣化する。
Table 5 From Table 5, unless the size of the Ni powder is at least larger than the thickness of the carbon layer pattern, the conduction resistance deteriorates as the aging time progresses.

〔発明の効果〕〔Effect of the invention〕

以上の説明からも明らかなように、本発明においては、
導電性接着体中に含有される導電性粒子の粒子径を高抵
抗層の厚みよりも大きな粒子径としているので、導電パ
ターン同士を圧着接続する際にこの導電性粒子が上記高
抵抗層を容易に突き破り直接導電パターンと接続するこ
とができ、パターン間の安定した接続が可能となり、信
顛性に優れた電気的導通が図れる異方性導電接着体を提
供することができる。
As is clear from the above description, in the present invention,
Since the particle size of the conductive particles contained in the conductive adhesive is larger than the thickness of the high-resistance layer, the conductive particles easily connect the high-resistance layer when connecting conductive patterns by pressure. It is possible to provide an anisotropic conductive adhesive that can be directly connected to a conductive pattern by piercing through it, making stable connection between patterns possible, and achieving electrical continuity with excellent reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用した異方性導電接着体を使用して
導電パターン同士を接続した状態を模式的に示す要部拡
大断面図である。 ■・・・第1の配線基板 2・・・第2の配線基板 3・・・第1の導電パターン 4・・・第2の導電パターン 5・・′・高抵抗層 6・・・異方性導電接着体 7・・・導電性粒子 8・・・絶縁性接着剤
FIG. 1 is an enlarged sectional view of a main part schematically showing a state in which conductive patterns are connected to each other using an anisotropic conductive adhesive to which the present invention is applied. ■...First wiring board 2...Second wiring board 3...First conductive pattern 4...Second conductive pattern 5...'High resistance layer 6...Anisotropic Conductive adhesive 7... Conductive particles 8... Insulating adhesive

Claims (1)

【特許請求の範囲】[Claims] 絶縁性接着剤に導電性粒子を分散させてなり、表面に高
抵抗層を有する第1の導電パターンと該第1の導電パタ
ーンに対応する第2の導電パターンとを電気的に接続す
るとともに、前記第1の導電パターンの配された第1の
配線基板と前記第2の導電パターンの配された第2の配
線基板とを機械的に接続する異方性導電接着体において
、上記導電性粒子は上記第1の導電パターン表面に形成
される高抵抗層の厚みの1〜5倍の粒子径を有すること
を特徴とする異方性導電接着体。
Electrically connecting a first conductive pattern formed by dispersing conductive particles in an insulating adhesive and having a high resistance layer on the surface and a second conductive pattern corresponding to the first conductive pattern, In an anisotropic conductive adhesive that mechanically connects a first wiring board on which the first conductive pattern is disposed and a second wiring board on which the second conductive pattern is disposed, the conductive particles An anisotropic conductive adhesive having a particle diameter that is 1 to 5 times the thickness of the high-resistance layer formed on the surface of the first conductive pattern.
JP14552587A 1987-06-11 1987-06-11 Anisotropic conductive adhesive Pending JPS63308880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14552587A JPS63308880A (en) 1987-06-11 1987-06-11 Anisotropic conductive adhesive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14552587A JPS63308880A (en) 1987-06-11 1987-06-11 Anisotropic conductive adhesive

Publications (1)

Publication Number Publication Date
JPS63308880A true JPS63308880A (en) 1988-12-16

Family

ID=15387235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14552587A Pending JPS63308880A (en) 1987-06-11 1987-06-11 Anisotropic conductive adhesive

Country Status (1)

Country Link
JP (1) JPS63308880A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02256292A (en) * 1989-03-29 1990-10-17 Ricoh Co Ltd Conductor pattern connector and connection thereof
JP2008112731A (en) * 2007-11-19 2008-05-15 Hitachi Chem Co Ltd Connecting member, and connection structure of electrode using the same
WO2012157375A1 (en) * 2011-05-18 2012-11-22 日立化成工業株式会社 Circuit connection material, circuit member connection structure, and circuit member connection structure manufacturing method
JP2013138013A (en) * 2009-11-16 2013-07-11 Hitachi Chemical Co Ltd Circuit connection material and connection structure of circuit member using the same
WO2015115161A1 (en) * 2014-01-28 2015-08-06 デクセリアルズ株式会社 Connection body and connection body production method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02256292A (en) * 1989-03-29 1990-10-17 Ricoh Co Ltd Conductor pattern connector and connection thereof
JP2008112731A (en) * 2007-11-19 2008-05-15 Hitachi Chem Co Ltd Connecting member, and connection structure of electrode using the same
JP2013138013A (en) * 2009-11-16 2013-07-11 Hitachi Chemical Co Ltd Circuit connection material and connection structure of circuit member using the same
WO2012157375A1 (en) * 2011-05-18 2012-11-22 日立化成工業株式会社 Circuit connection material, circuit member connection structure, and circuit member connection structure manufacturing method
KR20140019380A (en) * 2011-05-18 2014-02-14 히타치가세이가부시끼가이샤 Circuit connection material, circuit member connection structure, and circuit member connection structure manufacturing method
JPWO2012157375A1 (en) * 2011-05-18 2014-07-31 日立化成株式会社 Circuit connection material, circuit member connection structure, and circuit member connection structure manufacturing method
WO2015115161A1 (en) * 2014-01-28 2015-08-06 デクセリアルズ株式会社 Connection body and connection body production method

Similar Documents

Publication Publication Date Title
US4113981A (en) Electrically conductive adhesive connecting arrays of conductors
US4588456A (en) Method of making adhesive electrical interconnecting means
KR910005533B1 (en) Electrical interconnection means and connection method
US4642421A (en) Adhesive electrical interconnecting means
KR100552034B1 (en) Thermosetting Electroconductive Paste for Electroconductive Bump
US5084211A (en) Anisotropically electroconductive adhesive
TWI486976B (en) Conductive particles and an anisotropic conductive connecting material using the same, and a method for producing a conductive particle body
JPS63249393A (en) Method of connecting electronic component
JPH11241054A (en) Anisotropically conductive adhesive and film for adhesion
TWI264735B (en) Anisotropic electrical conductive film and its manufacturing method thereof
JPH0623349B2 (en) Anisotropic conductive adhesive
KR100801401B1 (en) Adhesive and Adhesive Film
JPS63308880A (en) Anisotropic conductive adhesive
KR20020042465A (en) Connection material
JP3027115B2 (en) Anisotropic conductive adhesive film
JP2905121B2 (en) Anisotropic conductive adhesive film
JPS608377A (en) Anisotropically electrically-conductive adhesive
JPS6052187B2 (en) conductive adhesive
KR20110101241A (en) Conductive resin composition, manufacturing method of electronic component using the same, bonding method, bonding structure, and electronic component
JPS61195178A (en) Anisotropically conductive adhesive
JPS63110506A (en) Anisotropic conducting sheet
KR101227795B1 (en) Connection structure
JPH06136332A (en) Anisotropically conductive adhesive
JPS58117661A (en) Electrically connecting device
JP3258550B2 (en) Three-layer conductive anisotropic strip for fine pitch heat seal connector and method of manufacturing the same