[go: up one dir, main page]

JPS63301629A - Transmission power control method - Google Patents

Transmission power control method

Info

Publication number
JPS63301629A
JPS63301629A JP13714787A JP13714787A JPS63301629A JP S63301629 A JPS63301629 A JP S63301629A JP 13714787 A JP13714787 A JP 13714787A JP 13714787 A JP13714787 A JP 13714787A JP S63301629 A JPS63301629 A JP S63301629A
Authority
JP
Japan
Prior art keywords
transmission power
transmitting
level
signal
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13714787A
Other languages
Japanese (ja)
Other versions
JPH0616595B2 (en
Inventor
Masao Hayashi
正雄 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP62137147A priority Critical patent/JPH0616595B2/en
Publication of JPS63301629A publication Critical patent/JPS63301629A/en
Publication of JPH0616595B2 publication Critical patent/JPH0616595B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

PURPOSE:To execute communication under a low transmitting power as much as possible by increasing the transmitting power of a transmitting station in response that the variation of a receiving signal to accompany a fading to be given to a line is increased and a receiving signal differential coefficient in a receiving station is over a prescribed value. CONSTITUTION:When the differential coefficient of a receiving signal received by a receiving station 16 comes to be larger against a prescribed value by a fading, control information are generated from a transmitting power control information output means 13 and inputted from an antenna 12 through an antenna 10 of a transmitting station 4 and a receiver 18 to a transmitting level control means 7. The transmitting level control means 7 responds to the control information and generates the change of a setting level of a transmitting power change means 6 so that the transmitting power level can be raised. With the recovery of the fading, by the transmitting level control means 7, the setting level of the transmitting power change means 6 is changed to a low transmitting power level. Thus, the transmitting power can be reduced.

Description

【発明の詳細な説明】 〔概 要〕 送信局の送信電力を平常時に充分な回線品質を保ち得る
に充分な値と為し、その回線に与えるフェージングに伴
う受信信号の変化度合が増大し、受信局における受信信
号微係数が所定値を超えたことに応答して送信局の送信
電力を、上記フェージングによる回線損失があってもな
お、受信局における正常な受信を持続せしめ得るに充分
な値に高める。
[Detailed description of the invention] [Summary] The transmission power of the transmitting station is set to a value sufficient to maintain sufficient line quality in normal times, and the degree of change in the received signal due to fading applied to the line increases, In response to the differential coefficient of the received signal at the receiving station exceeding a predetermined value, the transmitting station's transmission power is set to a value sufficient to maintain normal reception at the receiving station even if there is line loss due to the above-mentioned fading. increase to

〔産業上の利用分野〕[Industrial application field]

本発明は送信電力制御方式に関し、更に詳しく言えば、
低電力化等のための送信電力制御に受信信号の微係数を
用いた送信電力制御方式に関する。
The present invention relates to a transmission power control method, and more specifically,
This invention relates to a transmission power control method that uses a differential coefficient of a received signal to control transmission power for power reduction, etc.

ディジタル多重無線通信等の無線通信網においては、送
信側から受信側へ所望の情報を伝送しようとする場合、
その情報を電波に乗せて送ることになる。その電波を受
信側で首尾よく受信させるためには、それに必要なだけ
の送信電力で前記電波を送信側から受信側へ輻射させな
ければならない。そして、その送信には送受信系の伝送
能力だけでなく、伝送媒体の状態をも考慮に入れて送信
電力を決めなければならない。又、送受信系が構築され
ている地域における既設、未設を問わずその他の送受信
系の様子をも考慮に入れることが、その地域における各
種無線通信系を有るべき姿に整備する上で重要な事項で
ある。
In wireless communication networks such as digital multiplex wireless communication, when attempting to transmit desired information from the transmitter to the receiver,
This information will be transmitted over radio waves. In order for the receiving side to successfully receive the radio waves, the radio waves must be radiated from the transmitting side to the receiving side with the necessary transmission power. For the transmission, the transmission power must be determined taking into account not only the transmission capacity of the transmitting and receiving system but also the state of the transmission medium. In addition, it is important to take into consideration the situation of other transmitting and receiving systems, whether existing or uninstalled, in the area where the transmitting and receiving system is being constructed, in order to maintain the various wireless communication systems in the area as they should be. It is a matter.

〔従来の技術〕[Conventional technology]

従来のディジタル多重無線通信システムは第7図に示す
ように構成されていた。その送信側の変調器2において
変調された送信信号は送信器4でIF帯からRF帯へ周
波数変換される。送信器4の出力信号が電力増幅器14
で電力増幅されて送信アンテナ16から受信アンテナ3
0へ向けて輻射される。受信アンテナ30で受信された
信号は受信器32でRF帯からIF帯へ周波数変換され
た後、AGC増幅器34でAGC増幅されて復調器36
での送信信号の再生に供される。
A conventional digital multiplex wireless communication system was configured as shown in FIG. The transmission signal modulated by the modulator 2 on the transmitting side is frequency-converted from the IF band to the RF band by the transmitter 4. The output signal of the transmitter 4 is transmitted to the power amplifier 14
The power is amplified from the transmitting antenna 16 to the receiving antenna 3.
It is radiated towards 0. The signal received by the receiving antenna 30 is frequency-converted from the RF band to the IF band by the receiver 32, and then AGC-amplified by the AGC amplifier 34 and sent to the demodulator 36.
It is used for reproducing the transmitted signal.

このような送受信系における送信電力は、受信側のAG
C増幅器34の利得調整機能がその上限近傍に至ったと
きにも、なお、回線品質を維持し得るに足りるだけ充分
な強さの電波を送信アンテナ16から輻射し得る成る定
められた値に、従来は設定されていた。
The transmission power in such a transmission/reception system is determined by the AG on the receiving side.
Even when the gain adjustment function of the C amplifier 34 reaches its upper limit, the transmitting antenna 16 can still radiate radio waves of sufficient strength to maintain line quality. Previously, it was set.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上述のような送信電力の設定は、回線品
質の維持という観点からすればその限りでは肯定し得る
ものではあるが、電力の節減という見地に立てば長期間
に亘って不必要に大きな送信電力で情報の送信を行なっ
ていることになる。というのは、上述の如く設定される
送信電力は、年間において僅か5〜10時間程度しかな
い大きな回線損失(主として、フェージングによる損失
)のために、その他の時間帯においてはそのような大き
な送信電力を必要としないのにも拘らず、上述のような
大きな回線損失が生ずる時間帯において所望の回線品質
を維持させんとして定められているからである。
However, although the above-mentioned transmission power setting is acceptable from the perspective of maintaining line quality, from the perspective of saving power, it may result in unnecessary large transmissions over a long period of time. This means that information is transmitted using electricity. This is because the transmission power set as described above is due to the large line loss (mainly loss due to fading) that only occurs for about 5 to 10 hours a year, and such large transmission power is not available at other times of the year. This is because, although this is not necessary, it is intended to maintain the desired line quality during the time period when large line losses as described above occur.

又、上述のような大きな送信電力では、送受信系の設置
地域に他の送受信系がない場合には問題ないが、そうで
ない場合にはその影響が生ずるので不都合を来す。
Further, the above-mentioned large transmission power does not pose a problem if there are no other transmitting/receiving systems in the area where the transmitting/receiving system is installed, but if this is not the case, it causes an inconvenience.

本発明は、斯かる問題点に鑑みて創作されたもので、通
信を可能な限り低送信電力の下で行なうための送信電力
制御方式を提供することをその目的とする。
The present invention was created in view of such problems, and an object of the present invention is to provide a transmission power control method for performing communication at the lowest possible transmission power.

〔問題点を解決するための手段〕[Means for solving problems]

第1図は本発明の原理構成図を示す。この図において、
2は送信局4の送信機であり、6はその送信電力レベル
を変えるための送信電力変更手段で、7は送信レベル制
御手段である。10.12は送受信アンテナである。1
3は受信局16の受信機18に接続され、受信信号微係
数が所定値に対し呈する関係に基づいて送信電力制御情
報を出力するための送信電力制御情報出力手段である。
FIG. 1 shows a basic configuration diagram of the present invention. In this diagram,
2 is a transmitter of the transmitting station 4, 6 is a transmission power changing means for changing the transmission power level, and 7 is a transmission level control means. 10.12 is a transmitting/receiving antenna. 1
Reference numeral 3 denotes a transmission power control information output means connected to the receiver 18 of the receiving station 16 for outputting transmission power control information based on the relationship that the received signal differential coefficient exhibits with respect to a predetermined value.

そして、送信電力変更手段6は送信電力制御情報出力手
段13からの送信電力制御情報に応答する送信レベル制
御手段7により送信電力の調節が施されるようにして本
発明は構成されている。
The present invention is configured such that the transmission power of the transmission power changing means 6 is adjusted by the transmission level control means 7 which responds to transmission power control information from the transmission power control information output means 13.

〔作 用〕[For production]

フェージング速度の比較的に小さい通信時には、送信電
力変更手段6は予め決められた比較的に低いレベルの送
信電力での送信を行なうように、送信電力制御情報出力
手段13からフィードバックされる制御情報を受ける送
信レベル制御手段7によりそのレベルへの設定が行なわ
れて送信局4の送信アンテナ10から受信局16の受信
アンテナ12に向けて電波が輻射され、所要の通信が行
なわれる。
During communication with a relatively low fading rate, the transmission power changing means 6 transmits control information fed back from the transmission power control information output means 13 so as to perform transmission at a predetermined relatively low level of transmission power. The receiving transmission level control means 7 sets the level to that level, and radio waves are radiated from the transmitting antenna 10 of the transmitting station 4 toward the receiving antenna 12 of the receiving station 16, thereby performing the required communication.

その通信回線を介して、受信局16で受信される受信信
号の微係数がフェージングにより所定値に対し大きくな
ると、送信電力を高めるための制御情報が送信電力制御
情報出力手段13から発生され、受信アンテナ12から
送信アンテナlO1受信機18を介して送信レベル制御
手段7へ入力される。送信レベル制御手段7はその制御
情報に応答して送信電力レベルを上げるように送信電力
変更手段6の設定レベルの変更を生ぜしめる。そして、
フェージングの回復に伴って、送信レベル制御手段7に
より送信電力変更手段6の設定レベルは低い送信電力レ
ベルへ変えられる。
When the differential coefficient of the received signal received by the receiving station 16 via the communication line becomes larger than a predetermined value due to fading, control information for increasing the transmission power is generated from the transmission power control information output means 13, and the reception The signal is input from the antenna 12 to the transmission level control means 7 via the transmitting antenna IO1 receiver 18. In response to the control information, the transmission level control means 7 causes the setting level of the transmission power changing means 6 to be changed so as to increase the transmission power level. and,
As fading recovers, the setting level of the transmission power changing means 6 is changed by the transmission level control means 7 to a lower transmission power level.

〔実施例〕〔Example〕

第2図は本発明の一実施例を示す。この図において、4
..16.は送受信局、2.18は夫々、各送受信局の
送信機、受信機である。8は送信レベル制御回路で、1
4はフェージング速度検出回路である。これら回路8.
14は図面の明瞭化のため一方の送受信局にしか示して
ないが、各周毎に設けられる。
FIG. 2 shows an embodiment of the invention. In this figure, 4
.. .. 16. is a transmitting/receiving station, and 2.18 is a transmitter and a receiver of each transmitting/receiving station, respectively. 8 is a transmission level control circuit;
4 is a fading speed detection circuit. These circuits8.
Although reference numeral 14 is shown only at one transmitting/receiving station for clarity of the drawing, it is provided for each round.

送信機2及び送信レベル制御回路8の構成は第3図に示
されている。送信機2はIF増幅器21、ミキサ2□、
送信局部発振器21、可変減衰器24及びRF増幅器2
.から成る(図中のf+r、fTLr’Tの間には、l
ft  fytl=f+rなる関係がある)。その可変
減衰器24が第1図の送信電力変更手段6の構成例を示
し、これはアナログ電圧値に応じて決まる減衰量をRF
倍信号与えてRF増幅器2.へ入力させる、つまり送信
電力レベルを変えるためのものである。そのアナログ電
圧は送信レベル制御回路8から出力されるが、該回路8
は受信機18のAGC増幅器18sの出力に接続された
命令信号再生回路20から出力される信号、例えば送信
電力制御命令のあるときの高レベル信号“l”に応じた
減衰量低下のための、例えば減衰量なしにするためのア
ナログ信号、ないときには低レベルの信号“°0”に応
じた減衰量増加のためのアナログ信号が出力される。
The configuration of the transmitter 2 and the transmission level control circuit 8 is shown in FIG. The transmitter 2 includes an IF amplifier 21, a mixer 2□,
Transmission local oscillator 21, variable attenuator 24 and RF amplifier 2
.. (Between f+r and fTLr'T in the figure, l
ft fytl=f+r). The variable attenuator 24 shows an example of the configuration of the transmission power changing means 6 shown in FIG.
Give double signal to RF amplifier 2. This is to change the transmission power level. The analog voltage is output from the transmission level control circuit 8.
is a signal output from the command signal regeneration circuit 20 connected to the output of the AGC amplifier 18s of the receiver 18, for example, for reducing the attenuation amount in response to the high level signal "l" when there is a transmission power control command. For example, an analog signal is output for making the amount of attenuation zero, and when there is no amount of attenuation, an analog signal is output for increasing the amount of attenuation in accordance with the low level signal "°0".

受信機18の構成は第4図に示されている。この図にお
いて、受信機18はRF増幅器188、ミキサ18□、
受信局部発振器1B、、IF帯域通過フィルタ(IFB
PF)1B、 、AGC増幅器18sから成る。AGC
増幅器18sは出力l及び出力2を有し、出力1は復調
器(図示せず)へ接続され、出力2は命令信号再生回路
20へ接続されている。
The configuration of receiver 18 is shown in FIG. In this figure, the receiver 18 includes an RF amplifier 188, a mixer 18□,
Receiving local oscillator 1B, IF bandpass filter (IFB
PF) 1B, consisting of an AGC amplifier 18s. AGC
Amplifier 18s has an output l and an output 2, with output 1 connected to a demodulator (not shown) and output 2 connected to command signal regeneration circuit 20.

フェージング速度検出回路14はフェージング速度を信
号微係数で検出して送信電力制御命令を出力するもので
、その出力信号は自局の送信機2を介して対向局へ送信
されるように構成されている。フェージング速度検出回
路14は上述受信機18のAGC増幅器18.のAGC
制御電圧を受ける微分回路14□絶対値発生回路14□
、比較回路143.ノット回路144から成る。絶対値
発生回路14□は一方の入力に微分回路14.の出力を
受け、他方の人力に零電圧を受ける演算増幅器14Zt
、演算増幅器14!1の非反転出力及び反転出力にカソ
ードを接続したダイオード14□2.1423、ダイオ
ード14tg、14!3のアノードを動作型′t1.■
に接続する抵抗14□4から成り、絶対値発生回路14
gの出力はダイオード14□z、14*zと抵抗14□
4との接続点となる。
The fading speed detection circuit 14 detects the fading speed using a signal differential coefficient and outputs a transmission power control command, and the output signal is configured to be transmitted to the opposite station via the transmitter 2 of the local station. There is. The fading speed detection circuit 14 is connected to the AGC amplifier 18. of the receiver 18 described above. AGC of
Differentiating circuit 14 that receives control voltage □ Absolute value generating circuit 14 □
, comparison circuit 143. It consists of a knot circuit 144. The absolute value generating circuit 14□ has one input connected to the differentiating circuit 14. Operational amplifier 14Zt receives the output of , and receives zero voltage from the other human power
, a diode 14□2.1423 whose cathode is connected to the non-inverting output and the inverting output of the operational amplifier 14!1, the anode of the diode 14tg, and the anode of the diode 14!3 are connected to the operating type 't1. ■
It consists of a resistor 14□4 connected to the absolute value generating circuit 14.
The output of g is the diode 14□z, 14*z and the resistor 14□
This is the connection point with 4.

上述構成の下における送信電力制御態様を以下に説明す
る。
The transmission power control mode under the above configuration will be explained below.

今、送受信局41,16.の送信レベル制御回路8は、
送受信局4+、16+間の受信信号の微係数、即ちフェ
ージング速度が予め決められた値以下にある状態におい
て、受信レベルを予め決められた値以上にするに充分な
比較的に低い送信電力レベルでアンテナ10又は12か
ら電波を対向局に向けて輻射させるように設定されてい
るものとする。
Now, transmitting/receiving stations 41, 16. The transmission level control circuit 8 of
In a state where the differential coefficient of the received signal between the transmitting and receiving stations 4+ and 16+, that is, the fading rate, is below a predetermined value, the transmission power level is relatively low enough to raise the reception level to a predetermined value or higher. It is assumed that the antenna 10 or 12 is set to radiate radio waves toward the opposing station.

このような設定にあるとき、送信機2への周波数flf
のIF入力信号はIF増幅器2.で増幅されてミキサ2
□へ入力され、その信号と共に送信局部発振器2.から
の周波数17の局部発振信号を受けるミキサ2tにおい
て周波数変換されてRF倍信号lfv   fttl’
=f+r)に変えられる。
When in such a setting, the frequency flf to transmitter 2
The IF input signal of IF amplifier 2. amplified by mixer 2
□, and transmits the signal together with the transmitting local oscillator 2. The mixer 2t receives the local oscillation signal of frequency 17 from the RF multiplied signal lfv fttl'.
=f+r).

このRF倍信号RF増幅器2.で増幅されて、アンテナ
lOへ供給される送信電力レベルが上述したレベルとな
るように、送信レベル制御回路8からのアナログ信号に
よりその振幅が減衰されてRF増幅器2%へ入力される
。かくして、送信電力レベルを上述レベルとした電波が
所要の通信を行なうべく対向局に向けて輻射される。
This RF double signal RF amplifier 2. The amplitude of the signal is attenuated by the analog signal from the transmission level control circuit 8 and input to the RF amplifier 2% so that the transmission power level supplied to the antenna 10 becomes the above-mentioned level. Thus, radio waves with the transmission power level set to the above-mentioned level are radiated toward the opposing station to perform the required communication.

対向局16.のアンテナ12で受信され、RF増幅器1
81で増幅されたRF信号はミキサ182へ入力され、
そのRF信号は該信号と共に受信局部発振器18.から
の周波数fllL””f?Lの局部発振信号を受けるミ
キサ18□において周波数変換されて周波数flfの!
F信号とされ、IF帯域通過フィルタ184を介してA
GC増幅器18゜へ入力される。その出力lに増幅され
て出力されたIF倍信号図示しない復調器へ入力されて
送信信号の再生に用いられる。
Opposing station 16. is received by the antenna 12 of the RF amplifier 1.
The RF signal amplified at 81 is input to mixer 182,
The RF signal is transmitted along with the signal to a receiving local oscillator 18. Frequency fllL””f? The frequency is converted in the mixer 18□ which receives the local oscillation signal of L, and the frequency is flf!
F signal and passes through the IF bandpass filter 184 to A
Input to GC amplifier 18°. The IF multiplied signal is amplified to the output l and is inputted to a demodulator (not shown) and used for reproducing the transmission signal.

AGC増幅器18.のAGC制御電圧は微分回路14.
で微分されてその電圧信号の微係数信号がそこから出力
される。この微係数信号は第6図に示すように受信信号
の微係数、即ちフェージング速度を反映した信号である
。その微係数信号は第6図からも判るように、正及び負
の値をとるので、絶対値発生回路14!からその絶対値
を発生させる。その値が比較回路143でフェージング
速度のための基準電圧rと比較される。絶対値くrなる
とき高レベル“1”の2進信号が比較回路14、から出
力される。従って、ナンド回路144からは“0′”の
送信電力制御命令が出力される。
AGC amplifier 18. The AGC control voltage is determined by the differentiating circuit 14.
The differential coefficient signal of the voltage signal is output from there. This differential coefficient signal is a signal reflecting the differential coefficient of the received signal, that is, the fading speed, as shown in FIG. As can be seen from FIG. 6, the differential coefficient signal takes positive and negative values, so the absolute value generating circuit 14! Generate its absolute value from . The value is compared with a reference voltage r for fading speed in a comparison circuit 143. When the absolute value reaches r, a binary signal of high level "1" is output from the comparison circuit 14. Therefore, the NAND circuit 144 outputs a transmission power control command of "0'".

この命令は自局16.の送信機2、アンテナ12を介し
て対向局41へ伝送され、その対向局4゜のアンテナ1
0、受信機18を介して送信レベル制御回路8へ与えら
れる。かくして、回路8からの信号により送信電力レベ
ルは回線品質を維持し得るレベルに維持される。
This command is 16. is transmitted to the opposite station 41 via the transmitter 2 and the antenna 12, and the antenna 1 of the opposite station 4°
0 is applied to the transmission level control circuit 8 via the receiver 18. Thus, the signal from circuit 8 maintains the transmission power level at a level that maintains line quality.

このような送受信状態において、フェージングに伴う受
信信号の変化速度が増大すると、上述のような設定送信
電力レベルで輻射されて対向局において受信する信号レ
ベル変化もその増大分だけ大きくなる。
In such a transmission/reception state, when the rate of change in the received signal due to fading increases, the change in the level of the signal radiated at the above-mentioned set transmission power level and received at the opposite station also increases by the increase.

従って、上述の如くして微分回路14.から出力される
微係数信号も大きくなる。その絶対値発生回路14□か
らの信号は比較回路14.から“0”の信号を出力せし
める。その結果として、ナンド回路144から“1”の
送信電力制御命令が出力される。この命令も、上述した
ところと同様にして、対向局へ伝送される。この場合に
おける受信機18から送信レベル制御回路8へ与えられ
る信号レベルは高レベル“l”とされる、送信レベル制
御回路8からは可変減衰器24に対し、そこでの減衰量
を低下せしめる、例えば減衰を与えないアナログ信号が
発生される。これにより、アンテナlOから輻射される
電波の送信電力レベルは高められ、対向局は回線品質を
所望の値に維持し得る受信レベルで電波を受信すること
ができる。
Therefore, as described above, the differentiating circuit 14. The differential coefficient signal output from this also increases. The signal from the absolute value generation circuit 14□ is sent to the comparison circuit 14. A signal of "0" is output from the output terminal. As a result, the NAND circuit 144 outputs a transmission power control command of "1". This command is also transmitted to the opposite station in the same manner as described above. In this case, the signal level given from the receiver 18 to the transmission level control circuit 8 is set to a high level "1".The transmission level control circuit 8 sends a signal to the variable attenuator 24 to reduce the amount of attenuation there, e.g. An unattenuated analog signal is generated. As a result, the transmission power level of the radio waves radiated from the antenna IO is increased, and the opposite station can receive the radio waves at a reception level that can maintain the line quality at a desired value.

フェージングに伴う受信レベル変化の復旧時における送
信電力レベルの低減は、“1″の送信電力制御命令の喪
失と共に生ぜしめられる。
The reduction in the transmission power level upon recovery from the reception level change due to fading occurs together with the loss of the transmission power control command of "1".

なお、上記実施例においては、送信電力制御のために2
進情報の“O”又は“1゛を用いる例を示したが、他の
2進情報形式による送信電力制御、例えば多レベル調節
形式に変更するようにしてもよい。送信電力の変更は可
変電力増幅器の調節で生ぜしめてもよい。又、上述の送
信電力レベルの低減は成る時間遅れで生ぜしめられても
よい。
Note that in the above embodiment, two
Although an example is shown in which binary information "O" or "1" is used, transmission power control may be performed using other binary information formats, for example, changing to a multi-level adjustment format.Changes in transmission power can be made using variable power control. This may be caused by adjusting the amplifier.Alternatively, the reduction in the transmit power level described above may be caused by a time delay.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、従来からの知見から
すると大きな送信電力の下で送信しなければならない時
間は年間でも比較的に少ない時間に亘るに過ぎないから
、そのような時間の間だけ送信電力を上げて回線品質を
維持するという本発明方式によれば、送信電力の大幅な
削減が得られるほか、他系統への通信妨害度合の低減及
びその地域への電波配分の増加も期待できる。
As described above, according to the present invention, according to conventional knowledge, the time during which transmission must be performed under high transmission power is only a relatively small amount of time per year. According to the method of the present invention, which maintains line quality by increasing the transmission power by 100%, it is expected that not only will it be possible to significantly reduce the transmission power, but also the degree of communication interference with other systems will be reduced and the allocation of radio waves to the area will be increased. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理構成図、 第2図は本発明の一実施例を示す図、 第3図は送信機及び送信レベル制御回路の構成図、第4
図は受信機の構成図、 第5図はフェージング速度検出回路図、第6図は受信レ
ベル変動曲線図、 第7図は従来のディジタル多重無線通信システムの構成
図である。 第1図乃至第5図において、 2は送信機、 4は送信局(送受信局4鳳)、 6は送信電力変更手段(可変減衰器2・)、7は送信レ
ベル制御手段(送信レベル制御回路8)、 10.12は送受信アンテナ、 13は送信電力制御情報出力手段(フェージング速度検
出回路14)、 16は受信局(送受信局161)、 18は受信機である。
Figure 1 is a diagram showing the principle of the present invention; Figure 2 is a diagram showing an embodiment of the present invention; Figure 3 is a diagram showing the configuration of a transmitter and transmission level control circuit;
5 is a block diagram of a receiver, FIG. 5 is a fading rate detection circuit diagram, FIG. 6 is a reception level fluctuation curve diagram, and FIG. 7 is a block diagram of a conventional digital multiplex radio communication system. 1 to 5, 2 is a transmitter, 4 is a transmitting station (transmission/reception station 4), 6 is a transmission power changing means (variable attenuator 2), and 7 is a transmission level control means (transmission level control circuit). 8), 10.12 is a transmitting/receiving antenna, 13 is a transmitting power control information output means (fading speed detection circuit 14), 16 is a receiving station (transmitting/receiving station 161), and 18 is a receiver.

Claims (1)

【特許請求の範囲】 送信信号を送信局(4)の送信機(2)で増幅して受信
局(16)に向けて輻射して所要の通信を行なう無線通
信方式において、 前記送信局(4)に、前記送信機(2)内に設けられ送
信電力を変えるための送信電力変更手段(6)及び送信
レベル制御手段(7)を設ける一方、 前記受信局(16)に、その受信機(18)に接続され
受信信号微係数が所定値に対し呈する関係に基づいて送
信電力制御情報を出力する送信電力制御情報出力手段(
13)を設け、 該送信電力制御情報出力手段(13)から前記無線通信
方式の系を介してそこからの送信電力制御情報に応答す
る前記送信レベル制御手段(7)により前記送信電力変
更手段(6)を調節することを特徴とする送信電力制御
方式。
[Claims] In a wireless communication system in which a transmission signal is amplified by a transmitter (2) of a transmitting station (4) and radiated toward a receiving station (16) to perform a desired communication, the transmitting station (4) ) is provided in the transmitter (2) with a transmission power changing means (6) and a transmission level control means (7) for changing the transmission power; 18) for outputting transmission power control information based on the relationship that the received signal differential coefficient exhibits with respect to a predetermined value
13) is provided, and the transmission power changing means ( 6) A transmission power control method characterized by adjusting.
JP62137147A 1987-05-30 1987-05-30 Transmission power control method Expired - Lifetime JPH0616595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62137147A JPH0616595B2 (en) 1987-05-30 1987-05-30 Transmission power control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62137147A JPH0616595B2 (en) 1987-05-30 1987-05-30 Transmission power control method

Publications (2)

Publication Number Publication Date
JPS63301629A true JPS63301629A (en) 1988-12-08
JPH0616595B2 JPH0616595B2 (en) 1994-03-02

Family

ID=15191915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62137147A Expired - Lifetime JPH0616595B2 (en) 1987-05-30 1987-05-30 Transmission power control method

Country Status (1)

Country Link
JP (1) JPH0616595B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014049821A (en) * 2012-08-29 2014-03-17 Kyocera Corp Reception device and method of controlling the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53107214A (en) * 1977-03-01 1978-09-19 Fujitsu Ltd Radio transmission-reception system
JPS59132262A (en) * 1982-11-29 1984-07-30 シ−−コ−ル・ラブス・インコ−ポレ−テツド Remote level control system
JPS6166413A (en) * 1984-09-10 1986-04-05 Nippon Telegr & Teleph Corp <Ntt> System for preventing interference wave

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53107214A (en) * 1977-03-01 1978-09-19 Fujitsu Ltd Radio transmission-reception system
JPS59132262A (en) * 1982-11-29 1984-07-30 シ−−コ−ル・ラブス・インコ−ポレ−テツド Remote level control system
JPS6166413A (en) * 1984-09-10 1986-04-05 Nippon Telegr & Teleph Corp <Ntt> System for preventing interference wave

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014049821A (en) * 2012-08-29 2014-03-17 Kyocera Corp Reception device and method of controlling the same

Also Published As

Publication number Publication date
JPH0616595B2 (en) 1994-03-02

Similar Documents

Publication Publication Date Title
US6233438B1 (en) Wide-range power control systems and methods for radio frequency transmitters and mobile radiotelephones
JP2637818B2 (en) Transmission power control device in wireless device
JPS59133739A (en) 2-way radio communication system
JPS60141027A (en) Frequency controller
JPS6377226A (en) Communication method
JPS63301629A (en) Transmission power control method
US4160873A (en) Level control circuitry for two way communication system
JPS583613B2 (en) Satellite communication method
JPH0695651B2 (en) Wireless communication device
JP3053173B2 (en) Mobile satellite communication method and system
JPS63301630A (en) Transmitting power control system
JPS63301628A (en) Transmitting power control system
JPH03198438A (en) Transmission power control method
JPS60261228A (en) transceiver
US4236116A (en) Level control circuitry for two way communication system
JPH03280727A (en) Transmission power control system
US6608997B1 (en) Method and apparatus for varying the power level of a transmitted signal
JP3162941B2 (en) Mobile phone
JP2590736B2 (en) Transmission output control method
JPH02104131A (en) Transmitter
JPS63227222A (en) Transmission power control method
JP2973489B2 (en) Signaling signal processing method
JPS6342447B2 (en)
JPS6354261B2 (en)
JPH0382207A (en) Power amplifying circuit

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080302

Year of fee payment: 14