[go: up one dir, main page]

JPS63305766A - Self-driven linear motor - Google Patents

Self-driven linear motor

Info

Publication number
JPS63305766A
JPS63305766A JP62140248A JP14024887A JPS63305766A JP S63305766 A JPS63305766 A JP S63305766A JP 62140248 A JP62140248 A JP 62140248A JP 14024887 A JP14024887 A JP 14024887A JP S63305766 A JPS63305766 A JP S63305766A
Authority
JP
Japan
Prior art keywords
linear
sliding surface
self
vibrating body
linear rail
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62140248A
Other languages
Japanese (ja)
Other versions
JP2528657B2 (en
Inventor
Sadayuki Ueha
貞行 上羽
Minoru Kurosawa
実 黒澤
Michiyuki Masuda
増田 道幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP62140248A priority Critical patent/JP2528657B2/en
Publication of JPS63305766A publication Critical patent/JPS63305766A/en
Application granted granted Critical
Publication of JP2528657B2 publication Critical patent/JP2528657B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/021Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors using intermittent driving, e.g. step motors, piezoleg motors
    • H02N2/023Inchworm motors

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To permit the fine control of movement and the driving of a long running distance, by a method wherein an oscillating body is provided with piezo-electric laminates on both sides thereof while the timing of the expansion and contraction of the laminates is regulated. CONSTITUTION:In a self-driven linear motor 1, incorporated into a linear rail X having a rectangular section, a linear running body 2 is arranged at the lower surface side of a sliding surface Y, opposing to the linear rail X, and a transfer body 15, supporting a conveying matter W, is arranged at the upper surface side of the sliding surface Y. The running body 2 is constituted of metallic blocks 5a, 5b, arranged at both sides of the laminates of vertical oscillating elements 4 consisting of two sheets of annular piezo-electric elements having different directions of polarization mutually, and a bolt 7, inserted into a screw thread provided on the inner surfaces of respective metallic blocks 5a, 5b to screw the screw threads 8a, 8b on the upper and lower ends thereof and pinch the oscillating elements 4. The transfer body 15, consisting wheels 16 and side plates 17, is pressed against the sliding surface Y by tension springs 19 to contact with the surface Y. According to this method, the transfer body 15 moves on the linear rail X by the expansion and contraction of the oscillating body 3 and the expansion rate of the piezo-electric elements 10a, 10b.

Description

【発明の詳細な説明】 く産業上の利用分野〉 本発明は、リニアレールに沿って移動して搬送物を移送
するものであって、NC工作機器の工具、工作物等の位
置決め、WA微鏡の標本類の微送り、工学系反射鏡の微
角度調整等に適用される自走式リニアモータに関する。
Detailed Description of the Invention Industrial Application Fields The present invention is for transporting objects by moving along linear rails, and for positioning tools, workpieces, etc. of NC machine tools, and for WA fine-tuning. This invention relates to a self-propelled linear motor that is used for fine feeding of mirror specimens, fine angle adjustment of engineering reflecting mirrors, etc.

〈従来技術〉 搬送物を移動して、精密な位置調整に供し得るようにす
るには、微小な歩道量を可能とする駆動体が必要となる
<Prior Art> In order to move the conveyed object and make it possible to precisely adjust the position, a driving body that can move a minute distance is required.

そこで、これに対応し得るものとして、特願昭54−8
322で開示されているように、直進用の圧電積層体と
、クランプ用の積層体を備えたリニアステップモータが
提案された。
Therefore, as a solution to this problem, the patent application
As disclosed in No. 322, a linear step motor including a piezoelectric laminate for linear movement and a laminate for clamping was proposed.

〈発明が解決しようとする問題点〉 ところで、かかる構成は、直進通路の対応壁に、前記ク
ランプ用圧電積層体を接触させて移送するものであるか
ら、直進通路の構造が筒状等の複雑な構成となるととも
に、対応壁に高い平行度及び平滑度を要することとなっ
て、加工が困難である。そしてまた、該通路が長くなる
と、誤差の発生を避けることができないから、結局、長
い走行距離を要する場合には不向きとなる等の欠点があ
った。
<Problems to be Solved by the Invention> By the way, in this configuration, since the piezoelectric laminate for clamping is transferred while being in contact with the corresponding wall of the straight passage, it is difficult to transfer the piezoelectric laminate for clamping when the straight passage has a complicated structure such as a cylinder. In addition, the corresponding wall requires high parallelism and smoothness, making it difficult to process. Furthermore, if the path becomes long, errors cannot be avoided, which results in a drawback that the system is unsuitable for applications requiring a long distance to travel.

本考案は、上記の各欠点のない自走式リニアモータの提
供を目的とするものである。
The object of the present invention is to provide a self-propelled linear motor that does not have the above-mentioned drawbacks.

く問題点を解決するための手段〉 本発明は、 断面多角状のリニアレールの一側摺動面に。Means to solve problems〉 The present invention For one side sliding surface of a linear rail with a polygonal cross section.

縦方向に振動する振動体と、その両端部の略最大振巾位
置に配設されて該リニアレールの一側摺動面に圧接する
圧電積層体とを備え、両圧電積層体は、振動体の振動と
同期してa層方向に伸縮作動を生じ、かつ両圧電積層体
相互は逆伸縮タイミングとなる電圧制御を施してなるリ
ニア走行体を配設するとともに、 リニアレールの他側摺動面に移送体を配設し。
It includes a vibrating body that vibrates in the vertical direction, and a piezoelectric laminate that is disposed at substantially maximum amplitude positions at both ends of the vibrating body and presses against one sliding surface of the linear rail. A linear running body is provided in which an expansion/contraction operation occurs in the direction of layer a in synchronization with the vibration of A transport body is placed in the.

リニア走行体を振動体の略中央部のノード位置で、引き
バネを介して、移送体と連結したことを特徴とするもの
である。
The present invention is characterized in that the linear traveling body is connected to the transporting body via a tension spring at a node position approximately in the center of the vibrating body.

く作用〉 リニア走行体は、引きバネを介して移送体と連結するこ
とにより、リニアレールに保持される。
Effect> The linear traveling body is held on the linear rail by being connected to the transport body via a tension spring.

そして振動体が伸張すると、振動体の中央部はノード位
置となっているから1両端部が外方へ微伸縮する。
When the vibrating body expands, since the central part of the vibrating body is at the node position, both ends slightly expand and contract outward.

このとき、例えば左端の圧電積層体が伸張して、リニア
レールの一側摺動面に圧接するとともに、右端の圧電積
層体が収縮したときに振動体が伸張すると、左端の伸張
側の圧電積層体を介して振動体がリニアレール側に連結
しているから、その圧接部を支点として振動体が伸張し
、右端が延びることとなる。
At this time, for example, when the piezoelectric laminate on the left end expands and comes into pressure contact with one sliding surface of the linear rail, and the piezoelectric laminate on the right end contracts and the vibrating body expands, the piezoelectric laminate on the left end stretching side Since the vibrating body is connected to the linear rail side through the body, the vibrating body expands using the press-contact portion as a fulcrum, and its right end extends.

次に、該左端の圧電積層体が収縮し、右端の圧電積層体
が伸張してリニアレールの一側摺動面に圧接したときに
、振動体が収縮すると、右端の伸張側の圧電積層体を介
して振動体がリニアレール側に連結しているから、その
圧接部を支点として、振動体が収縮し、左端が引寄せら
れることとなる。
Next, when the piezoelectric laminate at the left end contracts and the piezoelectric laminate at the right end expands and comes into pressure contact with one sliding surface of the linear rail, the vibrating body contracts, and the piezoelectric laminate at the right end stretches. Since the vibrating body is connected to the linear rail side via the vibrating body, the vibrating body contracts using the pressure contact portion as a fulcrum, and the left end is pulled together.

従って、この連続により、リニアレールに沿って、リニ
アモータは走行することとなる。
Therefore, this continuity causes the linear motor to travel along the linear rail.

リニアモータを逆走させる場合には、左右の圧電積層体
の伸縮タイミングを振動体の伸縮タイミングに対応して
反転させればよい。
If the linear motor is to run in reverse, the timing of expansion and contraction of the left and right piezoelectric laminates may be reversed in accordance with the timing of expansion and contraction of the vibrating body.

〈実施例〉 第1.2図において、lは、断面矩形状のりニアレール
Xに組付られた本考案の自走式リニアモータlであって
、前記リニアレールXの対向する摺動面yの下面側にリ
ニア走行体2を、上面側に搬送物Wを支持する移送体1
5を配設している。
<Example> In Fig. 1.2, l is a self-propelled linear motor l of the present invention assembled on a linear rail X having a rectangular cross section, and the sliding surface y of the linear rail X facing A transport body 1 that supports a linear traveling body 2 on the lower surface side and a conveyed object W on the upper surface side.
5 are installed.

リニア走行体2は、リニアレールXに沿った杆状をして
おり、その構成について説明する。
The linear traveling body 2 has a rod shape along the linear rail X, and its configuration will be explained.

第1図について、3は振動体であって、相互に分極方向
を異ならせた二枚の環状圧電素子からなる縦振動素子4
.4の積層体の両側に、ジュラルミン製の金属ブロック
5a、5bを配設し、さらに各部材の中心にボルト7を
挿入して、その上下端の螺子8a、8bを夫々金属ブロ
ック5a、5bの内面に周設した螺子に螺合して、振動
素子4.4を金属ブロック5a、5bで挟持することに
より構成される。
Referring to FIG. 1, 3 is a vibrating body, and a longitudinal vibrating element 4 is made up of two annular piezoelectric elements with mutually different polarization directions.
.. Metal blocks 5a and 5b made of duralumin are arranged on both sides of the laminate of No. 4, and a bolt 7 is inserted into the center of each member, and the screws 8a and 8b at the upper and lower ends of the bolts are inserted into the metal blocks 5a and 5b, respectively. It is constructed by screwing the vibration element 4.4 into a screw provided around the inner surface and sandwiching the vibration element 4.4 between metal blocks 5a and 5b.

かかる構成にあって、第5図に示すように、振動素子4
,4の両側に、その端方を縮径したホーン状、金属ブロ
ック6a、6bを配設して、その振動を増幅するように
してもよい。
In such a configuration, as shown in FIG.
, 4 may be provided with horn-shaped metal blocks 6a, 6b whose ends are reduced in diameter to amplify the vibrations.

前記金属ブロック5a、5b、6a、6bの長さは、そ
の両端部が、振動素子4.4の中心位置(ノード位!!
I)からh波長となるようにする。
The lengths of the metal blocks 5a, 5b, 6a, and 6b are such that both ends thereof are at the center position (node position) of the vibration element 4.4!
I) to h wavelength.

また前記振動体2の両端には、厚み方向に分極された複
数の圧電素子板を積層し、各圧電素子板を電気的並列に
配電してなる圧電積層体10a。
Further, a piezoelectric laminate 10a is formed by stacking a plurality of piezoelectric element plates polarized in the thickness direction on both ends of the vibrating body 2, and electrically distributing power to each piezoelectric element plate in parallel.

lObが、その積層方向をリニアレールXの摺動面yに
直交する方向に一致して固定されている。
lOb is fixed so that its stacking direction coincides with the direction orthogonal to the sliding surface y of the linear rail X.

次に移送体15について説明する。Next, the transport body 15 will be explained.

前記移送体15は、摺動面y上にa置される前後二個の
車輪16.16と、該車輪16.16を回転可能に連結
する側板17.17とからなり、リニア走行体2の振動
素子4.4のノード位置(中央部)と、前記側板17.
17には、バネ掛は片11.18が突設され、該バネ掛
は片11゜18に引バネ19.19が掛は渡される。そ
して、かかる引バネ19.19により、リニア走行体2
と移送体15とは上下の摺動面y、y側に付勢されるこ
ととなり、前記圧電積層体10a、10bは該摺動面y
に圧接する。
The transfer body 15 consists of two front and rear wheels 16.16 placed a on the sliding surface y, and a side plate 17.17 rotatably connecting the wheels 16.16. The node position (center) of the vibration element 4.4 and the side plate 17.
A spring hook 11.18 is protruded from 17, and a tension spring 19.19 is passed through the spring hook 11.18. The tension springs 19 and 19 cause the linear traveling body 2 to
and the transfer body 15 are urged toward the upper and lower sliding surfaces y and y, and the piezoelectric laminates 10a and 10b are biased toward the sliding surfaces y and y.
press against.

前記構成にあって、自走式リニアモータlをリニアレー
ルXに沿って、第1図矢線のように右方向に移動するた
めには、第3図に示すように、縦振動素子4,4にE1
sinωtの交番電圧を印加したとすると、右端の圧電
積層体10aは0<1く↑12のときf(t)=−1,
丁/2<t<Tのとjjf(t) −1となるタイミン
グ波形の矩形パルス電圧を、左端の圧電積層体10bは
−f (t)となるタイミング波形の矩形パルス電圧を
夫々印加する。
In the above configuration, in order to move the self-propelled linear motor l along the linear rail X in the right direction as shown by the arrow in FIG. 1, as shown in FIG. E1 to 4
When an alternating voltage of sinωt is applied, the piezoelectric laminate 10a at the right end has f(t)=-1 when 0<1↑12,
When d/2<t<T, a rectangular pulse voltage with a timing waveform of jjf(t) -1 is applied, and a rectangular pulse voltage with a timing waveform of -f (t) is applied to the piezoelectric laminate 10b at the left end.

または、圧電積層体10aにはg2cojωt、圧電積
層体lObにはE2sinωtの電圧を印加してもよい
Alternatively, a voltage of g2cojωt may be applied to the piezoelectric laminate 10a, and a voltage of E2sinωt may be applied to the piezoelectric laminate lOb.

これにより、前記縦振動素子4.4によって振動体3が
伸張するのと同期して、圧電積層体lOaが収縮し、圧
電積層体10bが伸張するから、摺動面yと圧電積層体
10bが圧接し、前記リニア走行体2″は圧電81層体
10bを支点として、圧電積層体10aが右方向に進出
する(第4図イ〜ハ)。
As a result, the piezoelectric laminate lOa contracts and the piezoelectric laminate 10b expands in synchronization with the expansion of the vibrating body 3 by the longitudinal vibration element 4.4, so that the sliding surface y and the piezoelectric laminate 10b are The piezoelectric laminate 10a of the linear traveling body 2'' advances to the right with the piezoelectric 81-layer body 10b as a fulcrum (FIG. 4 A to C).

次に、振動体3が収縮するのと同期して、圧電積層体1
0aが伸張し、圧電積層体lObが収縮するから、摺動
面yと圧電積層体10aが圧接し、前記リニア走行体2
は圧電積層体10aを支点として、圧電積層体10bが
右方向に引寄せられる。(第4図ハ〜ホ) そして、かかる作動の連続によりリニア走行体2は、歩
進的に振動体3の伸縮に伴って移動し、これとともに、
リニアレールX上の移送体15は、その車輪16.18
を回動しながら右側へ走行する。このため、前記移送体
15に搬送物Wを乗載したり、または連継することによ
り、該搬送物Wの移送が可能となる。
Next, in synchronization with the contraction of the vibrating body 3, the piezoelectric laminate 1
Since 0a expands and the piezoelectric laminate lOb contracts, the sliding surface y and the piezoelectric laminate 10a come into pressure contact, and the linear traveling body 2
The piezoelectric laminate 10b is pulled to the right with the piezoelectric laminate 10a as a fulcrum. (FIG. 4 H to H) Then, as a result of this continuous operation, the linear traveling body 2 moves step by step as the vibrating body 3 expands and contracts, and along with this,
The transport body 15 on the linear rail X has its wheels 16.18
Run to the right while rotating. Therefore, by mounting the transported object W on the transfer body 15 or by continuously connecting the transported object W, it becomes possible to transport the transported object W.

尚、自走式リニアモータ1を左側に走行させる場合には
、振動体3に対する、圧電積層体10a、lObの伸縮
タイミングを逆にすればよい。
In addition, when the self-propelled linear motor 1 is made to travel to the left side, the timing of expansion and contraction of the piezoelectric laminates 10a and 1Ob with respect to the vibrating body 3 may be reversed.

第6図は、前記移送体15に換えて、リニア走行体2と
同様構成のリニア走行体20を適用し、該リニア走行体
20自体を移送体としたものである。かかる構成にあっ
ては、駆動力が増大する。
In FIG. 6, a linear traveling body 20 having the same structure as the linear traveling body 2 is used in place of the transporting body 15, and the linear traveling body 20 itself is used as the transporting body. With such a configuration, the driving force increases.

また、搬送物は、該リニア走行体20上に乗載するか、
連継すればよい。
In addition, whether the conveyed object is mounted on the linear traveling body 20 or
Just keep it going.

第7図は、リニアレールXを断面正三角状とし、各摺動
面yにリニア走行体30を配設したものである。かかる
構成にあっては、バネ掛は片31を夫々縦振動素子4,
4の中心位置から外方へ二股状に突出し、リニアレール
X周囲で、隣接するバネ掛は片31相互に引バネ32を
掛は渡すことにより、圧電積層体10a、lObの摺動
面yへの圧接と、自走式リニアモータl自体の保持を達
成している。
In FIG. 7, the linear rail X has an equilateral triangular cross section, and a linear running body 30 is disposed on each sliding surface y. In such a configuration, the spring hooks connect the pieces 31 to the longitudinal vibration elements 4 and 4, respectively.
4 protrudes outward in a bifurcated manner from the center position of the piezoelectric laminate 10a, lOb, and by passing the tension springs 32 between adjacent spring hooks around the linear rail This achieves pressure contact and retention of the self-propelled linear motor itself.

前記した縦振動素子4.4と圧電積層体10m、10b
との電圧制御にあっては、交流電源を使用するほか、直
流電源をスイッチング機構を介して交番電圧を発生させ
ることができる。
The longitudinal vibration element 4.4 described above and the piezoelectric laminate 10m, 10b
For voltage control, in addition to using an AC power supply, an alternating voltage can be generated using a DC power supply via a switching mechanism.

〈発明の効果〉 本発明は、上述のように、振動体3の両側に圧電積層体
10a、10bを設けて、振動体3と圧電積層体10a
、10bの伸縮タイミングを調整することによりリニア
レールXに対して走行可能とするようにしたものである
から、タイミング変換により、リニアレールXの回動方
向を調整でき、電圧制御により駆動力を調整できて、そ
の制御が容易であるとともに、リニアレールXは、断面
多面体であることを要するだけで、構造が極めて簡単で
あり、しかも圧電積層体10a、lObは引バネ19.
32により弾接するものであるから、摺動面yは高い平
滑度を要せず、成形が簡単である。またこのため、微小
な移動制御のみならず長い走行距離を要する場合にも適
用可能となる等の優れた効果がある。
<Effects of the Invention> As described above, the present invention provides the piezoelectric laminates 10a and 10b on both sides of the vibrating body 3, and connects the vibrating body 3 and the piezoelectric laminate 10a.
By adjusting the timing of expansion and contraction of , 10b, it is possible to run on the linear rail X. Therefore, the rotation direction of the linear rail X can be adjusted by timing conversion, and the driving force can be adjusted by voltage control. In addition to being easy to control, the linear rail X only needs to have a polyhedral cross section, and the structure is extremely simple.Moreover, the piezoelectric laminates 10a and 10b have tension springs 19.
32, the sliding surface y does not require high smoothness and can be easily molded. Moreover, for this reason, it has excellent effects such as being applicable not only to minute movement control but also to cases where a long travel distance is required.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面は本考案の実施例を示し、第1図は自走式リニ
アモータ1の一部切欠側面図、第2図は同正面図、第3
図は電圧印加タイミングを示、すチャート図、第4図は
作動タイミングを示す説明図、第5図は第二実施例の側
面図、第6図は第三実施例の側面図、第8図は第四実施
例の正面図である。 X;リニアレール y;摺動面 l;自走式リニアモー
タ 2;リニア走行体 3;振動体4.4;縦振動素子
 5a、5b、6a、6b;金属ブロック 10a、l
Ob;圧電積層体15;移送体 19,32;引バネ 
20.30;リニア走行体 出願人     日本特殊陶業株式会社上  羽  貞
  行 黒  澤     実  、、、1> 代理人 弁理士 松浦喜多男′a′;(]し第1 図 第2図 第3図 像1蒔 第4図 第5図 第6図 第7図 3フ 手続補正書(方式) %式% 1、事件の表示  特願昭62−140248号2、発
明の名称  自走式リニアモータ3、補正をする者 事件との関係  特許出願人 住所 名古屋市瑞穂区高辻町14番18号代表者 鈴 
木 亭 −11・□r−,”21  ’ 、、1住所 
名古屋市中区千代田3丁目11番11号麦島第2ビル8
01号廿(052)331−14155、補正命令の日
付  昭和62年8月5日  6、補正の対象  明細
書 7、補正の内容
The accompanying drawings show an embodiment of the present invention, and FIG. 1 is a partially cutaway side view of a self-propelled linear motor 1, FIG. 2 is a front view of the same, and FIG.
The figure is a chart diagram showing voltage application timing, Figure 4 is an explanatory diagram showing operation timing, Figure 5 is a side view of the second embodiment, Figure 6 is a side view of the third embodiment, and Figure 8. is a front view of the fourth embodiment. X; linear rail y; sliding surface l; self-propelled linear motor 2; linear traveling body 3; vibrating body 4.4; longitudinal vibration element 5a, 5b, 6a, 6b; metal block 10a, l
Ob; piezoelectric laminate 15; transfer body 19, 32; tension spring
20.30; Applicant for linear traveling body Nippon Spark Plug Co., Ltd. Sada Yukikuro Sawa Minoru, 1> Agent Patent attorney Kitao Matsuura 'a'; (] Figure 1 Figure 2 Figure 3 Image 1 Figure 4 Figure 5 Figure 6 Figure 7 Figure 3 F Procedural amendment (method) % formula % 1. Indication of case Japanese Patent Application No. 140248/1982 2. Title of invention Self-propelled linear motor 3. Amendment Relationship with the case of the person who filed the patent application Address: 14-18 Takatsuji-cho, Mizuho-ku, Nagoya Representative Suzu
Ki-tei -11・□r-,"21',,1 address
Mugishima 2nd Building 8, 3-11-11 Chiyoda, Naka-ku, Nagoya
No. 01 (052) 331-14155, Date of amendment order August 5, 1988 6. Subject of amendment Description 7, Contents of amendment

Claims (1)

【特許請求の範囲】 1)断面多角状のリニアレールの一側摺動面に、縦方向
に振動する振動体と、その両端方の略最大振巾位置に配
設されて該リニアレールの一側摺動面に圧接する圧電積
層体とを備え、両圧電積層体は、振動体の振動と同期し
て積層方向に伸縮作動を生じ、かつ両圧電積層体相互は
逆伸縮タイミングとなる電圧制御を施してなるリニア走
行体を配設するとともに、 リニアレールの他側摺動面に移送体を配設し、リニア走
行体を振動体の略中央部のノード位置で、引きバネを介
して移送体と連結した ことを特徴とする自走式リニアモータ。 2)前記移送体が前記リニア走行体であることを特徴と
する特許請求の範囲第1項記載の自走式リニアモータ。 3)リニアレールを断面三角状とし、各側面に前記リニ
ア走行体を配設し、夫々を振動体のノード位置で連結し
たことを特徴とする特許請求の範囲第2項記載の自走式
リニアモータ。
[Claims] 1) A vibrator that vibrates vertically on one sliding surface of a linear rail having a polygonal cross-section, and a vibrating body disposed at approximately the maximum amplitude position on both ends of the vibrating body, It is equipped with a piezoelectric laminate that presses against the side sliding surface, and both piezoelectric laminates expand and contract in the stacking direction in synchronization with the vibration of the vibrating body, and both piezoelectric laminates are voltage controlled so that the timing of expansion and contraction is opposite to each other. At the same time, a transporting body is arranged on the other sliding surface of the linear rail, and the linear traveling body is transported via a tension spring at a node position approximately in the center of the vibrating body. A self-propelled linear motor characterized by being connected to the body. 2) The self-propelled linear motor according to claim 1, wherein the transport body is the linear traveling body. 3) The self-propelled linear according to claim 2, characterized in that the linear rail has a triangular cross section, the linear running bodies are arranged on each side, and the linear running bodies are connected at node positions of the vibrating body. motor.
JP62140248A 1987-06-03 1987-06-03 Self-propelled linear motor Expired - Lifetime JP2528657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62140248A JP2528657B2 (en) 1987-06-03 1987-06-03 Self-propelled linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62140248A JP2528657B2 (en) 1987-06-03 1987-06-03 Self-propelled linear motor

Publications (2)

Publication Number Publication Date
JPS63305766A true JPS63305766A (en) 1988-12-13
JP2528657B2 JP2528657B2 (en) 1996-08-28

Family

ID=15264359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62140248A Expired - Lifetime JP2528657B2 (en) 1987-06-03 1987-06-03 Self-propelled linear motor

Country Status (1)

Country Link
JP (1) JP2528657B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5097161A (en) * 1988-10-31 1992-03-17 Kabushiki Kaisha Okuma Tekkosho Linear actuator
US5136200A (en) * 1989-07-27 1992-08-04 Olympus Optical Co., Ltd. Ultransonic motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5097161A (en) * 1988-10-31 1992-03-17 Kabushiki Kaisha Okuma Tekkosho Linear actuator
US5136200A (en) * 1989-07-27 1992-08-04 Olympus Optical Co., Ltd. Ultransonic motor

Also Published As

Publication number Publication date
JP2528657B2 (en) 1996-08-28

Similar Documents

Publication Publication Date Title
US5416375A (en) Ultrasonic motor
US5216313A (en) Ultrasonic wave linear motor
US7061158B2 (en) High resolution piezoelectric motor
JPS63305766A (en) Self-driven linear motor
US5274294A (en) Vibration wave driven motor
JPH0331140A (en) Sheet feeder
US5596242A (en) Guide device for vibration driven motor
US5065999A (en) Sheet feeding device utilizing vibration waves
US5499808A (en) Sheet feeding apparatus
US5094444A (en) Sheet feeding device
JP2574577B2 (en) Linear actuator
JPH0430918A (en) Wire electrode supply device
JP2715157B2 (en) Card carrier
EP0577376B1 (en) Printing apparatus having vibration driven linear type actuator for carriage
JP2533024Y2 (en) Vibration feeder
JPH06141564A (en) Wave circulation actuator
JP3764227B2 (en) Pulling out ultrasonic dice equipment
JP3477218B2 (en) Linear motion guide device
JPH01259764A (en) Piezoelectric driving unit
JPH0242663Y2 (en)
JPS6248401A (en) vibration device
JPH0724954Y2 (en) Ultrasonic linear motor
JP2836130B2 (en) Electronic sewing machine
JP2622286B2 (en) Ultrasonic linear motor
JPH0553852U (en) Oscillation device for super finishing head