[go: up one dir, main page]

JPS63304448A - Magneto-optical recording medium - Google Patents

Magneto-optical recording medium

Info

Publication number
JPS63304448A
JPS63304448A JP13895687A JP13895687A JPS63304448A JP S63304448 A JPS63304448 A JP S63304448A JP 13895687 A JP13895687 A JP 13895687A JP 13895687 A JP13895687 A JP 13895687A JP S63304448 A JPS63304448 A JP S63304448A
Authority
JP
Japan
Prior art keywords
magnetic field
layer
auxiliary layer
magneto
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13895687A
Other languages
Japanese (ja)
Inventor
Osamu Ishii
修 石井
Tetsuo Iijima
飯島 哲生
Iwao Hatakeyama
畠山 巌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP13895687A priority Critical patent/JPS63304448A/en
Publication of JPS63304448A publication Critical patent/JPS63304448A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form

Abstract

PURPOSE:To eliminate the need for a permanent magnet for generating a perpendicular magnetic field and to reduce the size and weight of a device by increasing the Curie temp. of an auxiliary layer to the temp. higher than the temp. of a recording layer and forming the auxiliary layer of a magnetic film which exhibits a specific minor hysteresis loop. CONSTITUTION:The Curie temp. of the auxiliary layer 13 of the recording medium is set higher than the Curie temp. of the recording layer 12. The auxiliary layer 13 is formed of such magnetic film imparted with the multi-layered film structure or concn. gradient exhibiting such minor hysteresis loop as to attain always the same magnetization state when there are no external magnetic fields and to attain plural stable magnetization states when there is the external magnetic field. The magnetic moments are aligned upward at the time of a laser beam 6 of weak light intensity to this recording film and are aligned downward when the light intensity is strong and, therefore, the over-writing is enabled merely by varying the intensity of the light. The need for the conventional large permanent magnet for a perpendicular magnetic field is, therefore, eliminated and the size and weight of the device are reduced.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、重ね書きの機能を有する光磁気記録媒体に関
する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a magneto-optical recording medium having an overwriting function.

〈従来の技術〉 従来、光磁気記録媒体(光磁気ディスク)への記録(情
報の書き込み)は、一様に磁化した光記録媒体(Tb−
Fe薄膜等の垂直磁化薄膜)に対し、異方性磁界以下の
バイアス磁場を磁化と逆向きに加えつつ、レーザビーム
を照射して照射領域の温度をキュリー温度以上に上げた
後、光記録媒体が冷却する過程でバイアス磁場の方向に
磁化が反転することを利用している。このように、レー
ザビームをオン・オフする事で磁化反転の列として情報
を記録し、また、一旦記録された領域に再度新しい情報
を記録する場合には、逆向きのバイアス磁場中で連続レ
ーザビームを照射して、光記録媒体を加熱し磁化を全て
一様な方向にそろえろ事(これを消去過程という)が必
要であった。つまり、消去した後に再度記録を行う必要
があるので、通常の磁気記録における情報の書き込みの
ように、予め記録されていた領域の上に別の情報を記録
することで前の情報が自動的に消えろ事はなく、アクセ
ス速度の高速化を図る上で障害となっていた。
<Prior art> Conventionally, recording (writing information) on a magneto-optical recording medium (magneto-optical disk) is performed using a uniformly magnetized optical recording medium (Tb-
A bias magnetic field below the anisotropy field is applied to the perpendicularly magnetized thin film (such as a Fe thin film) in the opposite direction to the magnetization, and a laser beam is irradiated to raise the temperature of the irradiated area above the Curie temperature, and then the optical recording medium is It takes advantage of the fact that the magnetization reverses in the direction of the bias magnetic field during the cooling process. In this way, information is recorded as a sequence of magnetization reversals by turning the laser beam on and off, and when new information is to be recorded in an area that has been previously recorded, a continuous laser beam is used in a bias magnetic field in the opposite direction. It was necessary to irradiate a beam to heat the optical recording medium and align all the magnetizations in a uniform direction (this is called the erasing process). In other words, since it is necessary to record again after erasing, just like writing information in normal magnetic recording, by recording another information on top of the previously recorded area, the previous information will be automatically replaced. It never disappeared, and it was an obstacle to increasing access speeds.

そこで、近年、2層薄膜を用いた重ね書きのできる光磁
気記録媒体(光磁気ディスク)が提案されている。第3
図は、従来の2層薄膜構造から成る。光磁気記録媒体を
示す説明図である。同図において、1は光磁気記録媒体
であり、該光磁気記録媒体1はガラス板等から成る基板
2と低異方性磁場・高キュリー温度の補助層(例えばT
 b −F e −Co薄膜)3と高異方性磁場・低キ
ユリ一温度の記録層(例えばTb−Fe薄膜)4とで構
成されている。5は光磁気記録媒体1ヘレーザビーム6
を照射する光ヘッド、7は光ヘッド5の上流側で補助層
3の下方に配置した永久磁石或いは電磁石等の磁石、8
は光ヘッド5と対向して補助層3の下方に設けたバイア
ス磁場である。
Therefore, in recent years, a magneto-optical recording medium (magneto-optical disk) using a two-layer thin film and capable of overwriting has been proposed. Third
The figure consists of a conventional two-layer thin film structure. FIG. 2 is an explanatory diagram showing a magneto-optical recording medium. In the figure, reference numeral 1 denotes a magneto-optical recording medium, which includes a substrate 2 made of a glass plate or the like, and an auxiliary layer (for example, T
b-Fe-Co thin film) 3 and a recording layer 4 having a high anisotropy magnetic field and a low temperature (for example, a Tb-Fe thin film) 4. 5 is a magneto-optical recording medium 1 and a laser beam 6
7 is a magnet such as a permanent magnet or an electromagnet placed below the auxiliary layer 3 on the upstream side of the optical head 5;
is a bias magnetic field provided below the auxiliary layer 3 facing the optical head 5.

かかる光磁気記録媒体1への記録(情報の書き込み)は
、光磁気記録媒体1が矢印方向に回転している時、先ず
媒体面に対し磁石7で強い垂直磁場(Hini)を印加
して補助層3を磁場方向(図では下方向)に完全に磁化
してお((初期磁化過程)。次に、光磁気記録媒体1が
光ヘッド5の下に移動すると、光ヘッド5から照射され
る強弱2水準の光強度ヲモつレーザビーム6で加熱され
る。この際、初期磁化用の磁場とは逆向き(図では上方
向)の弱いバイアス磁場8が印加される。
Recording (writing information) on the magneto-optical recording medium 1 is assisted by first applying a strong perpendicular magnetic field (Hini) to the medium surface with the magnet 7 while the magneto-optical recording medium 1 is rotating in the direction of the arrow. The layer 3 is completely magnetized in the direction of the magnetic field (downward in the figure) (initial magnetization process).Next, when the magneto-optical recording medium 1 moves below the optical head 5, it is irradiated by the optical head 5. It is heated by a laser beam 6 with two levels of light intensity: strong and weak.At this time, a weak bias magnetic field 8 is applied in the opposite direction (upward in the figure) to the magnetic field for initial magnetization.

そして、レーザビーム6の光強度が弱い時には、照射部
分の最高温度を記録1’14のキュリー温度以上とし、
且つ補助層3のキュリー温度以下になるように設定する
。この場合は、記録層4のみが非磁性になって補助層3
の磁化は失われずに残っており、その後、光磁気記録媒
体1が移動してレーザビーム6で照射された領域の温度
が低下する時に、記録層4の磁化はスピン相互作用によ
って補助層3の磁化と同一方向に揃う。一方、レーザビ
ーム6の光強度が強い時には、照射部分の最高温度を補
助層3のキュリー温度以上になるように設定する。この
場合の冷却過程では、先ず補助層3の磁化がバイアス磁
場8の方向に揃い、この磁化にならって記録層4の磁化
もバイアス磁場8の方向に揃うことで記録が完了する。
When the light intensity of the laser beam 6 is weak, the maximum temperature of the irradiated part is set to be higher than the Curie temperature of record 1'14,
In addition, the temperature is set to be equal to or lower than the Curie temperature of the auxiliary layer 3. In this case, only the recording layer 4 becomes non-magnetic and the auxiliary layer 3
The magnetization of the recording layer 4 remains unchanged, and when the magneto-optical recording medium 1 moves and the temperature of the area irradiated with the laser beam 6 decreases, the magnetization of the recording layer 4 changes to that of the auxiliary layer 3 due to spin interaction. Aligns in the same direction as magnetization. On the other hand, when the light intensity of the laser beam 6 is strong, the maximum temperature of the irradiated portion is set to be equal to or higher than the Curie temperature of the auxiliary layer 3. In the cooling process in this case, the magnetization of the auxiliary layer 3 is first aligned in the direction of the bias magnetic field 8, and following this magnetization, the magnetization of the recording layer 4 is also aligned in the direction of the bias magnetic field 8, thereby completing recording.

このように、前記した記録のプロセスは記録層4の磁化
状態に依存しないので、レーザビーム6の光強度に応じ
た記録が常に可能であり、これによって重ね書きが可能
である。
In this way, since the above-described recording process does not depend on the magnetization state of the recording layer 4, recording according to the light intensity of the laser beam 6 is always possible, and thereby overwriting is possible.

そして、書き込まれた情報は、レーザビーム6の反射光
の偏光面の傾きの差として読み出すことができろ。尚、
再生時のレーザビーム6の光強度は、照射温度を記録層
5のキュリー温度よりも充分低い温度になるように設定
する必要がある。
The written information can then be read out as a difference in the slope of the polarization plane of the reflected light of the laser beam 6. still,
The light intensity of the laser beam 6 during reproduction must be set so that the irradiation temperature is sufficiently lower than the Curie temperature of the recording layer 5.

〈発明が解決しようとする問題点〉 前記した従来技術において、補助層3にTb−Fe−C
o薄膜を、記録層4にT b −F c薄膜を用いた場
合には、磁石7による垂直磁場(Hini )として6
000ガウスという高磁場が必要である(応用物理学会
全国大会、昭和62年3月28日発表の講rA:佐藤正
聡、斉藤旬、松本仏性、赤坂秀機「多層光磁気記録媒体
を用いた単一ビームオーパライト方式」講演番号28p
−zl−3)。
<Problems to be Solved by the Invention> In the prior art described above, Tb-Fe-C is used in the auxiliary layer 3.
o When a Tb-Fc thin film is used as the recording layer 4, the perpendicular magnetic field (Hini) generated by the magnet 7 is 6
A magnetic field as high as 000 Gauss is required (Lecture rA presented at the Japan Society of Applied Physics National Conference, March 28, 1986: Masatoshi Sato, Shun Saito, Fussho Matsumoto, Hideki Akasaka, “One Beam Opalight System” Lecture number 28p
-zl-3).

そして、光磁気記録媒体1ば、一般にカセット(不図示
)に収納されているので媒体面と磁石7との間隔が数量
以上であることを考慮すると、垂直磁場(Hini)と
して6000ガウスというような高い磁場を得るには初
期磁化用の磁石7の寸法がかなり大きくなり、光磁気記
録再生装置の小型軽量化を図ることができなかった。
Since the magneto-optical recording medium 1 is generally housed in a cassette (not shown), and considering that the distance between the medium surface and the magnet 7 is larger than the quantity, the perpendicular magnetic field (Hini) is 6000 Gauss. In order to obtain a high magnetic field, the size of the magnet 7 for initial magnetization becomes considerably large, making it impossible to reduce the size and weight of the magneto-optical recording and reproducing apparatus.

本発明は上記した問題点を解決する目的でなされ、重ね
会きができる光磁気記録媒体において、初期磁化用の垂
直磁場(H目目)が不要な光磁気記録媒体を提供しよと
するものである。
The present invention was made for the purpose of solving the above-mentioned problems, and aims to provide a magneto-optical recording medium that does not require a perpendicular magnetic field (H-th) for initial magnetization in a magneto-optical recording medium that can overlap. It is.

く問題点を解決するための手段〉 前記問題点の解決にあたって本発明は、記録層及び補助
層の21tNlt3mの磁性薄膜から成る光磁気記録媒
体において、 補助層のキュリー温度を記録層のキュリー温度よりも高
く設定し、前記補助層は、外部磁場が無い場合に常に同
一の磁化状態となり、外部磁場があるi&俗に複数の安
定磁化状態となるようなマイナーとステリシルループを
示す多層膜構成或いは濃度勾配を付与した希土類・遷移
合金磁気!膜であることを特徴とする。
Means for Solving the Problems> To solve the above problems, the present invention provides a magneto-optical recording medium consisting of a magnetic thin film of 21tNlt3m as a recording layer and an auxiliary layer, in which the Curie temperature of the auxiliary layer is lower than the Curie temperature of the recording layer. is also set high, and the auxiliary layer has a multilayer film structure exhibiting minor and steric loops such that it always has the same magnetization state in the absence of an external magnetic field, and has a plurality of stable magnetization states in the presence of an external magnetic field, or Rare earth/transition alloy magnetism with concentration gradient! It is characterized by being a membrane.

く実 施 例〉 以下、本発明を図示の実施例によh詳細に説明する。Practical example Hereinafter, the present invention will be explained in detail with reference to illustrated embodiments.

第1図は本発明に係る光磁気配1i1f3&体の構成を
示す説明図である。この図に示すように、円盤状に形成
されたガラス等の透明な基板11上に、スパッタリング
法や真空蒸着法により高保磁力、低キユリ一温度の記録
ll(例えば21%Tb−79%Fe731膜等)12
が形成され、更にその下面に、記録層12より富キュリ
ー温度の補助層(例えば23%Tb −65%Fe−1
2%Co薄膜等)13を形成する。
FIG. 1 is an explanatory diagram showing the structure of a magneto-optical arrangement 1i1f3& body according to the present invention. As shown in this figure, high coercive force and low temperature are recorded (for example, a 21% Tb-79% Fe731 film) by sputtering or vacuum evaporation on a transparent substrate 11 formed into a disk shape such as glass. etc.) 12
is formed, and an auxiliary layer having a Curie temperature higher than that of the recording layer 12 (for example, 23%Tb-65%Fe-1
2% Co thin film, etc.) 13 is formed.

この補助層13は、作製時に薄膜の堆積初期ではCoや
Fe等の遷移金属が補償組成(希土類元素による磁気モ
ーメントと遷移金属による磁気モーメントが等しくなる
組成の事、希土類元素が約20at%の領域である)よ
りも多くなる。そして、堆積の後期ではTb等の希土類
元素が補償組成よりも多(なるような濃度勾配が付与さ
れているか、或いは補償組成よりも遷移金属が多い薄膜
と少ない薄膜との2層構造の薄膜で形成されている。尚
、5は光ヘッド、6はレーザビーム、8はバイアス磁場
であり、これらは従来と同様である。
This auxiliary layer 13 has a compensating composition (a composition in which the magnetic moment due to the rare earth element and the magnetic moment due to the transition metal are equal to each other) in which transition metals such as Co and Fe are present in the initial stage of thin film deposition during fabrication. ). In the later stages of deposition, a concentration gradient is given such that rare earth elements such as Tb are present in a higher amount than in the compensation composition, or a thin film with a two-layer structure consisting of a thin film with more transition metals and a thin film with less transition metals than in the compensation composition is formed. Note that 5 is an optical head, 6 is a laser beam, and 8 is a bias magnetic field, which are the same as in the conventional case.

補助WB13の磁化(M)−磁場(H)曲線は、第2図
に示すような階段状のヒステリシスループとなり、また
、このとステリシスループの各段階での磁化の状態も同
時に示す。このヒステリシスループにおいて、特に注目
しないのは図中ABCDEFで示したマイナーループで
ある。状態ABCでは高遷移金属層13mの磁気モーメ
ントが高希土M層13bの磁気モーメントと反平行に揃
っており、一方、状態DEFで:よ両層のモーメントは
平行に揃う。
The magnetization (M)-magnetic field (H) curve of the auxiliary WB 13 forms a stepped hysteresis loop as shown in FIG. 2, and also shows the state of magnetization at each stage of this hysteresis loop. In this hysteresis loop, what is not particularly noteworthy is the minor loop indicated by ABCDEF in the figure. In state ABC, the magnetic moments of the high transition metal layer 13m are aligned antiparallel to the magnetic moments of the high rare earth M layer 13b, while in state DEF: the moments of both layers are aligned parallel to each other.

即ち、t&遷移金属層13aの磁気モーメントのみがこ
のマイナーループ中で反転し、しかも、磁場が加わらな
い場合(図中の0点)には、ABCDEFのどの状態か
らでもABCと同一の磁化状態に戻る。また高遷移金属
層13aの磁化反転が起きる磁場(Hl o w# H
h i)は、いずれも温度が上がるにつれて減少する。
That is, only the magnetic moment of the t&transition metal layer 13a is reversed in this minor loop, and if no magnetic field is applied (point 0 in the figure), the magnetization state is the same as ABC from any state of ABCDEF. return. In addition, a magnetic field (Hl o w # H
h i) both decrease as the temperature increases.

前記した上下の層の異なる磁化反転挙動は、濃度勾配を
付与したGd−Co合金薄膜等で報告されており、公知
の現象である(S、 Esho;AncmalousM
agneto−optical Hysteresis
 Loops of 5puttered Gd−Co
 Films−Jpn。
The above-mentioned different magnetization reversal behavior between the upper and lower layers has been reported in Gd-Co alloy thin films with a concentration gradient, and is a known phenomenon (S, Esho; Ancmalous M
agneto-optical hysteresis
Loops of 5 puttered Gd-Co
Films-Jpn.

J 人pp1.Phys、vol  IIFL PP9
3−9& 1976)。
J people pp1. Phys, vol IIFL PP9
3-9 & 1976).

次に、本発明の光磁気記録媒体への記録(書き込み)過
程を第2図を参照して説明する。予め補助層13の磁気
モーメントの状態を0点に示す状態に設定し、記録用の
レーザビーム6が照射される位置ではHbで示す強度の
バイアス磁場8を印加する。このバイアス磁場8と補助
W113の高遷移金属FJ 13 aの磁気モーメント
の向きは反平行である。そして、補助層13が加熱され
るにつれて磁場Hhiは減少する。磁場Hhiがバイア
ス磁場8と等しくなる温度7th以上に補助層13が加
熱された場合には、補助層13の高遷移金111層13
aの磁気モーメントはDEF状i1に移る。従って、レ
ーザビーム6の光強度を強弱2水準に変化させることで
、補助層13の磁化状態をABCとDEFの2安定状態
のうちの何れか一方を選ぶことができろ。つまり、レー
ザビーム6の光強度が弱く補助層13が温度Tth以下
の場合にはABC状態であり、レーザビーム6の光強度
が大きく補助層13が温度Tth以上に加熱された場合
にはDEF状態である。また、記録PJ12のキュリー
温度は温度7th以下に設定し、しかも、レーザビーム
6の光強度が弱い場合でも記録層12をキュリー温度以
上に加熱できろように設定する。このように、光磁気記
録媒体への記録過程では、記録層12は必ずキュリー温
度以上の温度から冷却されることとなり、その磁気モー
メントの向きは補助層13との接触面のスピン相互作用
によって、補助層13中の7:&遷移金属13aの磁気
モーメントと同一方向を向くように決定される。第2図
においては、レーザビーム6の光強度が弱い場合には上
向きに、光強度が強い場合には下向きに記録NJ12の
磁気モーメントが揃う。
Next, the recording (writing) process on the magneto-optical recording medium of the present invention will be explained with reference to FIG. The state of the magnetic moment of the auxiliary layer 13 is set in advance to a state indicated by the 0 point, and a bias magnetic field 8 of an intensity indicated by Hb is applied at the position where the recording laser beam 6 is irradiated. The directions of the bias magnetic field 8 and the magnetic moment of the high transition metal FJ 13 a of the auxiliary W 113 are antiparallel. Then, as the auxiliary layer 13 is heated, the magnetic field Hhi decreases. When the auxiliary layer 13 is heated above the temperature 7th at which the magnetic field Hhi is equal to the bias magnetic field 8, the high transition gold 111 layer 13 of the auxiliary layer 13
The magnetic moment of a is transferred to the DEF state i1. Therefore, by changing the light intensity of the laser beam 6 into two levels of strength and weakness, it is possible to select one of the two stable states ABC and DEF for the magnetization state of the auxiliary layer 13. In other words, when the light intensity of the laser beam 6 is low and the auxiliary layer 13 is at a temperature below Tth, the state is ABC, and when the light intensity of the laser beam 6 is high and the auxiliary layer 13 is heated to a temperature above Tth, the state is DEF. It is. Further, the Curie temperature of the recording PJ 12 is set to a temperature of 7th or lower, and is set so that the recording layer 12 can be heated to a temperature higher than the Curie temperature even when the light intensity of the laser beam 6 is weak. In this way, during the recording process on a magneto-optical recording medium, the recording layer 12 is always cooled from a temperature above the Curie temperature, and the direction of its magnetic moment is determined by the spin interaction of the contact surface with the auxiliary layer 13. It is determined to point in the same direction as the magnetic moment of the 7: & transition metal 13a in the auxiliary layer 13. In FIG. 2, the magnetic moments of the recording NJ 12 align upward when the light intensity of the laser beam 6 is weak, and downward when the light intensity is strong.

また、光磁気記録媒体の冷却過程では、バイアス磁場8
が印加されている限りマイナーループのABCとDEF
の状態は安定なので、記録層12に転写された磁化状態
も安定に室温まで保持される。次に、光磁気記録媒体が
更に移動してバイアス磁場8が加わらないくなった場合
には、補助層13の磁気モーメントは0点へと戻る事と
なり、バイアス磁場8が印加されていた時の状態の如何
に依らず一定となる。もし、記録層12が下向きに磁化
されたとすると、冷却後には記録層12の磁気モーメン
トと補助層13中の高遷移金属油13aの磁気モーメン
トは反平行となるが、記録層12の保磁力は室温では大
きいために、記録層12の磁化状態は安定に保持される
In addition, in the cooling process of the magneto-optical recording medium, the bias magnetic field 8
ABC and DEF of the minor loop as long as is applied
Since the state is stable, the magnetization state transferred to the recording layer 12 is also stably maintained up to room temperature. Next, when the magneto-optical recording medium moves further and the bias magnetic field 8 is no longer applied, the magnetic moment of the auxiliary layer 13 returns to the 0 point, which is the same as when the bias magnetic field 8 was applied. It remains constant regardless of the state. If the recording layer 12 is magnetized downward, the magnetic moment of the recording layer 12 and the magnetic moment of the high transition metal oil 13a in the auxiliary layer 13 will be antiparallel after cooling, but the coercive force of the recording layer 12 will be Since it is large at room temperature, the magnetization state of the recording layer 12 is maintained stably.

そして、前記した光磁気記録媒体上に別の情報を記録(
書き込み)する場合、上述した記録過程を再度繰り返す
ことで重ね書きができる。尚、再生時には、レーザビー
ム6の光強度は記録層12の磁化状態に影響を及ぼさな
い程度に小さくする。
Then, other information is recorded on the magneto-optical recording medium (
When writing), overwriting can be performed by repeating the above-mentioned recording process again. Note that during reproduction, the light intensity of the laser beam 6 is set to be low enough to not affect the magnetization state of the recording layer 12.

第1図に示した本発明の光磁気記録媒体において、重ね
書きが可能な事を実証するために以下の実験を行った。
In order to demonstrate that overwriting is possible in the magneto-optical recording medium of the present invention shown in FIG. 1, the following experiment was conducted.

上述したように構成された光磁気記録媒体の記録層12
と補助層13の膜厚をそれぞれ0.05μm、1μmに
形成する。また、室温及び150℃での補助FJ13の
高遷移金属層13aの磁化反転が起きる磁場Hhiは、
それぞれ7KOe 、 2.5KOeであった。尚、記
録層12と補助層13のそれぞれのキュリー温度は12
0℃、200℃である。そして、前記光磁気記録媒体を
予め負の方向に20 KOeの磁場で磁化した後、正の
方向に2.5KOeのバイアス磁場8を加えながら加熱
した。この時、光磁気記録媒体を最;!i 120℃及
び160℃まで加熱した後、室1に冷却した場合には記
録P412の磁気モーメントはそれぞれ連向きに揃うこ
とが確認された。また、記録層12の磁化の向きは、加
熱時に最高温度が120℃であるか160℃であるかの
みに依存し、前歴に依らない事も確認された。従って、
加熱の方法をレーザビームの照射に置き換えれば光磁気
記録におけろ重ね書き記録が実現できろことは明らかで
ある。
Recording layer 12 of the magneto-optical recording medium configured as described above
and the auxiliary layer 13 are formed to have a thickness of 0.05 μm and 1 μm, respectively. Furthermore, the magnetic field Hhi at which the magnetization reversal of the high transition metal layer 13a of the auxiliary FJ 13 occurs at room temperature and 150°C is as follows:
They were 7 KOe and 2.5 KOe, respectively. The Curie temperature of each of the recording layer 12 and the auxiliary layer 13 is 12
0°C and 200°C. The magneto-optical recording medium was previously magnetized in the negative direction with a magnetic field of 20 KOe, and then heated while applying a bias magnetic field 8 of 2.5 KOe in the positive direction. At this time, remove the magneto-optical recording medium. i It was confirmed that when the samples were heated to 120° C. and 160° C. and then cooled to chamber 1, the magnetic moments of the records P412 were aligned in the same direction. It was also confirmed that the direction of magnetization of the recording layer 12 depends only on whether the maximum temperature during heating is 120° C. or 160° C., and does not depend on the previous history. Therefore,
It is clear that overwriting recording can be realized in magneto-optical recording by replacing the heating method with laser beam irradiation.

〈発明の効果〉 以上実施例とともに具体的に説明したように本発明によ
れば、従来のレーザビームの光強度変調による重ね書き
方法では必要だった初期磁化過程を省略することができ
るので、垂直磁場(Hini )発生用の永久磁石或い
は電磁石が不用となり光磁気記録再生装置の小型軽量化
を図ることができる。
<Effects of the Invention> As specifically explained above in conjunction with the embodiments, according to the present invention, the initial magnetization process that was necessary in the conventional overwriting method using light intensity modulation of a laser beam can be omitted, so Since a permanent magnet or an electromagnet for generating a magnetic field (Hini) is not required, the magneto-optical recording and reproducing apparatus can be made smaller and lighter.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る光磁気記録媒体の構成を示す説
明図、第2図は、補助層のヒステリンスループと各段階
での磁気モーメントの方向を示す説明図、第3図は、従
来の光磁気記録媒体の構成を示す説明図である。 図  面  中、 5は光ヘッド、 6はレーザビーム、 8はバイアス磁場、 11は基板、 12は記録層、 13は補助層、 13 a 1.を真遷移金属層、 13bは高希土類金属層である。 特  許  出  願  人 日本電信電話株式会社 代     理     人
FIG. 1 is an explanatory diagram showing the structure of the magneto-optical recording medium according to the present invention, FIG. 2 is an explanatory diagram showing the hysterin loop of the auxiliary layer and the direction of the magnetic moment at each stage, and FIG. FIG. 1 is an explanatory diagram showing the configuration of a conventional magneto-optical recording medium. In the drawing, 5 is an optical head, 6 is a laser beam, 8 is a bias magnetic field, 11 is a substrate, 12 is a recording layer, 13 is an auxiliary layer, 13a1. 13b is a true transition metal layer, and 13b is a high rare earth metal layer. Patent applicant: Agent of Nippon Telegraph and Telephone Corporation

Claims (1)

【特許請求の範囲】 記録層及び補助層の2層構造の磁性薄膜から成る光磁気
記録媒体において、 補助層のキュリー温度を記録層のキュリー温度よりも高
く設定し、前記補助層は、外部磁場が無い場合に常に同
一の磁化状態となり、外部磁場がある場合に複数の安定
磁化状態となるようなマイナーヒステリシスループを示
す多層膜構成或いは濃度勾配を付与した希土類・遷移合
金磁気性膜であることを特徴とする光磁気記録媒体。
[Claims] In a magneto-optical recording medium consisting of a magnetic thin film with a two-layer structure of a recording layer and an auxiliary layer, the Curie temperature of the auxiliary layer is set higher than that of the recording layer, and the auxiliary layer is not exposed to an external magnetic field. It must be a multilayer film structure or a rare earth/transition alloy magnetic film with a concentration gradient that exhibits a minor hysteresis loop such that it always remains in the same magnetization state when there is no external magnetic field and becomes multiple stable magnetization states when an external magnetic field is present. A magneto-optical recording medium characterized by:
JP13895687A 1987-06-04 1987-06-04 Magneto-optical recording medium Pending JPS63304448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13895687A JPS63304448A (en) 1987-06-04 1987-06-04 Magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13895687A JPS63304448A (en) 1987-06-04 1987-06-04 Magneto-optical recording medium

Publications (1)

Publication Number Publication Date
JPS63304448A true JPS63304448A (en) 1988-12-12

Family

ID=15234094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13895687A Pending JPS63304448A (en) 1987-06-04 1987-06-04 Magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JPS63304448A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0352548A2 (en) * 1988-07-13 1990-01-31 Sony Corporation Thermo-magnetic recording method
WO1990002400A1 (en) * 1988-08-24 1990-03-08 Mitsubishi Denki Kabushiki Kaisha Magnetooptical recording medium and method of producing the same
US5512366A (en) * 1989-11-14 1996-04-30 Mitsubishi Denki Kabushiki Kaisha Magneto-optic recording medium and apparatus
EP0838815A2 (en) * 1986-07-08 1998-04-29 Canon Kabushiki Kaisha Apparatus and system for recording on a magnetooptical recording medium

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0838815A2 (en) * 1986-07-08 1998-04-29 Canon Kabushiki Kaisha Apparatus and system for recording on a magnetooptical recording medium
EP0838815A3 (en) * 1986-07-08 1998-06-17 Canon Kabushiki Kaisha Apparatus and system for recording on a magnetooptical recording medium
EP0838814A3 (en) * 1986-07-08 1998-06-17 Canon Kabushiki Kaisha Magnetooptical recording medium allowing overwriting with two or more magnetic layers and recording method utilizing the same
EP0838814A2 (en) * 1986-07-08 1998-04-29 Canon Kabushiki Kaisha Magnetooptical recording medium allowing overwriting with two or more magnetic layers and recording method utilizing the same
US5379275A (en) * 1988-07-13 1995-01-03 Sony Corporation Thermomagnetic recording method using a recording light power modulated according to the signal to be modulated
EP0735531A1 (en) * 1988-07-13 1996-10-02 Sony Corporation Thermo-magnetic recording method
EP0352548A2 (en) * 1988-07-13 1990-01-31 Sony Corporation Thermo-magnetic recording method
EP0901121A2 (en) * 1988-07-13 1999-03-10 Sony Corporation Thermomagnetic recording method
EP0901121A3 (en) * 1988-07-13 2000-12-06 Sony Corporation Thermomagnetic recording method
US5216663A (en) * 1988-08-24 1993-06-01 Mitsubishi Denki Kabushiki Kaisha Magneto-optic recording medium and manufacturing method
WO1990002400A1 (en) * 1988-08-24 1990-03-08 Mitsubishi Denki Kabushiki Kaisha Magnetooptical recording medium and method of producing the same
US5638344A (en) * 1989-08-23 1997-06-10 Mitsubishi Denki Kabushiki Kaisha Magneto-optic recording and reproducing apparatus
US5679455A (en) * 1989-11-14 1997-10-21 Mitsubishi Denki Kabushiki Kaisha Magneto-optic recording medium and apparatus
US5512366A (en) * 1989-11-14 1996-04-30 Mitsubishi Denki Kabushiki Kaisha Magneto-optic recording medium and apparatus

Similar Documents

Publication Publication Date Title
US4771347A (en) Magneto-optical recording system
KR950013704B1 (en) Thermomagnetic recording &amp; reprocducting method
JPS60236137A (en) Simultaneously erasing-recording type photomagnetic recording system and recording device and medium used for this system
JPH07105082B2 (en) Magneto-optical recording medium
JPS63304448A (en) Magneto-optical recording medium
JP3538727B2 (en) Magneto-optical recording medium
JPH09198731A (en) Magneto-optical recording medium
JPH0782672B2 (en) Magnetic thin film recording medium
JPS605404A (en) Opto-magnetic recording and reproducing system
JPH0746444B2 (en) Magneto-optical memory medium and recording method using the medium
JPH06302029A (en) Magneto-optical recording medium and recording method therefor
JPS5857645A (en) Disk medium for vertical magnetic recording
JPS63237242A (en) Magneto-optical recording system
JPS63276730A (en) Magneto-optical recording medium
JP3756052B2 (en) Reproduction method of magneto-optical recording medium
JPH0869641A (en) Magneto-optical recording medium and its production
JPH0386954A (en) Magneto-optical recorder
JPS63311645A (en) Magneto-optical recording system
JP3490138B2 (en) Magneto-optical recording medium
JPS63316344A (en) Magneto-optical recording system
JPH0481269B2 (en)
JPH02289948A (en) Magneto-optical recording method
JPS63302415A (en) Magnetic recording medium
JP2002298325A (en) Magnetic recording medium and magnetic recorder having the same
JPS60101702A (en) Recording method of photomagnetic recording medium