JPS63307691A - Ceramic insulating thin film el element - Google Patents
Ceramic insulating thin film el elementInfo
- Publication number
- JPS63307691A JPS63307691A JP62144630A JP14463087A JPS63307691A JP S63307691 A JPS63307691 A JP S63307691A JP 62144630 A JP62144630 A JP 62144630A JP 14463087 A JP14463087 A JP 14463087A JP S63307691 A JPS63307691 A JP S63307691A
- Authority
- JP
- Japan
- Prior art keywords
- ceramic insulating
- ceramic
- damping
- thin film
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 74
- 239000010409 thin film Substances 0.000 title claims abstract description 33
- 238000013016 damping Methods 0.000 claims abstract description 41
- 239000000758 substrate Substances 0.000 claims abstract description 11
- 230000001360 synchronised effect Effects 0.000 abstract description 2
- 238000004020 luminiscence type Methods 0.000 abstract 2
- 239000000463 material Substances 0.000 description 12
- 238000009413 insulation Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- -1 etc. Inorganic materials 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 3
- 229910001252 Pd alloy Inorganic materials 0.000 description 2
- 229910019322 PrF3 Inorganic materials 0.000 description 2
- 229910002113 barium titanate Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 229910003781 PbTiO3 Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910001260 Pt alloy Inorganic materials 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- SWELZOZIOHGSPA-UHFFFAOYSA-N palladium silver Chemical compound [Pd].[Ag] SWELZOZIOHGSPA-UHFFFAOYSA-N 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Landscapes
- Electroluminescent Light Sources (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は発光表示装置や面光源として利用されるセラミ
ック絶縁薄膜EL素子に関し、特に高誘電率セラミック
層を絶縁層に用いた交流駆動式のセラミック絶縁薄wA
EL素子に関する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a ceramic insulating thin film EL device used as a light emitting display device or a surface light source, and in particular to an AC drive type EL device using a high dielectric constant ceramic layer as an insulating layer. Ceramic insulation thin wA
Regarding EL elements.
従来、低電圧交流駆動が可能で絶縁破壊に対して非常に
安定な構造を有するEL素子としては、所謂、セラミッ
ク絶縁薄膜EL素子が知られている0例えば、かかる素
子は1985年度インターナショナル・ディスプレイ・
リサーチ・コンファレンス予稿集173頁(Confe
renceRecord of the Intern
ational Display Re5earchC
onference 1985)に報告されている。Conventionally, so-called ceramic insulated thin film EL devices have been known as EL devices that can be driven with low voltage AC and have a structure that is extremely stable against dielectric breakdown.
Research Conference Proceedings, page 173 (Confe
RenceRecord of the Intern
ational Display Re5earchC
(1985).
第2図は従来のかかるセラミック絶縁薄膜EL素子の断
面図であり、駆動源を付加した状態を示す。FIG. 2 is a sectional view of such a conventional ceramic insulating thin film EL element, showing a state in which a driving source is added.
第2図に示すように、このEL素子はセラミック基部1
上にプラチナや銀・パラジウム合金等からなる内部電極
2とPZT系、BaTiO3系。As shown in FIG. 2, this EL element has a ceramic base 1
On top is an internal electrode 2 made of platinum, silver/palladium alloy, etc., PZT type, BaTiO3 type.
またはP bT i 03系統のペロブスカイト化合物
等からふる高誘電率のセラミック絶縁層3とを積層して
形成されたセラミック基板12と、このセラミック基板
12のセラミック絶縁層3上に真空蒸着法やスパッタ蒸
着法により蒸着されたMn。Alternatively, a ceramic substrate 12 formed by laminating a ceramic insulating layer 3 with a high dielectric constant made of a P bT i 03 type perovskite compound, etc., and a vacuum evaporation method or sputter evaporation method are applied on the ceramic insulating layer 3 of this ceramic substrate 12. Mn deposited by the method.
TbF3.5nF3 、PrFl等の発光中心を含むZ
nSからなる薄膜の発光層4と、この発光層4の上に成
膜されたITO等からなる透明電極5とから構成される
。このEL素子を発光させるには、内部電極2と透明電
極5とに接続された低電圧交流電源6により駆動させる
。Z containing luminescent centers such as TbF3.5nF3 and PrFl
It is composed of a thin light emitting layer 4 made of nS and a transparent electrode 5 made of ITO or the like formed on the light emitting layer 4. In order to emit light from this EL element, it is driven by a low voltage AC power source 6 connected to the internal electrode 2 and the transparent electrode 5.
尚、第2図に示した例は所謂片絶縁型のものであるが、
発光714と透明電極5の間にY2o、やTa205等
の薄膜絶縁層を挿入した二重絶縁構造としてもよい。The example shown in Figure 2 is of the so-called single insulation type, but
A double insulation structure may be used in which a thin film insulation layer of Y2O, Ta205, or the like is inserted between the light emitting device 714 and the transparent electrode 5.
次に、上述した構造を有するセラミック絶縁薄膜EL素
子の発光原理について説明する。Next, the principle of light emission of the ceramic insulating thin film EL element having the above-described structure will be explained.
第2図に示す発光層4は発光開始前は単純なコンデンサ
と考えられる。従って、内部電極2と透明電極5との間
に交流電源6から交流電圧を印加すると、発光層4及び
セラミック絶縁層3にはそれぞれの静電容量に応じた電
圧が加えられる0発光層4に加えられる電界が十分大き
くなると(約106V/C11以上)、発光層4の伝導
帯に電子が励起される。この電子は電界によって加速さ
れ十分なエネルギーを持って発光中心に衝突する。この
衝突時のエネルギーにより適当な励起状態に上がった発
光中心の電子が基底状態へ戻るとき、発光中心に固有な
エネルギー値を持った光が放出される。尚、実際には結
晶格子との相互作用等により発光スペクトルはある程度
の拡がりを持っており、また発光中心としてMn、Tb
F3゜5nF3またはPrF3を用いた場合はそれぞれ
黄橙色、緑色、赤色、白色の発光が観測される。The light emitting layer 4 shown in FIG. 2 is considered to be a simple capacitor before the start of light emission. Therefore, when an AC voltage is applied from the AC power source 6 between the internal electrode 2 and the transparent electrode 5, a voltage is applied to the luminescent layer 4 and the ceramic insulating layer 3 according to their respective capacitances. When the applied electric field becomes sufficiently large (approximately 106 V/C11 or more), electrons are excited in the conduction band of the light emitting layer 4. These electrons are accelerated by the electric field and collide with the luminescent center with sufficient energy. When the electrons in the luminescent center, which have been raised to an appropriate excited state by the energy of this collision, return to the ground state, light with an energy value unique to the luminescent center is emitted. In reality, the emission spectrum has a certain degree of expansion due to interaction with the crystal lattice, and Mn and Tb are the emission centers.
When F3°5nF3 or PrF3 is used, yellow-orange, green, red, and white light emission is observed, respectively.
このようなセラミック絶縁薄膜EL素子の発光原理は従
来のガラス基板上に薄膜の絶縁層や発光層を積層した交
流駆動型の薄膜EL素子〔ニス・アイ・ディ・74・ダ
イジェスト・第1・テクニカル・ペーパーズ 84頁、
(SID 74Digest pf Technic
al I’apcrs))とかわるものではない、しか
し、かかるセラミック絶縁薄膜EL素子は数10μm程
度の厚さの非常に誘電率の高いセラミック絶縁層3の効
果により動作電圧の大幅な低減や絶縁破壊電圧に対する
非常に高い安定性がともに実現されたものであり、低コ
ストの面光源や発光表示装置として期待されている。The light emitting principle of such a ceramic insulated thin film EL element is based on the conventional AC-driven thin film EL element in which a thin insulating layer and a light emitting layer are laminated on a glass substrate [Nis.I.D.74 Digest 1st Technical.・Papers 84 pages,
(SID 74 Digest pf Technic
However, such a ceramic insulating thin film EL element can significantly reduce the operating voltage and prevent dielectric breakdown due to the effect of the ceramic insulating layer 3, which is several tens of micrometers thick and has a very high dielectric constant. Both have achieved extremely high stability against voltage, and are expected to be used as low-cost surface light sources and light-emitting display devices.
上述したようにセラミック絶縁薄膜EL素子は低電圧動
作が可能で絶縁破壊電圧に対する高い安定性を有してい
るが、絶縁層として用いている高誘電率セラミックは電
圧を印加されると電歪を生じる。すなわち、セラミック
絶縁薄膜EL素子に発光に必要な交流電圧を印加すると
、この電圧の一部がセラミック絶縁層に分圧されてセラ
ミック絶縁層に歪を生じる。As mentioned above, ceramic insulating thin film EL devices are capable of low voltage operation and have high stability against dielectric breakdown voltage, but the high dielectric constant ceramic used as the insulating layer exhibits electrostriction when a voltage is applied. arise. That is, when an AC voltage necessary for light emission is applied to the ceramic insulating thin film EL element, a part of this voltage is divided into the ceramic insulating layer, causing distortion in the ceramic insulating layer.
第3図はかかる電歪状態にあるセラミック絶縁薄膜E素
子の断面図である。FIG. 3 is a sectional view of the ceramic insulating thin film E element in such an electrostrictive state.
第3図に示すように、電圧印加によりセラミック絶縁層
3が矢印の方向に伸び(材料によっては逆に縮む場合も
考えられる)、このためセラミック絶縁薄膜EL素子全
体が交流電圧の変化に応じて変形する。従来のセラミッ
ク絶縁薄膜EL素子はこの変形により振動を生じ騒音を
発するという欠点があった。As shown in Fig. 3, the ceramic insulating layer 3 expands in the direction of the arrow when voltage is applied (depending on the material, it may also contract in the opposite direction), so that the entire ceramic insulating thin film EL element changes in response to changes in the AC voltage. transform. Conventional ceramic insulating thin film EL elements have the drawback of causing vibration and noise due to this deformation.
本発明の目的は、かかる電歪に起因する振動および振動
による騒音を解決するセラミック絶縁薄膜EL素子を提
供することにある。An object of the present invention is to provide a ceramic insulating thin film EL element that solves the vibrations caused by electrostriction and the noise caused by the vibrations.
本発明は内部電極と高誘電率セラミック絶縁層とを有す
るセラミック基板の上に発光層と透明電極とを設けたセ
ラミック絶縁薄膜EL素子において、前記セラミック基
板の内部および前記セラミック絶縁層とは反対側の表面
のいづれかに前記内部電極と前記透明電極とにそれぞれ
対応する制振電極を制振層を介して形成される。The present invention provides a ceramic insulating thin film EL element in which a light emitting layer and a transparent electrode are provided on a ceramic substrate having an internal electrode and a high dielectric constant ceramic insulating layer, the inside of the ceramic substrate and the side opposite to the ceramic insulating layer. Vibration damping electrodes corresponding to the internal electrodes and the transparent electrodes are formed on any one of the surfaces of the vibration damping layer via a damping layer.
本発明のセラミック絶縁薄膜EL素子はセラミック基板
内部またはセラミック絶縁層と反対側のセラミック表面
に内部電極及び透明電極に各々対応する制振電極を配置
することにより、従来技術の欠点であったセラミック絶
縁薄膜EL素子の発する龜音を低減するものである。す
なわち上記の制振電極にEL素子の発光のために印加さ
れる電圧もしくは電流に同期した電圧もしくは電流を印
加し、それにより制振電極ではさまれた電歪を生ずる制
振層が、発光のために印加する電圧の一部をセラミック
絶縁層に印加した除虫じる電歪振動とは逆相の振動をセ
ラミック基板内に生じせしめることにある。これにより
セラミック絶縁薄膜EL素子全体の振動を減少させ、以
って低騒音化をはかるものである。The ceramic insulated thin film EL element of the present invention has a ceramic insulating layer which has been solved from the drawbacks of the prior art by arranging damping electrodes corresponding to the internal electrodes and the transparent electrodes respectively inside the ceramic substrate or on the ceramic surface opposite to the ceramic insulating layer. This reduces the noise generated by thin film EL elements. That is, by applying a voltage or current synchronized with the voltage or current applied to the EL element to emit light to the above-mentioned damping electrodes, the damping layer sandwiched between the damping electrodes and producing electrostriction causes light emission. The aim is to generate vibrations in the ceramic substrate that are opposite in phase to the electrostrictive vibrations that repel insects by applying a portion of the voltage to the ceramic insulating layer. This reduces the vibration of the entire ceramic insulating thin film EL element, thereby reducing noise.
次に、本発明の実施例について図面を参照して説明する
。Next, embodiments of the present invention will be described with reference to the drawings.
第1図は本発明の一実施例を説明するための駆動源を付
加したセラミック絶縁薄膜EL素子の断面図である。FIG. 1 is a cross-sectional view of a ceramic insulating thin film EL element to which a driving source is added for explaining one embodiment of the present invention.
第1図に示すように、かかるEL素子はセラミック基部
1上に内部電極2.セラミツク絶縁層31発光層4およ
び透明電極5を形成し、一方セラミック基部1の下面に
第一の制振電極7゜制振層8および第二の制振電極9を
形成し、その第二の制振電極9上を保護絶縁層10によ
り被覆保護している。かかるEL素子を駆動して発光さ
せるために、交流電源6を内部電極2と透明電極5とに
接続する一方、EL素子の振動を防止するためトランス
11を介し交流電源6が第一の制振電極7と第二の制振
電極9とにトランス結合されている。As shown in FIG. 1, such an EL element has internal electrodes 2. A ceramic insulating layer 31, a light-emitting layer 4, and a transparent electrode 5 are formed, while a first damping electrode 7°, a damping layer 8, and a second damping electrode 9 are formed on the lower surface of the ceramic base 1; The vibration damping electrode 9 is covered and protected by a protective insulating layer 10. In order to drive such an EL element to emit light, an AC power source 6 is connected to the internal electrode 2 and the transparent electrode 5, while the AC power source 6 is connected to a first vibration damper via a transformer 11 to prevent vibration of the EL element. The electrode 7 and the second vibration damping electrode 9 are transformer coupled.
上述したセラミック基部1の形状は厚さが約1龍、−辺
の長さが20龍の正方形であり、またそのセラミック材
料としては一般的なアルミナとホウケイ酸ガラスの混合
物を用いる。内部電極2は厚さが約3μmであり、その
材料としては安価な銀・パラジウム合金を用いる。高誘
電率のセラミック絶縁層3は厚さが5〜1000μm程
度であればよいが本実施例では35μmとし、その材料
はPZT系、BaTiO3系、もしくはPbTiO3系
などの高誘電率が得られる材料であればよい0本実施例
では低温焼成が可能なpbを含む複合ペロブスカイト化
合物を用いている。The shape of the ceramic base 1 described above is a square with a thickness of approximately 1 dragon and a side length of 20 dragons, and the ceramic material thereof is a common mixture of alumina and borosilicate glass. The internal electrode 2 has a thickness of about 3 μm, and is made of an inexpensive silver-palladium alloy. The high dielectric constant ceramic insulating layer 3 only needs to have a thickness of about 5 to 1000 μm, but in this example it is 35 μm, and its material is a material that can obtain a high dielectric constant such as PZT, BaTiO3, or PbTiO3. In this example, a composite perovskite compound containing PB that can be fired at a low temperature is used.
この材料の比誘電率は常温で15,000以上と非常に
大きい、薄膜の発光層4はMnを約1モル%含むZnS
を0.4μmの厚さに蒸着する。The dielectric constant of this material is very large, over 15,000 at room temperature.The thin film light emitting layer 4 is made of ZnS containing about 1 mol% of Mn.
is deposited to a thickness of 0.4 μm.
尚、この発光層4の材料としてはZnSだけでな(Zn
SeJIpCaS、SrSなどの硫化物やフッ化物また
はその他の蛍光体材料を使用することも可能である。ま
た、発光中心となる材料はMnに限らずTbFl 、5
nF3 、PrF3などの希土類フッ化物や希土類その
もの等を用いることもできる。透明電極5は発光層4の
上に形成され、ITOをマグネトロンスパッタ法により
厚さが0.3μm、10+u角の正方形に成膜する。Incidentally, the material for this light emitting layer 4 is not only ZnS (Zn
It is also possible to use sulfides and fluorides such as SeJIpCaS, SrS or other phosphor materials. In addition, the material that forms the luminescent center is not limited to Mn, but also TbFl, 5
Rare earth fluorides such as nF3 and PrF3, rare earth elements themselves, etc. can also be used. The transparent electrode 5 is formed on the light emitting layer 4, and is made of ITO by magnetron sputtering to form a square film having a thickness of 0.3 μm and 10+u sides.
EL素子を駆動する低電圧交流電源6は透明電極5と後
述する第一の制振電極7に接続されている。この第一の
制振電極7は厚さや材料が内部電極2と同様であり、ま
たその平面的形状は内部電極2やセラミック基部1と同
じく20龍角の正方形である。制振層8はセラミック絶
縁層3の振動を効果的に押えるために、厚さ、材料、平
面寸法ともにセラミック絶縁層3に合わせている。第二
の制振電極9は厚さ、材料とも内部電極2と同様であり
、平面的形状は透明電極5と同じく10龍角の正方形と
している。保護絶縁層10はこの第二の制振電極9を外
部から電気的および機械的に保護するため全体を覆うよ
うに形成され、その材料はエポキシ樹脂等を用いている
。A low voltage AC power source 6 for driving the EL element is connected to the transparent electrode 5 and a first vibration damping electrode 7, which will be described later. The first vibration damping electrode 7 has the same thickness and material as the internal electrode 2, and its planar shape is a 20-square square like the internal electrode 2 and the ceramic base 1. The damping layer 8 is made to match the thickness, material, and planar dimensions of the ceramic insulating layer 3 in order to effectively suppress the vibrations of the ceramic insulating layer 3. The second vibration damping electrode 9 has the same thickness and material as the internal electrode 2, and has a planar shape of a 10-square square like the transparent electrode 5. The protective insulating layer 10 is formed to cover the entire second damping electrode 9 electrically and mechanically from the outside, and is made of epoxy resin or the like.
尚、実際の製造においては、セラミック基部1とセラミ
ック絶縁層3と制振層8とは所謂グリーンシートを用い
、一方向部電極2と第一の制振電極7と第二の制振電極
9とはグリーンシート上にそのパターンをスクリーン印
刷しておき、必要数のグリーンシートを積層して加圧・
接着し焼成して一体に形成する。すなわち、セラミック
基部1、内部電極2.セラミック絶縁層3.第一の制i
t極7.制振層8..第二の制振電極9を一体に焼結し
ている。In actual manufacturing, so-called green sheets are used for the ceramic base 1, the ceramic insulating layer 3, and the damping layer 8, and the unidirectional electrode 2, the first damping electrode 7, and the second damping electrode 9 are used. The pattern is screen printed on green sheets, and the required number of green sheets are stacked and pressed together.
It is bonded and fired to form a single piece. That is, a ceramic base 1, an internal electrode 2. Ceramic insulation layer 3. first rule i
t-pole7. Damping layer 8. .. The second vibration damping electrode 9 is integrally sintered.
このようにして作成したセラミック絶縁薄膜EL素子の
透明電極5及び内部電極2に交流電源6を接続し、また
トランス11を介して第一の制振電極7と第二の制振電
極9とに交流電源6の電圧を印加して発光を行わせる。An AC power source 6 is connected to the transparent electrode 5 and the internal electrode 2 of the ceramic insulated thin film EL device thus prepared, and the first vibration damping electrode 7 and the second vibration damping electrode 9 are connected to each other via the transformer 11. A voltage from an AC power source 6 is applied to cause light emission.
このとき、素子の発光面から約10C11の距離にマイ
クロホンを置き音圧を測定しなところ、制振電極7,9
及び制振層8を用いずに交流電源6を内部電極2及び透
明電極5のみに接続した場合に比較して20デシベル(
dB)前後の音圧の減少を実現することができる。これ
は聴感上も非常に静かなセラミック絶縁薄FyAEL素
子を実現しうろことになる。At this time, when the microphone was placed at a distance of about 10C11 from the light emitting surface of the element and the sound pressure was measured, the damping electrodes 7 and 9
and 20 decibels (
dB) reduction in front and rear sound pressure can be achieved. This will lead to the realization of a ceramic insulated thin FyAEL element that is very audibly quiet.
本実施例は、最も基本的な構造を有するセラミック絶縁
薄膜EL素子に制振電極及び制振層を設けた例について
説明したが、セラミック絶縁薄膜EL素子の薄膜部分は
ここに述べた例に限らず、セラミック絶縁層3と発光層
4の間に金属イオンがセラミック絶縁層3から発光層4
に拡散することを防止する薄膜絶縁層を備えたセラミッ
ク絶縁薄膜EL素子や、輝度の立上り特性を改善するた
めに発光層4と透明電極5の間に薄膜絶縁層を挿入した
セラミック絶縁薄膜EL素子に対しても本発明を適用す
ることができる。This example describes an example in which a damping electrode and a damping layer are provided on a ceramic insulated thin film EL element having the most basic structure, but the thin film portion of the ceramic insulated thin film EL element is limited to the example described here. First, metal ions are transferred from the ceramic insulating layer 3 to the light emitting layer 4 between the ceramic insulating layer 3 and the light emitting layer 4.
Ceramic insulating thin film EL devices equipped with a thin insulating layer to prevent light from diffusing into the light, and ceramic insulating thin film EL devices in which a thin insulating layer is inserted between the light emitting layer 4 and the transparent electrode 5 to improve brightness rise characteristics. The present invention can also be applied to.
また、本実施例における制振電極の平面的形状について
は、一対の制振電極により狭まれる部分の平面的形状が
透明電極と内部電極とにより狭まれる部分の平面的形状
に似ていればよく、必ずしも相似形である必要はない、
また、この制振電極は必ずしも平面的に切れ目なく続い
ている必要はなく、一部切り欠きを有するものであって
もよい。Regarding the planar shape of the damping electrodes in this example, the planar shape of the portion narrowed by the pair of damping electrodes should be similar to the planar shape of the portion narrowed by the transparent electrode and the internal electrode. They don't necessarily have to be similar,
Further, the vibration damping electrode does not necessarily have to continue without any interruption in a plane, and may have a partial cutout.
更に、制振層の材料や厚さがセラミック絶縁層と異なっ
ている場合であっても、制振層に印加される電圧または
電流を適宜調節することにより同様な機能を発揮するこ
とができる。Furthermore, even if the material and thickness of the damping layer are different from those of the ceramic insulating layer, the same function can be achieved by appropriately adjusting the voltage or current applied to the damping layer.
尚、ここで述べた実施例の数値や材料などについては、
あくまでも一実施例として述べたものであり本発明の適
用範囲を限定するものではない。Regarding the numerical values and materials of the examples described here,
This is merely an example, and does not limit the scope of the present invention.
以上説明した通り、本発明のセラミック絶縁薄膜EL素
子は各電極に対応する制振電極を具備することにより、
EL素子の振動を著しく減少させることができ、そのた
め振動音を非常に小さくできる効果がある。従って、本
発明は室内等における静寂を要する場所でのEL素子の
使用も可能になるなど実用的価値が非常に高いものであ
る。As explained above, the ceramic insulating thin film EL element of the present invention has vibration damping electrodes corresponding to each electrode, so that
The vibration of the EL element can be significantly reduced, which has the effect of greatly reducing vibration noise. Therefore, the present invention has very high practical value, as it enables the use of EL elements in places where silence is required, such as indoors.
第1図は本発明の一実施例を説明するための駆動源を付
加したセラミック絶縁薄膜EL素子の断面図、第2図は
従来の一例を説明するための駆動源を付加したEL素子
の断面図、第3図は従来の電歪状態にあるセラミック絶
縁薄膜EL素子の断面図である。FIG. 1 is a cross-sectional view of a ceramic insulating thin film EL element with a driving source added to explain an embodiment of the present invention, and FIG. 2 is a cross-sectional view of an EL element with a driving source added to explain a conventional example. 3 are cross-sectional views of a conventional ceramic insulating thin film EL element in an electrostrictive state.
Claims (1)
ミック基板上に発光層と透明電極とを設けたセラミック
絶縁薄膜EL素子において、前記セラミック基板の内部
および前記セラミック絶縁層とは反対側の表面のいづれ
かに前記内部電極と前記透明電極とにそれぞれ対応する
制振電極を制振層を介して形成したことを特徴とするセ
ラミック絶縁薄膜EL素子。In a ceramic insulating thin film EL element in which a light emitting layer and a transparent electrode are provided on a ceramic substrate having an internal electrode and a high dielectric constant ceramic insulating layer, either the inside of the ceramic substrate or the surface opposite to the ceramic insulating layer A ceramic insulating thin film EL device characterized in that vibration damping electrodes corresponding to the internal electrodes and the transparent electrodes are formed via a damping layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62144630A JPS63307691A (en) | 1987-06-09 | 1987-06-09 | Ceramic insulating thin film el element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62144630A JPS63307691A (en) | 1987-06-09 | 1987-06-09 | Ceramic insulating thin film el element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63307691A true JPS63307691A (en) | 1988-12-15 |
Family
ID=15366514
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62144630A Pending JPS63307691A (en) | 1987-06-09 | 1987-06-09 | Ceramic insulating thin film el element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63307691A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0793247A2 (en) * | 1996-03-01 | 1997-09-03 | Matsushita Electric Industrial Co., Ltd. | Noiseless dispersion electroluminescent device and switch unit using same |
GB2338859A (en) * | 1998-06-24 | 1999-12-29 | Nec Corp | Portable apparatus with electro-luminescent display illumination and active noise cancelling means therefor |
WO2008139827A1 (en) | 2007-05-16 | 2008-11-20 | Bridgestone Corporation | Radial tire for aircraft |
-
1987
- 1987-06-09 JP JP62144630A patent/JPS63307691A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0793247A2 (en) * | 1996-03-01 | 1997-09-03 | Matsushita Electric Industrial Co., Ltd. | Noiseless dispersion electroluminescent device and switch unit using same |
EP0793247A3 (en) * | 1996-03-01 | 1998-09-16 | Matsushita Electric Industrial Co., Ltd. | Noiseless dispersion electroluminescent device and switch unit using same |
GB2338859A (en) * | 1998-06-24 | 1999-12-29 | Nec Corp | Portable apparatus with electro-luminescent display illumination and active noise cancelling means therefor |
US6075324A (en) * | 1998-06-24 | 2000-06-13 | Nec Corporation | Small portable apparatus with EL device producing reduced noise |
GB2338859B (en) * | 1998-06-24 | 2002-10-09 | Nec Corp | Portable apparatus with electro-luminescent display device |
WO2008139827A1 (en) | 2007-05-16 | 2008-11-20 | Bridgestone Corporation | Radial tire for aircraft |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
GB2242312A (en) | Laminated displacement device | |
JPS63307691A (en) | Ceramic insulating thin film el element | |
JPS5823191A (en) | Thin film el element | |
JPS63164196A (en) | El device | |
JPS61250993A (en) | El element | |
JPS5827506B2 (en) | Blackened electrode structure | |
JPS60118000A (en) | Light emitting piezoelectric element | |
JPS5829880A (en) | Electric field luminescent element | |
JPS62213091A (en) | El device | |
JPS6369193A (en) | El device and manufacture of the same | |
JPS6329489A (en) | Thin film el device | |
JPS63146393A (en) | Method of sealing el device | |
JPS6124192A (en) | Thin film electroluminescent element | |
JPS6113596A (en) | Thin film el element | |
JPH0516158B2 (en) | ||
JPS6191900A (en) | Organic el panel | |
JPH01130495A (en) | Film type electroluminescence element | |
JPH01100892A (en) | Manufacture of thin film electroluminescence element | |
JPH0244691A (en) | Manufacture of electroluminescence luminous element | |
JPS58175293A (en) | Electric field light emitting element | |
JPH01307400A (en) | Sounding type electro-luminescence element | |
JPS6147097A (en) | Electroluminescent element | |
JPS5820468B2 (en) | Blackened electrode structure | |
JPS6196696A (en) | Manufacture of thin film el element | |
JP2002280185A (en) | Thin film EL element |