JPS63304413A - Thin film magnetic head and its manufacture - Google Patents
Thin film magnetic head and its manufactureInfo
- Publication number
- JPS63304413A JPS63304413A JP14006487A JP14006487A JPS63304413A JP S63304413 A JPS63304413 A JP S63304413A JP 14006487 A JP14006487 A JP 14006487A JP 14006487 A JP14006487 A JP 14006487A JP S63304413 A JPS63304413 A JP S63304413A
- Authority
- JP
- Japan
- Prior art keywords
- groove
- magnetic
- core
- thin film
- surface roughness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010409 thin film Substances 0.000 title claims description 32
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 239000000758 substrate Substances 0.000 claims description 32
- 230000003746 surface roughness Effects 0.000 claims description 28
- 238000000034 method Methods 0.000 claims description 19
- 238000000992 sputter etching Methods 0.000 claims description 10
- 238000000227 grinding Methods 0.000 claims description 7
- 239000010408 film Substances 0.000 description 24
- 230000000694 effects Effects 0.000 description 11
- 239000011810 insulating material Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 238000004544 sputter deposition Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 4
- 229910003460 diamond Inorganic materials 0.000 description 4
- 239000010432 diamond Substances 0.000 description 4
- 238000003754 machining Methods 0.000 description 3
- 239000000696 magnetic material Substances 0.000 description 3
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000002542 deteriorative effect Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 229910020018 Nb Zr Inorganic materials 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 229910000889 permalloy Inorganic materials 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 229910000702 sendust Inorganic materials 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/187—Structure or manufacture of the surface of the head in physical contact with, or immediately adjacent to the recording medium; Pole pieces; Gap features
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Magnetic Heads (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、VTRやビデオフロッピーディスク等の高密
度磁気記録再生装置に好適な薄膜磁気ヘッド及びその製
造方法、特に、高周波特性の優れた多層膜構造の薄膜磁
気ヘッド及びその製造方法に関する。Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a thin film magnetic head suitable for high-density magnetic recording and reproducing devices such as VTRs and video floppy disks, and a method for manufacturing the same, particularly a multilayer magnetic head with excellent high frequency characteristics. The present invention relates to a thin film magnetic head having a film structure and a manufacturing method thereof.
VTR用出気ヘンドとしては、従来のバルク型磁気コア
を用いてこれを突合せて作動ギャップを形成する構造が
用いられてきた。しかし、近年VTRの小型化、高性能
化等の要求によシ、バルク型磁気ヘッドに代わるものと
して、薄膜磁気ヘッドの開発が急である。従来より薄膜
ミスヘッドとしては、第2因に示すごとく、基板10上
に下部磁性層3.ギャップ用非磁性膜4.絶縁材6.コ
イル8.上部磁性層5が積層され、磁束密度向上のため
にフロント部のコア幅を狭くシ九構遺のものが一般的に
採用されている。As an air outlet head for a VTR, a structure has been used in which conventional bulk magnetic cores are butted together to form an operating gap. However, in recent years, due to demands for smaller size and higher performance of VTRs, thin film magnetic heads have been rapidly developed as an alternative to bulk type magnetic heads. Conventionally, thin film misheads have been caused by the formation of a lower magnetic layer 3 on the substrate 10, as shown in the second factor. Nonmagnetic film for gap 4. Insulating material 6. Coil 8. Generally, an upper magnetic layer 5 is laminated, and the core width at the front part is narrowed to improve the magnetic flux density.
しかしながら、バタンコンタ精度の向上環を図るために
、第2図のものに代って、下部磁性層を埋込む構造のヘ
ッドが提案されている。However, in order to improve the baton contour accuracy, a head with a structure in which the lower magnetic layer is buried has been proposed in place of the one shown in FIG.
第3図は特開昭57−189321号公報で提案されて
いるヘッドの断面構造を示し、第4図はそのテープ摺動
面を示したものである。この薄膜磁気ヘッドは非磁性基
板1に凹み(溝)を設けこれに下部コア3を埋込みその
上に順次非磁性層、ギャップ材4.コイル8.上部磁性
J−5を積層している。なお、6a、6bは絶縁材であ
る。この構造によれば第3図に示す上部コアの段差L)
1を第2図の従来構造よシも小さくでき、上部コアバタ
ンユング時において、段差があると発生する股上下のレ
ジストの形成の不揃いという問題も回避できるので、精
度の高いバタンコンタが行える等の利点がある。FIG. 3 shows the cross-sectional structure of the head proposed in Japanese Patent Application Laid-Open No. 57-189321, and FIG. 4 shows its tape sliding surface. In this thin film magnetic head, a recess (groove) is formed in a nonmagnetic substrate 1, a lower core 3 is embedded in the recess, and a nonmagnetic layer, a gap material 4. Coil 8. The upper magnetic layer J-5 is laminated. Note that 6a and 6b are insulating materials. According to this structure, the step L of the upper core shown in Fig. 3)
1 can be made smaller than the conventional structure shown in Fig. 2, and the problem of uneven formation of the resist above and below the crotch, which occurs when there is a step when slamming the upper core, can be avoided, making it possible to perform highly accurate slamming contours. There are advantages.
上記従来技術の薄膜磁気ヘッドの作動ギャップ4は、第
4図の如く基板10表面から下部コア3の厚み分だけ離
れて位置し、かつ下部コアと基板との境界と平行である
。このために作動ギャップと該境界部の磁界が干渉しヘ
ッド特性を劣化させるいわゆるコンタ−効果が発生する
という欠点があった。As shown in FIG. 4, the working gap 4 of the conventional thin film magnetic head is located away from the surface of the substrate 10 by the thickness of the lower core 3, and is parallel to the boundary between the lower core and the substrate. For this reason, there is a drawback that the working gap and the magnetic field at the boundary interfere with each other, causing a so-called contour effect that deteriorates the head characteristics.
そこで、この欠点を除去するため、本発明者は、さきに
、上記の埋込み構造の薄膜磁気ヘッドにおいて、前記非
磁性基板に設けた凹部(溝)のテープ摺動面における形
状を、作動磁気ギャップと平行する部分がないように、
V字状乃至U字状とすることを提案した。この提案によ
れば、非磁性基板及び、下部コアの境界は、作動磁気ギ
ャップに対し不平行であるから、前記コンタ−効果は除
かれる。Therefore, in order to eliminate this drawback, the inventors of the present invention first changed the shape of the recess (groove) provided in the non-magnetic substrate on the tape sliding surface in the above-mentioned buried structure thin-film magnetic head so that the working magnetic gap So that there are no parallel parts,
We proposed a V-shape or U-shape. According to this proposal, the boundaries of the non-magnetic substrate and the lower core are non-parallel to the working magnetic gap, so that the contour effect is eliminated.
ところで、前記本発明者の提案した薄膜磁気ヘッドは、
前記凹部(溝)は下部磁性コアのリアコア部を埋込むた
めの第10溝部と下部磁性コアのフロントコア部を埋込
むための第2の溝部から成っているが、本発明者はこの
薄膜磁気ヘッドについて更に研究を進めた結果、前記第
10溝部と第2の溝部の間で、溝のテーパ角(非磁性基
板面から測つ念傾斜度)を異ならしめること、及び、溝
の回粗さを異ならしめることが望ましいことを見出し友
。By the way, the thin film magnetic head proposed by the present inventor is as follows:
The recess (groove) consists of a tenth groove for embedding the rear core part of the lower magnetic core and a second groove for embedding the front core part of the lower magnetic core. As a result of further research on the head, it was found that the taper angle of the groove (the degree of inclination measured from the surface of the non-magnetic substrate) was made different between the tenth groove part and the second groove part, and that the roughness of the groove was made different. Friends who find it desirable to be different.
即ち、凹溝の面粗さが細かい程埋設される磁性コアの荒
れが少くなり磁気特性に与える影響(荒れがひどくなる
と軟磁性特性がくずれて来る)も少なくなる一方、凹溝
の面粗さがある程度荒い方が細かいものよりも゛基板に
対する磁性コアの接層性が向上する。この磁気特性に与
える影響はリア磁性コアよりもフロント磁性コアの方が
著しい。In other words, the finer the surface roughness of the groove, the less rough the embedded magnetic core will be, and the less influence it will have on the magnetic properties (if the roughness becomes severe, the soft magnetic properties will deteriorate). If the magnetic core is rough to some extent, the contact property of the magnetic core with the substrate is improved than if it is fine. This influence on magnetic properties is more significant for the front magnetic core than for the rear magnetic core.
筐た、溝の前記テーパ角が小さい程(傾斜度がゆるやか
な程)、スパッタリングで磁気コアを被着するとき、被
着される壁面に対する磁気コアの平滑性が良くなり磁気
特性もよくなるが、フロント磁性コアの場合には、テー
パ角を小さくし過ぎると隣接トラックに対するクロスト
ークが□生じるしくリアコアの場合は、クロストークの
問題はほとんどない)、また、テーパ角をあまり大きく
し過ぎると(即ち、V溝の開き角度が小さすざると)ス
パッタリングで磁性膜を所定の厚みに平坦に被着するの
が困難で磁性面が荒れたV溝の環条部まで磁性体が行き
亘もなかったりして磁気特性に影響がでてくる問題が生
じる。一方、リアコアでは、テーパ角があるが大きくな
ると、第1および第2の溝部の交差部で下部コアの磁気
特性が劣化する問題が生じる。The smaller the taper angle of the housing and groove (the gentler the inclination), the better the smoothness of the magnetic core with respect to the wall surface to be deposited and the better the magnetic properties when depositing the magnetic core by sputtering. In the case of a front magnetic core, if the taper angle is too small, crosstalk with adjacent tracks will occur; in the case of a rear core, there is almost no crosstalk problem), and if the taper angle is too large (i.e. (If the opening angle of the V-groove is small), it is difficult to deposit the magnetic film flatly to a specified thickness by sputtering, and the magnetic material may not even reach the annulus of the V-groove where the magnetic surface is rough. A problem arises in that the magnetic properties are affected. On the other hand, the rear core has a taper angle, but if it becomes large, a problem arises in that the magnetic properties of the lower core deteriorate at the intersection of the first and second grooves.
従って、本発明の目的は、上記従来技術及び提案された
技術の欠点を除き、埋込み形の薄膜磁気ヘッドにおいて
、コンタ−効果をなくすると共に、フロント磁気コアの
埋設される溝部とリアコアの埋設される溝部の面粗さと
傾斜度を異ならしめることにより、クロストーク、基板
に対する磁気コアの接着性、磁気特性に対する影響等の
問題を一挙に解消することにある。SUMMARY OF THE INVENTION Therefore, an object of the present invention is to eliminate the contour effect in an embedded type thin film magnetic head by eliminating the drawbacks of the above-mentioned conventional techniques and proposed techniques, and to eliminate the contour effect between the groove in which the front magnetic core is embedded and the groove in which the rear core is embedded. By making the surface roughness and inclination of the groove portions different, problems such as crosstalk, adhesion of the magnetic core to the substrate, and influence on magnetic properties can be solved all at once.
前記目的を達成する九め、本願の第1発明の埋込み形の
薄膜磁気ヘッドは、下部磁気コアのリアコア部分を埋込
むための第10溝部及び下部磁気コアのフロントコア部
分を埋込むための第2の溝部について、第2の溝部のテ
ープ摺動面形状な略V字状乃至U字状とし、前記第10
溝部の面粗さを前記第2の溝部の面粗さよりも粗くし、
かつ、前記第10溝部の壁面の傾斜度を前記第2の溝部
の壁面の傾斜度よりも緩やかとなるように構成する。Ninthly, to achieve the above object, the embedded type thin film magnetic head of the first invention of the present application has a tenth groove portion for embedding the rear core portion of the lower magnetic core and a groove portion for embedding the front core portion of the lower magnetic core. Regarding the second groove part, the tape sliding surface of the second groove part is approximately V-shaped or U-shaped, and the tenth groove part is approximately V-shaped or U-shaped.
The surface roughness of the groove portion is made rougher than the surface roughness of the second groove portion,
Further, the slope of the wall surface of the tenth groove section is configured to be gentler than the slope degree of the wall surface of the second groove section.
好適な実施例において、第2の溝部のV字状乃至U字状
の開き角度、底面の曲率半径、及び、面粗さは、それぞ
れSO°〜90°、5μm以上、及び0.5 μm (
0,5s )以下で69、これに対して、前記第10溝
部の壁面の傾斜度及び各面の面粗さはそれぞれ25°〜
55°(前記第2の溝部の傾斜度以上となることはなイ
)、及び0.6 μm(0,6s) −3μm(3S)
の範囲とされる。In a preferred embodiment, the opening angle of the V-shape to U-shape of the second groove, the radius of curvature of the bottom surface, and the surface roughness are SO° to 90°, 5 μm or more, and 0.5 μm (
0.5s) or less, and on the other hand, the slope of the wall surface of the 10th groove and the surface roughness of each surface are 25° to 25°, respectively.
55° (the degree of inclination is never greater than the slope of the second groove), and 0.6 μm (0.6s) -3μm (3S)
The range of
前記第2の溝部の溝深さは前記第10翼部の溝深さより
も深くするのが望ましい。It is desirable that the groove depth of the second groove section is deeper than the groove depth of the tenth wing section.
本願の第2発明では、前記のように構成されるt4膜磁
気ヘッドを製造するため、前記非磁性基板の比軟的面粗
さの粗い第10溝部の形成法としてイオンエツチング法
を用い、他方、前記非磁性基板の比較的面粗さの細かい
第2の溝部の形成法として機械研削法を用いる。In the second invention of the present application, in order to manufacture the T4 film magnetic head configured as described above, an ion etching method is used as a method of forming the tenth groove portion having a rough specific soft surface roughness of the non-magnetic substrate; A mechanical grinding method is used as a method of forming the second groove portion of the nonmagnetic substrate having a relatively fine surface roughness.
上記のような構成によって、本願の第1発明の埋込形の
薄膜磁気ヘッドにおいて、基板凹部(溝)特に第2溝部
に埋込まれた下部磁気コアのフロントコア部と基板との
境界部はV字状乃至U字状となって作動磁気ギヤラグと
平行せず、その結果アジマス損失が生じるので、作動磁
気ギャップ部と前記境界部との磁界の干渉を少なくして
、コンタ−効果の発生をなくし、記録再生特性を向上す
る。With the above configuration, in the embedded type thin film magnetic head of the first invention of the present application, the boundary between the front core part of the lower magnetic core embedded in the substrate recess (groove), particularly the second groove part, and the substrate is The shape is V-shaped or U-shaped and is not parallel to the working magnetic gear lug, resulting in azimuth loss. Therefore, the interference of the magnetic field between the working magnetic gap and the boundary part is reduced to prevent the contour effect from occurring. This improves recording and playback characteristics.
また、リアコアの埋込まれる第1溝部の面粗さがフロン
トコアの埋込1れる第2溝部の面粗さよりも粗くなって
いるので、比軟的広い面積で基板に被着されるリアコア
の部分により基板と下部コアの強化された接着性が確保
されると共に、磁気特性に影響を与え易いフロントコア
部分は面粗さの細かい基板壁面に被着されるため、該フ
ロントコア部分の接合面も荒れが少なく平滑となって磁
気特性に恋影響を及ぼすことがない。更に、第10溝部
の壁面のテーパ角(基板面から測った傾斜度)を比較的
小さい(緩い)角度とじ九ことによフ、被着される磁性
層の載りを良くし又第1及第2の溝部の交差部での磁気
特性の劣化を防止する。In addition, since the surface roughness of the first groove in which the rear core is embedded is rougher than that of the second groove in which the front core is embedded, the rear core is adhered to the substrate over a relatively large area. The bonding surface of the front core portion ensures enhanced adhesion between the substrate and the lower core, and the front core portion, which tends to affect magnetic properties, is adhered to the substrate wall surface with fine surface roughness. It is smooth with less roughness and does not affect the magnetic properties. Furthermore, by setting the taper angle (angle of inclination measured from the substrate surface) of the wall surface of the 10th groove to a relatively small (gentle) angle, the adhesion of the magnetic layer to be deposited is improved. This prevents deterioration of magnetic properties at the intersection of the two grooves.
他方、第2の溝部の壁面のテーパ角を前記第10溝部の
壁面のテーパ角よりも大きな値としたことによりクロス
トークを抑えることができる。第2の溝部の壁面のテー
パ角をあまり大きくし過ぎると(第2の溝部の開き角を
小さくし過ぎると)、磁性膜を均一に溝部の深部までス
パッタリング等により行き亘らせることは困難となるの
で、この開き角の下限も制限した方がよい。前記数値範
囲の面粗さと傾斜度(開き角)で良好な結果が得られた
。On the other hand, crosstalk can be suppressed by setting the taper angle of the wall surface of the second groove portion to a larger value than the taper angle of the wall surface of the tenth groove portion. If the taper angle of the wall surface of the second groove is too large (if the opening angle of the second groove is too small), it will be difficult to uniformly spread the magnetic film deep into the groove by sputtering or the like. Therefore, it is better to limit the lower limit of this opening angle. Good results were obtained with surface roughness and inclination (opening angle) within the above numerical ranges.
第2の溝部の溝深さを第10溝部の溝深さよりも深くし
たことにより、リアコアに比べてフロントコアのコア幅
が相当に狭くなっているにも拘らず磁気抵抗を低くして
下部磁性コア全体の磁気抵抗を低くすることができる。By making the groove depth of the second groove deeper than the groove depth of the tenth groove, the magnetic resistance is lowered and the lower magnetic The magnetic resistance of the entire core can be lowered.
本願の第2発明において、第10溝部のような比較的粗
い面粗さの凹溝の形成法としてはイオンエツチング法が
適しており、この方法によれば、基板材料を選ばず、機
械加工できないような任意の材料に凹溝形成が可能であ
る。又、第2の溝部のよ5な比較的細かい面粗さの平滑
な凹溝の形成法としてはダイヤモンド砥石等による機械
硝削法が適しており、この方法によれば、任意の形状寸
法の凹溝を高精度で形成するのに好都合でおる。In the second invention of the present application, an ion etching method is suitable as a method for forming grooves with relatively rough surface roughness such as the tenth groove, and according to this method, machining is not possible regardless of the substrate material. Concave grooves can be formed in any material such as. In addition, as a method for forming a smooth concave groove with a relatively fine surface roughness like the second groove, a mechanical grinding method using a diamond grindstone or the like is suitable. This is convenient for forming grooves with high precision.
以下本発明の実施例を第1図及び第5図により説明する
。第1図は本発明による薄膜磁気ヘッドの一実施例の摺
動面を示すものである。第5図は本発明による薄膜磁気
ヘッドの一実施例の第1図A −A’線断面図である。Embodiments of the present invention will be described below with reference to FIGS. 1 and 5. FIG. 1 shows a sliding surface of an embodiment of a thin film magnetic head according to the present invention. FIG. 5 is a sectional view taken along the line A-A' in FIG. 1 of an embodiment of the thin film magnetic head according to the present invention.
本発明における薄膜磁気ヘッドの構造はガラス、セラミ
ック等の非磁性基板10上に形成された磁性膜3を下部
出猟コアとし、その上に形成されたギャップ材4と信号
コイル8、及び絶縁材6a、6bを介し、磁性膜5を形
成し上部磁気コアとして用い、磁性膜3.5により磁気
回路を形成している。7は保護膜である。The structure of the thin film magnetic head according to the present invention is that a magnetic film 3 formed on a non-magnetic substrate 10 such as glass or ceramic is used as a lower core, and a gap material 4, a signal coil 8, and an insulating material formed on the lower core. A magnetic film 5 is formed via 6a and 6b and used as an upper magnetic core, and a magnetic circuit is formed by the magnetic film 3.5. 7 is a protective film.
磁性膜3,5はパーマロイ、センダスト、非晶質合金等
を用いる。本実施例ではスパッタリング法により形成し
たCo −Nb −Zr系非晶質合金膜を用い友。膜厚
は加〜関μmである。The magnetic films 3 and 5 are made of permalloy, sendust, amorphous alloy, or the like. In this example, a Co-Nb-Zr amorphous alloy film formed by a sputtering method was used. The film thickness is approximately 1 to 1 μm.
ギャップ材4はSin、 、 !’−1,0.等の非磁
性絶縁材またはCr、Zr等の非出性金属を用いること
ができる。本実施例ではS io2をスパッタリングに
より0.3μmの厚さに形成した。信号コイル8はCu
により形成しその周囲はSin、等の絶縁材6a。Gap material 4 is Sin, , ! '-1,0. Non-magnetic insulating materials such as Cr, Zr and other non-magnetic insulating materials can be used. In this example, S io2 was formed to a thickness of 0.3 μm by sputtering. Signal coil 8 is Cu
An insulating material 6a such as Sin is formed around the insulating material 6a.
6bで囲まれている。It is surrounded by 6b.
第1図に示すごとく本発明の薄膜磁気ヘッドの摺動面形
状は下部コアが基板に設けた%2に埋込まれた構造とな
っている。更にこの溝形状を磁気テープ摺動面からみて
底面に曲率な有するV字状乃至U字状にすることにより
、下部コアと基板の境界線が作動ギャップ4と平行しな
いようにする。As shown in FIG. 1, the sliding surface of the thin film magnetic head of the present invention has a structure in which the lower core is embedded in a hole provided in the substrate. Further, by forming this groove into a V-shape or a U-shape with a curved bottom when viewed from the magnetic tape sliding surface, the boundary line between the lower core and the substrate is prevented from being parallel to the working gap 4.
また上部コア5の境界線も同様に作動ギャップと平行し
ないように曲率をもった形状にする。このよりに本発明
の磁気ヘッドではチーブ摺動面において上部、下部コア
の境界線がいずれも作動ギャップ部と平行しないために
、作動ギャップ部と磁気コアの境界部の磁界の干渉を少
なくできいわゆるコンタ−効果をなくすことができる。Further, the boundary line of the upper core 5 is similarly shaped to have a curvature so as not to be parallel to the working gap. As a result, in the magnetic head of the present invention, the boundaries between the upper and lower cores on the sliding surface of the chip are not parallel to the working gap, so it is possible to reduce the interference of the magnetic field at the boundary between the working gap and the magnetic core. Contour effects can be eliminated.
下部コアを埋込むV字状の溝形状は第1図に示す溝の深
さDと幅Wでその開き角度θが決るが、。The opening angle θ of the V-shaped groove in which the lower core is embedded is determined by the depth D and width W of the groove shown in FIG.
前記のように、開き角度が小さすぎるとスパッタリング
等により磁性膜を所要の厚みで均一平坦に被着するのが
困難で、磁性層が荒れて軟磁気特性にも影響が現れるた
め、開き角度θは50’以上(後述のテーパ角でいうと
65°以下)とする必要がある。他方、開き角度が90
°を越えると、磁気テープ摺動面部のコアがトラック幅
方向に広がり、隣接トラックからのクロストークが増大
するので、これを避けるため、開き角度は90°以下(
テーパ角でいうと45°以上)とする必要がある。また
、底面の曲率半径Rも同様に溝の深さと1陽で決定され
るが、重要なことは、溝底面に作動磁気ギャップと平行
する部分のないようにすることである。As mentioned above, if the opening angle is too small, it will be difficult to uniformly and flatly deposit a magnetic film with the required thickness by sputtering, etc., and the magnetic layer will become rough, which will affect the soft magnetic properties. must be 50' or more (65° or less in terms of the taper angle described later). On the other hand, if the opening angle is 90
If the opening angle exceeds 90°, the core of the magnetic tape sliding surface expands in the track width direction, increasing crosstalk from adjacent tracks.To avoid this, the opening angle should be 90° or less (
The taper angle must be 45° or more. Furthermore, the radius of curvature R of the bottom surface is similarly determined by the depth of the groove and 1, but what is important is that the bottom surface of the groove has no part parallel to the working magnetic gap.
ま走溝底面に曲率半径Rを設けないV字溝も考えられる
が、溝の最深部1で磁性体が行き亘らないといつ几、溝
内に被着させる磁性膜のステップカバーレージの点から
問題がおり、加工も困難である。この溝底面のRは少な
くとも5μmR以上とする。また溝底面の面粗さは磁性
膜の特性に影響しないように0.5μm(0,5s)以
内の粗さとする。A V-shaped groove that does not have a radius of curvature R on the bottom surface of the groove can be considered, but if the magnetic material does not spread over the deepest part 1 of the groove, the step coverage of the magnetic film deposited inside the groove will be affected. There are problems with this, and processing is difficult. The R of this groove bottom surface is at least 5 μmR or more. Further, the surface roughness of the bottom surface of the groove is set to within 0.5 μm (0.5 s) so as not to affect the characteristics of the magnetic film.
これ以上粗くなると、磁気特性が劣化する。If it becomes rougher than this, the magnetic properties will deteriorate.
第6図は下部コアを埋込むための溝を加工した基板を示
したものである。ガラス、セラミック等の非磁性基板l
にイ゛オンミリングを用いてリアコア部の溝9を20〜
30μmの深さ加工し、次にダイシングソー等の機械加
工で先端に所定のV字状に成形したダイヤモンド刃を用
いてフロントコア部のV字状溝2の加工を行う。この時
、リアコア部の溝9の側壁面の、水平面からfll!1
つたテーパ角度ψはフロントコア部の溝2の同様なテー
パ角度よりも低い範囲であって、25°から55°の範
囲に選ばれる。この範囲とした理由は、ψが55°を超
えると、溝9と溝2の交差部において下部コアの磁気特
性が著しく劣化する一方、ψが25°以下になると溝9
の溝幅の精度制御が難しくなるからである。筐た、gt
9の面粗さとしては0.6μm(0,6S)から3μm
(3s )の範囲に選ばれる。面粗さが0.6μm(
0,6s)以下では、基板1と下部コアの付着力が充分
に得られず、一方、面粗さが3μm(3S)以上となる
と下部コアの磁気特性の劣化が。FIG. 6 shows a substrate in which a groove for embedding the lower core has been processed. Non-magnetic substrates such as glass and ceramics
Use ion milling to cut the groove 9 in the rear core part from 20 to 20.
After processing to a depth of 30 μm, a V-shaped groove 2 in the front core portion is machined using a diamond blade whose tip is formed into a predetermined V-shape by machining such as a dicing saw. At this time, from the horizontal surface of the side wall surface of the groove 9 in the rear core part, fl! 1
The taper angle ψ is in a lower range than the similar taper angle of the groove 2 of the front core portion, and is selected in the range from 25° to 55°. The reason for choosing this range is that if ψ exceeds 55°, the magnetic properties of the lower core will deteriorate significantly at the intersection of groove 9 and groove 2, while if ψ becomes 25° or less, the groove 9
This is because precision control of the groove width becomes difficult. Keita, gt
The surface roughness of 9 is from 0.6μm (0.6S) to 3μm
(3s). Surface roughness is 0.6 μm (
If the surface roughness is less than 0.6 s), sufficient adhesion between the substrate 1 and the lower core cannot be obtained, while if the surface roughness is 3 μm (3S) or more, the magnetic properties of the lower core will deteriorate.
おころ。Okoro.
また、第6図に示すように(なお、第5図には示さない
)溝2′の深さは、溝9の深さより深くとる方が良い。Further, as shown in FIG. 6 (not shown in FIG. 5), the depth of the groove 2' is preferably greater than the depth of the groove 9.
溝2の幅は前記クロストークの問題のため制限されるの
で、その分深くして磁気抵抗の増大を防止する。他方、
溝9の溝幅が溝2の溝幅に較べ広いために、溝深さが浅
くとも下部リアコアの断面積が大きくとれ磁気抵抗の増
大を防ぎ、かつ溝9を形成する際のイオンエツチング時
間(プロセス時間)の短縮が図れるという利点がある。Since the width of the groove 2 is limited due to the above-mentioned crosstalk problem, the width of the groove 2 is increased accordingly to prevent an increase in magnetic resistance. On the other hand,
Since the groove width of groove 9 is wider than that of groove 2, even if the groove depth is shallow, the cross-sectional area of the lower rear core can be large, preventing an increase in magnetic resistance, and reducing the ion etching time ( This has the advantage of reducing processing time.
次に、第1図に示す実施例の薄膜磁気ヘッドを得る念め
の製造方法を第7図を用いて説明する。Next, a preliminary manufacturing method for obtaining the thin film magnetic head of the embodiment shown in FIG. 1 will be explained with reference to FIG.
以下の工程(a1〜(g)は、第7図の(a)〜(g)
に対応している。The following steps (a1 to (g) are shown in FIG. 7 (a) to (g))
It corresponds to
(al 非磁性基板に下部コアのリアコア部用の樗9
をイオンミリング法を用いて第7図(a)に示す形状に
25μmの深さに加工する。(al) The wood 9 for the rear core part of the lower core is attached to the non-magnetic substrate.
is processed to a depth of 25 μm into the shape shown in FIG. 7(a) using the ion milling method.
(b) 次に、下部コアのフロント磁気ギャップを・
形成する部分にダイシングソーを用いて開き角度が6
00.底面が10μmRのV字状g2を深さ25μmに
加工形成する。このときに、ダイヤ粒径が2〜4μmの
ダイヤモンド砥石を用いることにより、溝面粗さが0.
5S以下に加工することができる。(b) Next, the front magnetic gap of the lower core is
Use a dicing saw to form the part with an opening angle of 6
00. A V-shaped g2 with a bottom surface radius of 10 μm and a depth of 25 μm is formed by processing. At this time, by using a diamond grindstone with a diamond grain size of 2 to 4 μm, the groove surface roughness can be reduced to 0.
Can be processed to 5S or less.
以下、(C)〜(g)の工程の説明は、第7図(b)の
B−B′の断面図について行なう。Hereinafter, the steps (C) to (g) will be explained with reference to the sectional view taken along line BB' in FIG. 7(b).
(cl 下部コア用磁性膜を、少なくとも下部コア3
の埋込み溝2が埋る厚さ被着させ、磁性膜の上面を研摩
により平坦化する。(cl) Add the magnetic film for the lower core to at least the lower core 3.
The magnetic film is deposited to a thickness that fills the buried trench 2, and the upper surface of the magnetic film is flattened by polishing.
(d) イオンミリング法によHa磁性膜下部コア形
状にパターニングする。(d) Patterning the Ha magnetic film into a lower core shape by ion milling.
(el 非磁性絶縁層6a、コイルおよび再鼓非磁性
絶縁層を形成後、研摩によりギャップ形成面をつくり、
非磁性材から成るギャップ材4を形成する。(el After forming the non-magnetic insulating layer 6a, the coil and the re-drying non-magnetic insulating layer, a gap forming surface is created by polishing,
A gap material 4 made of a non-magnetic material is formed.
(f) 2)−コイルの場合には、第2コイル、非磁
性絶縁)v!J6bを形成し、ギャップ形成部およびリ
アコア接続部にスルーホールをあける。(f) 2) - in the case of a coil, the second coil, non-magnetic insulation) v! J6b is formed, and a through hole is made in the gap forming part and the rear core connecting part.
(g) 磁性膜をスパッタリングで形成し、イオンミ
リング法によりバタンコンタして、非磁性絶縁層にあけ
たフロントのスルーホールのテーパ部分に上部コア5を
形成する。このエツチングは、所定のポストベーキング
を行ったフォトレジストをマスク材として、適切なビー
ム入射角で行われる。(g) A magnetic film is formed by sputtering, and the upper core 5 is formed in the tapered portion of the front through hole drilled in the nonmagnetic insulating layer by contacting the magnetic film by ion milling. This etching is performed at an appropriate beam incidence angle using a photoresist that has been subjected to a predetermined post-baking process as a mask material.
これにより上端面の曲面化が達成されるので、上部コア
境界部を原因とするコンタ−効果の低減を図ることがで
きる。その後保護膜7を形成する。As a result, the upper end surface is curved, so that the contour effect caused by the upper core boundary can be reduced. After that, a protective film 7 is formed.
以上のような工程によって第1図に示した摺動面形状を
もつ薄膜磁気ヘッドが得られる。Through the steps described above, a thin film magnetic head having the sliding surface shape shown in FIG. 1 can be obtained.
また、先の実施例において溝2の形成部として機械研削
を用いることについて記載し念が、この方法においては
、基板1を研削するに従い用いるブレード(刃)材の摩
耗が進行する。この対策のための実施例について第8図
を用いて説明する。同図(alに示すように、基板1上
にイオンエツチング法により溝9a、9bをホトリソグ
ラフィ工程により形成する、この時、図示した様に機械
研削に用いるブレードを逃げるための溝IQa、10b
を同時に形成する。該溝10a、10bの断面形状は、
用いるブレード形状より広めにする。この様に構成する
ことにより、同図(b)に示すように、溝2を機械研削
で形成する場合においても、加工体積を低減できること
からブレードの摩耗を防ぐことが可能となる。Furthermore, although it has been described in the previous embodiment that mechanical grinding is used to form the grooves 2, in this method, as the substrate 1 is ground, the wear of the blade material progresses. An embodiment for this countermeasure will be described using FIG. 8. As shown in the same figure (al), grooves 9a and 9b are formed on the substrate 1 by an ion etching method and a photolithography process.At this time, as shown in the figure, grooves IQa and 10b are used to escape the blade used for mechanical grinding.
are formed at the same time. The cross-sectional shape of the grooves 10a and 10b is as follows:
Make it wider than the blade shape you are using. With this configuration, even when the groove 2 is formed by mechanical grinding, as shown in FIG. 2B, the machining volume can be reduced, making it possible to prevent wear of the blade.
以上詳述したように、本発明の埋込み形の薄膜磁気ヘッ
ドは、テープ摺動面において、磁性コアのフロントコア
部と基板との境界部が作動磁気ギャップと不平行となる
ため、疑似ギャップによるコンタ−効果の発生を防止で
きる。As described in detail above, in the embedded thin film magnetic head of the present invention, the boundary between the front core part of the magnetic core and the substrate is not parallel to the operating magnetic gap on the tape sliding surface. It is possible to prevent the contour effect from occurring.
また、リアコア埋込溝部の面粗さがフロントコア埋込溝
部の面粗さに比べて粗くしたことにより、軟磁気特性を
劣化することなく基板に対するコアの接着性を強化でき
、リアコア埋込溝部の傾斜角を比較的に緩やかとしフロ
ントコア埋込溝部の傾斜角を比較的に急峻としたことに
より、磁気特性を低下することなく隣接トランク間のク
ロストークを低減できる等、優れた効果を奏する。In addition, by making the surface roughness of the rear core embedding groove rougher than that of the front core embedding groove, it is possible to strengthen the adhesion of the core to the substrate without deteriorating the soft magnetic properties. By making the inclination angle of the front core embedding groove relatively gentle and the inclination angle of the front core embedded groove part relatively steep, excellent effects such as reducing crosstalk between adjacent trunks can be achieved without deteriorating magnetic properties. .
更に、リアコア部埋設用溝部はイオンエツチング法で、
フロントコア部埋設用溝部は機械研削法で形成すること
により、酊粗さの細かい高f#fを要するフロント溝部
と面粗さの粗いリア溝部を容易に作ることができる。Furthermore, the groove for embedding the rear core part is made using ion etching method.
By forming the front core part embedding groove by mechanical grinding, it is possible to easily create a front groove that requires a fine surface roughness and a high f#f and a rear groove that has a coarse surface roughness.
第1図は本発明の薄膜磁気ヘッドの一実施例のテープ摺
動面図、第2図及び第3図は従来の薄膜磁気ヘッドの断
面図、第4図は従来の薄膜磁気ヘッドのテープ摺動面図
、第5図は第1図のA−A線による断面図、第6図は本
発明の薄膜磁気ヘッドを得るための下部磁性コア埋込み
用溝の外観図、第7図(al〜(glは本発明の薄膜磁
気ヘッドの製造工程の一例を示す図、第8図(a) (
blは本発明の4膜磁気ヘツドの製造工程の他の例を示
す図である。
1・・・・・・非磁性基板、2・・・・・・V字状溝、
3・・・・・・下部磁性コア、4・・・・・・作動磁気
ギャップ、5・・・・・・上部磁性コア、6.6a、6
b・・・−・・非磁性絶縁材、7・・・・−・保護膜、
8・・・・・・コイル導体・・・・・・9,9a。
9b・・・・・・リア磁性コア埋込め用溝、10a、1
0b・・・・・・溝。
第1図
第2詠j
4゛l
第3図
C
第4はj
第5図
第7図
(a)
」
B′
(C)
第7図
(d)
6b Cfノ
第7図
第8図
(b)
29σ lOo9blObFIG. 1 is a tape sliding surface diagram of an embodiment of the thin film magnetic head of the present invention, FIGS. 2 and 3 are sectional views of a conventional thin film magnetic head, and FIG. 4 is a tape sliding surface diagram of a conventional thin film magnetic head. FIG. 5 is a cross-sectional view taken along the line A-A in FIG. (gl is a diagram showing an example of the manufacturing process of the thin film magnetic head of the present invention, FIG. 8(a) (
bl is a diagram showing another example of the manufacturing process of the four-film magnetic head of the present invention. 1...Nonmagnetic substrate, 2...V-shaped groove,
3... Lower magnetic core, 4... Operating magnetic gap, 5... Upper magnetic core, 6.6a, 6
b...--Nonmagnetic insulating material, 7...--Protective film,
8... Coil conductor...9, 9a. 9b... Rear magnetic core embedding groove, 10a, 1
0b...Groove. Figure 1 Figure 2 Poetry j 4゛l Figure 3 C Figure 4 is j Figure 5 Figure 7 (a) B' (C) Figure 7 (d) 6b Cf Figure 7 Figure 8 (b ) 29σ lOo9blOb
Claims (4)
し、その上に磁気ギャップ層、薄膜コイル、上部磁性コ
アを順に積層して成る薄膜磁気ヘッドにおいて、前記溝
は前記下部磁性コアのリアコア部埋設用の第1の溝部及
び前記下部磁性コアのフロントコア部埋設用の第2の溝
部を有しており、前記第2の溝部のテープ摺動面形状を
略V字状乃至U字状とし、前記第1の溝部の面粗さを前
記第2の溝部の面粗さよりも粗くし、かつ、前記第1の
溝部の壁面の傾斜度を前記第2の溝部の壁面の傾斜度よ
りも緩やかとしたことを特徴とする薄膜磁気ヘッド。(1) In a thin film magnetic head in which a lower magnetic core is buried in a groove formed on a non-magnetic substrate, and a magnetic gap layer, a thin film coil, and an upper magnetic core are sequentially laminated thereon, the groove is located at the lower magnetic core. and a second groove for embedding the front core of the lower magnetic core, and the shape of the tape sliding surface of the second groove is approximately V-shaped to U-shaped. The surface roughness of the first groove is made rougher than the surface roughness of the second groove, and the slope of the wall of the first groove is equal to the slope of the wall of the second groove. A thin-film magnetic head that is characterized by being more gentle than the previous one.
及び、面粗さをそれぞれ、50°〜90°、5μm以上
、及び0.5μm(0.5s)以下とし、前記第10溝
部の壁面の傾斜度及び面粗さをそれぞれ25°〜55°
及び0.6μm(0.6s)〜3μm(3s)の範囲と
なるように構成したことを特徴とする特許請求の範囲第
1項記載の薄膜磁気ヘッド。(2) the opening angle and radius of curvature of the bottom of the second groove;
The surface roughness is set to 50° to 90°, 5 μm or more, and 0.5 μm (0.5 s) or less, respectively, and the slope and surface roughness of the wall surface of the 10th groove are 25° to 55°, respectively.
2. The thin film magnetic head according to claim 1, wherein the thin film magnetic head is configured to have a width of 0.6 μm (0.6 s) to 3 μm (3 s).
さよりも深くしたことを特徴とする特許請求の範囲第1
項記載の薄膜磁気ヘッド。(3) The groove depth of the second groove part is made deeper than the groove depth of the first groove part.
The thin film magnetic head described in Section 1.
され、その上に磁気ギャップ層、薄膜コイル、上部磁性
コアが順に積層されており、前記溝が前記下部磁性コア
のリアコア部埋設用の第1の溝部及び前記下部磁性コア
のフロントコア部埋設用の第2の溝部を有しており、前
記第2の溝部のテープ摺動面形状が略V字状乃至U字状
とされ、前記第1の溝部の面粗さが前記第2の溝部の面
粗さよりも粗く、かつ、前記第1の溝部の壁面の傾斜度
が前記第2の壁面の傾斜度よりも緩やかである薄膜磁気
ヘッドの製造方法において、前記第1の溝部をイオンエ
ッチング法により形成し、前記第2の溝部を機械研削法
により形成したことを特徴とする薄膜磁気ヘッドの製造
方法。(4) A lower magnetic core is buried in a groove formed on a non-magnetic substrate, and a magnetic gap layer, a thin film coil, and an upper magnetic core are laminated in this order on the lower magnetic core, and the groove is buried in the rear core part of the lower magnetic core. and a second groove for embedding the front core part of the lower magnetic core, and the tape sliding surface of the second groove has a substantially V-shaped or U-shaped shape. , a thin film in which the surface roughness of the first groove is rougher than the surface roughness of the second groove, and the slope of the wall of the first groove is gentler than the slope of the second wall. 1. A method of manufacturing a thin film magnetic head, wherein the first groove is formed by an ion etching method, and the second groove is formed by a mechanical grinding method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14006487A JPH0668820B2 (en) | 1987-06-05 | 1987-06-05 | Thin film magnetic head and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14006487A JPH0668820B2 (en) | 1987-06-05 | 1987-06-05 | Thin film magnetic head and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63304413A true JPS63304413A (en) | 1988-12-12 |
JPH0668820B2 JPH0668820B2 (en) | 1994-08-31 |
Family
ID=15260137
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14006487A Expired - Lifetime JPH0668820B2 (en) | 1987-06-05 | 1987-06-05 | Thin film magnetic head and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0668820B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5406434A (en) * | 1990-11-06 | 1995-04-11 | Seagate Technology, Inc. | Thin film head with contoured pole face edges for undershoot reduction |
US5555482A (en) * | 1994-07-07 | 1996-09-10 | Maxtor Corporation | Etched erase band feature for thin film recording heads |
-
1987
- 1987-06-05 JP JP14006487A patent/JPH0668820B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5406434A (en) * | 1990-11-06 | 1995-04-11 | Seagate Technology, Inc. | Thin film head with contoured pole face edges for undershoot reduction |
US5555482A (en) * | 1994-07-07 | 1996-09-10 | Maxtor Corporation | Etched erase band feature for thin film recording heads |
Also Published As
Publication number | Publication date |
---|---|
JPH0668820B2 (en) | 1994-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5225953A (en) | Magnetic thin film head of a single magnetic pole for perpendicular recording and reproduction | |
US5181151A (en) | Thin-film perpendicular magnetic recording and reproducing head having thin magnetic shield film on side surfaces | |
JPH08147623A (en) | Thin-film magnetic head and its manufacture | |
KR900004743B1 (en) | Magnetic head for vertical magnetic recording and the method of manufacturing the same | |
JPS63304413A (en) | Thin film magnetic head and its manufacture | |
US5894389A (en) | Thin-film Magnetic head having a narrow core width and process for its production | |
CA1325328C (en) | Method for achieving the planarity of an active face for a magnetic recording/reading head | |
US5218499A (en) | Thin-film magnetic head for perpendicular magnetic recording having a magnetic member with grooves crossing at right angles formed in a principal surface thereof | |
JPH01290110A (en) | Core for magnetic head | |
US5198950A (en) | Thin-film perpendicular magnetic recording and reproducing head | |
JP2572213B2 (en) | Thin film magnetic head | |
EP0242861B1 (en) | Magnetic head | |
JPS6249652B2 (en) | ||
JP4492418B2 (en) | Thin film magnetic head and manufacturing method thereof | |
JPH0540910A (en) | Manufacture of narrow track magnetic head | |
JPH027213A (en) | Thin film magnetic head | |
JPS61151817A (en) | Thin film magnetic head | |
JPS60113308A (en) | Thin film magnetic head | |
JPH01133211A (en) | Thin film magnetic head and its manufacturing method | |
JPS6037968B2 (en) | Thin film magnetic head | |
JPH03292605A (en) | Production of floating type magnetic head | |
JPH0572005B2 (en) | ||
JPS60229217A (en) | Manufacture for thin film magnetic head | |
JPS60229216A (en) | Manufacturing method of thin film magnetic head | |
JPS61211808A (en) | thin film magnetic head |