[go: up one dir, main page]

JPS63299010A - Ceramic superconductive material - Google Patents

Ceramic superconductive material

Info

Publication number
JPS63299010A
JPS63299010A JP62133781A JP13378187A JPS63299010A JP S63299010 A JPS63299010 A JP S63299010A JP 62133781 A JP62133781 A JP 62133781A JP 13378187 A JP13378187 A JP 13378187A JP S63299010 A JPS63299010 A JP S63299010A
Authority
JP
Japan
Prior art keywords
ceramic
normal
oxide
superconductor
superconductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62133781A
Other languages
Japanese (ja)
Inventor
Koichi Mizushima
公一 水島
Jiro Yoshida
二朗 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62133781A priority Critical patent/JPS63299010A/en
Publication of JPS63299010A publication Critical patent/JPS63299010A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To increase critical current density by forming a thin, normally conductive metallic film on the surface of ceramic seperconductive particles and providing an equivalent superconductive band gap in the normally conductive metallic film. CONSTITUTION:Forming a normally conductive metallic film 3 of an appropriate thickness on the particle surface of a ceramic superconductive body 2, an equivalent superconductive band gap is provided, at the same time intensifying electrical bond between the particles. Here, oxide of perovskite type having rare-earth elements is preferable as the ceramic superconductive body 2. As the normally conductive metal on the other hand, Au, Ag, Cu, etc., having a work function approximately equal to that of the oxide superconductive material are preferable. This makes it possible to increase the critical current density.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、高温超伝導体であるセラミック超伝導体材料
に関する。
DETAILED DESCRIPTION OF THE INVENTION OBJECTS OF THE INVENTION Field of Industrial Application The present invention relates to ceramic superconductor materials that are high temperature superconductors.

(従来の技術) 最近、高温超伝導体として酸化物セラミック超伝導体が
注目されている。これらの多くは、希土類元素を含有す
るペロブスカイト型構造を有する酸化物である。この様
な酸化物超伝導体は、組成を選ぶことにより液体窒素温
度以上の高温で超伝導を示すことが確認されており、材
料作製技術の進歩により更に臨界温度の高いものが得ら
れる可能性がある。また酸化物超伝導体は、従来の金属
あるいは金属間化合物超伝導体と比べて大気中での安定
性にも優れている。
(Prior Art) Oxide ceramic superconductors have recently attracted attention as high-temperature superconductors. Most of these are oxides containing rare earth elements and having a perovskite structure. It has been confirmed that such oxide superconductors can exhibit superconductivity at temperatures higher than the liquid nitrogen temperature depending on the composition, and it is possible that materials with even higher critical temperatures will be obtained with advances in material production technology. There is. Oxide superconductors also have superior stability in the atmosphere compared to conventional metal or intermetallic superconductors.

この様な酸化物超伝導体材料を作製するに当って、一つ
の大きい問題は、臨界電流の電流密度Jcを如何に大き
くするかということにある。臨界温度が高くても、臨界
電流の電流密度が小さければ、幅広い用途に適用するこ
とは難しい。電流密度を大きくするには、形成される酸
ンヒ物超伝導体をち密にすることが基本的に重要である
。しかし、焼結法やスパッタ法、蒸着法等のプロセス制
御のみでは、超伝導電流密度の向上は限界がある。
In producing such an oxide superconductor material, one major problem is how to increase the current density Jc of the critical current. Even if the critical temperature is high, if the current density of the critical current is low, it is difficult to apply it to a wide range of applications. In order to increase the current density, it is fundamentally important to make the formed acid-arsenide superconductor dense. However, there is a limit to the improvement of superconducting current density by controlling processes such as sintering, sputtering, and vapor deposition alone.

(発明が解決しようとする問題点) 以上のように臨界温度の高い酸化物超伝導体が注目され
、各種用途への適用が期待されているが、・今後これを
実用に供するためには臨界電流密度をより高いものとす
ることが望まれている。
(Problems to be solved by the invention) As mentioned above, oxide superconductors with high critical temperatures are attracting attention and are expected to be applied to various uses. It is desired to increase the current density.

本発明はこの様な点に鑑みなされたもので、新しい原理
により臨界電流密度の向上を図ったセラミック超伝導材
料を提供することを目的とする。
The present invention was made in view of these points, and an object of the present invention is to provide a ceramic superconducting material with improved critical current density based on a new principle.

[発明の構成] (問題点を解決するための手段) 本発明によるセラミック超伝導材料は、セラミック超伝
導体粒子の表面に薄く常伝導金属膜が形成され、常伝導
金属中に等価的に超伝導バンドギャップを有すること、
および超伝導体粒子が常伝導金属により電気的に強く結
合していることを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) The ceramic superconducting material according to the present invention has a thin normal metal film formed on the surface of ceramic superconductor particles, and an equivalent superconductor in the normal metal. having a conduction bandgap;
and the superconductor particles are strongly electrically coupled by a normal conducting metal.

(作用) キャリア濃度の低いセラミック超伝導体と常伝導金属の
接合部は第1図のようになる。即ち両者の近接効果によ
り、超伝導体に接する常伝導金属部分が大きい超伝導バ
ンドギャップを持ち、超伝導体との接合部から所定距離
の範囲で常伝導金属が超伝導状態となる。この様な超伝
導体と常伝導金属の接合部の理論自体は例えば、 P、
G。
(Function) The junction between a ceramic superconductor with a low carrier concentration and a normal metal is shown in Figure 1. That is, due to the proximity effect between the two, the normal-conducting metal portion in contact with the superconductor has a large superconducting bandgap, and the normal-conducting metal becomes superconducting within a predetermined distance from the junction with the superconductor. The theory itself of such a junction between a superconductor and a normal conducting metal is, for example, P,
G.

da  G cnncsの論文等で知られている( R
cvicvsof’  Modern  P hysi
cs、   J an、 1904゜pp225−21
7参照)。ここで、Δ。はセラミック超伝導体の超伝導
バンドギャップであり、ξ0は同じくセラミック超伝導
体のコヒーレンス長、ノは平均自由工程であり、Nは常
伝導金属の電子状態密度、nはセラミック超伝導体の電
子状態密度、Tjは接合界面を通しての電子の透過率で
ある。
It is known for the papers of da G ncncs (R
cvicvsof' Modern Physi
cs, Jan, 1904゜pp225-21
(see 7). Here, Δ. is the superconducting bandgap of the ceramic superconductor, ξ0 is the coherence length of the ceramic superconductor, ノ is the mean free path, N is the electronic state density of the normal metal, and n is the electron of the ceramic superconductor. The density of states, Tj, is the transmittance of electrons through the junction interface.

常伝導金属側の超伝導体となる領域のコヒーレンス長ξ
Nは、 ξに謹h V F / k T となる。hはブランク定数、Vpは金属のフェルミ速度
、kはボルツマン定数、Tは絶対温度である。酸化物超
伝導体の電子状態密度nが常伝導金属のそれNに比べて
2桁程度低く、透過率TJがほぼ1である場合には、図
示のように常伝導金属中の超伝導バンドギャップが上記
理論の近似の範囲ではセラ、ミック超伝導体のそれより
大きくなり、超伝導体として振舞う。
Coherence length ξ of the region that becomes a superconductor on the normal metal side
N becomes h V F / k T in ξ. h is Blank's constant, Vp is the Fermi velocity of the metal, k is Boltzmann's constant, and T is the absolute temperature. When the electronic state density n of an oxide superconductor is about two orders of magnitude lower than that of a normal conducting metal and the transmittance TJ is approximately 1, the superconducting bandgap in the normal conducting metal as shown in the figure is larger than that of Ceramic and Mick superconductors within the approximation range of the above theory, and it behaves as a superconductor.

本発明はこの様な超伝導体−常伝導金属接合の理論を応
用し、セラミック超伝導体の粒子表面に適当な膜厚の常
伝導金属膜を形成することによって、等価的な超伝導バ
ンドギャップを持たせ、且つ粒子間の電気的結合を強く
し、もって臨界電流密度を高くしたセラミック超伝導体
材料を得るものである。
The present invention applies the theory of superconductor-normal metal bonding to form a normal metal film of an appropriate thickness on the surface of ceramic superconductor particles, thereby achieving an equivalent superconducting band gap. The object of the present invention is to obtain a ceramic superconductor material which has a high critical current density by strengthening the electrical coupling between the particles and increasing the critical current density.

本発明で用いられるせらみ超伝導体は、希土類元素を有
するペロブスカイト型の酸化物が好ましい。 例えば、
酸素欠陥を有する ABa 2 Cu 307−v系(AはY、Yb、Ho
The serpentine superconductor used in the present invention is preferably a perovskite-type oxide containing a rare earth element. for example,
ABa 2 Cu 307-v system with oxygen defects (A is Y, Yb, Ho
.

Dy、Eu、Er、T@、Luなどの希土類元素)など
の欠陥ペロブスカイト型、Sr −La −Cu−〇系
等の層状ペロブスカイトなどの酸化物である。また本発
明で用いる常伝導金属には、Au。
These are defective perovskite type oxides such as rare earth elements such as Dy, Eu, Er, T@, and Lu, and layered perovskites such as Sr-La-Cu-〇-based oxides. Further, the normal conductive metal used in the present invention includes Au.

Ag、Cu、Aノ、In、Nbなど多くの単体金属があ
るが、なかでも仕事関数が酸化物超伝導体のそれに近い
Au、Ag、Cuなどが好ましい。
There are many simple metals such as Ag, Cu, Al, In, and Nb, but among them, Au, Ag, Cu, and the like, whose work functions are close to those of oxide superconductors, are preferable.

また本発明は、スパッタ法または蒸む法による薄膜材料
、焼結法による粉末集合体材料のいずれにも適用するこ
とが可能である。
Further, the present invention can be applied to both a thin film material produced by a sputtering method or a steaming method, and a powder aggregate material produced by a sintering method.

(実施例) 酸化物超伝導体として例えば、Y−Ba−Cu−0を例
にとる。その一般的な製造方法は、まず原料である Y
20s 、Ba CO3およびCuOを混合して仮焼し
、粉砕して混合する。これをプレスし、焼結してアニー
ルすることにより、酸化物超伝導体が得られる。あるい
は仮焼後の粉砕混合粉末を金属管に詰め焼結してアニー
ルすることにより、酸化物超伝導体を得る。酸化物超伝
導薄膜は、出発原料である粉末を固めたターゲット、あ
るいは上述の仮焼、粉砕して混合した粉末を固めたター
ゲットを用いてスパッタ法により形成することができる
。または上述の粉末と適当な溶剤を組合わせた印刷ペー
ストを用いた印刷法により、酸化物超伝導体薄膜を形成
することもできる。
(Example) Y-Ba-Cu-0 will be taken as an example of an oxide superconductor. Its general manufacturing method begins with the raw material Y
20s, BaCO3 and CuO are mixed, calcined, ground and mixed. By pressing, sintering, and annealing this, an oxide superconductor is obtained. Alternatively, the pulverized mixed powder after calcination is packed into a metal tube, sintered, and annealed to obtain an oxide superconductor. The oxide superconducting thin film can be formed by a sputtering method using a target made by solidifying powder as a starting material or a target made by solidifying the above-mentioned calcined, pulverized and mixed powder. Alternatively, an oxide superconductor thin film can also be formed by a printing method using a printing paste that is a combination of the above-mentioned powder and a suitable solvent.

本発明の酸化物超伝導材料のうち薄膜材料は、酸化物超
伝導材料膜と常伝導金属膜とを順次重ねて形成すること
により簡単に得られる。第2図はその一実施例である。
Among the oxide superconducting materials of the present invention, the thin film material can be easily obtained by sequentially stacking an oxide superconducting material film and a normal conducting metal film. FIG. 2 shows an example of this.

所定の基板1に、酸化物超伝導体膜として、Y−Ba−
Cu−0膜2を厚さ3000人程度スパッタ法により堆
積し、この上にAu膜3を例えば500人蒸着する。こ
れにより、Y−Ba−Cu−0膜2の表面部位子がAu
膜3で覆われてAu膜膜内内等価的に超伝導バンドギャ
ップが生じ、且つ電気的結合が改善されて、面内の臨界
電流はAu膜3を形成しない場合より1桁近く大きい4
00A/cII2が得られる。
A predetermined substrate 1 is coated with Y-Ba- as an oxide superconductor film.
A Cu-0 film 2 is deposited to a thickness of about 3,000 layers by sputtering, and an Au film 3 is deposited thereon by, for example, 500 layers. As a result, the surface molecules of the Y-Ba-Cu-0 film 2 become Au.
Covered with the Au film 3, a superconducting band gap is generated equivalently within the Au film, and the electrical coupling is improved, so that the in-plane critical current is nearly one order of magnitude larger than when the Au film 3 is not formed.
00A/cII2 is obtained.

スクリーン印刷法によりY−Ba−Cu−0膜を1μ尻
形成し、この上に1000人のAu膜を蒸着した場合も
、同様に臨界電流密度の向上が認められる。但し、スパ
ッタ法に比べて超伝導電流密度の値は小さい。これは、
膜のち密さがスパッタ法による場合より印刷法の方が劣
るためである。
When a Y-Ba-Cu-0 film with a thickness of 1 μm was formed by screen printing and a 1,000-layer Au film was deposited thereon, the critical current density was similarly improved. However, the value of the superconducting current density is smaller than that of the sputtering method. this is,
This is because the density of the film obtained by the printing method is inferior to that obtained by the sputtering method.

焼結法による酸化物超伝導セラミックス材料の場合に、
その粒界に沿って薄く常伝導金属層を形成するには、サ
ーメット(セラミック粉の粒界に金属層ができているセ
ラミック焼結体)の製法を応用すればよい。具体的には
、■セラミックスより融点が低い金属を溶解し、この中
にセラミックス粉末を加えて冷却する、■セラミックス
粉末と金属粉末を混ぜて焼く、■セラミックス粉末の表
面に金属膜が形成されたものを焼く、等の方法が用いら
れる。金属被覆セラミックス粉を得るには、セラミック
ス粉末をかきまぜながら金属を蒸着あるいはスパッタす
る方法、セラミックス粉末を少しずつ落としながら、こ
れに金属を蒸着あるいはスパッタする方法等が用いられ
る。この様な方法により、粉末粒界に金属層を介在させ
て臨界電流を増大させた酸化物超伝導セラミックスを得
ることができる。
In the case of oxide superconducting ceramic materials produced by the sintering method,
In order to form a thin normal metal layer along the grain boundaries, a method for manufacturing cermet (ceramic sintered body in which a metal layer is formed at the grain boundaries of ceramic powder) may be applied. Specifically, ■ melting a metal with a lower melting point than ceramics, adding ceramic powder to it and cooling it, ■ mixing ceramic powder and metal powder and baking, ■ forming a metal film on the surface of ceramic powder. Methods such as baking things are used. To obtain the metal-coated ceramic powder, a method is used in which metal is vapor-deposited or sputtered while stirring the ceramic powder, or a metal is vapor-deposited or sputtered on the ceramic powder while being dropped little by little. By such a method, it is possible to obtain an oxide superconducting ceramic in which a metal layer is interposed at the powder grain boundaries to increase the critical current.

[発明の効果] 以上述べたように本発明によれば、構成粒子の表面に薄
く常伝導金属膜を形成することにより、等価的に常伝導
金属中に超伝導バンドギャップを生じさせ且つ電気的結
合を改善することにより1臨界電流密度の向上を図った
セラミック超伝導材料を提供することができる。
[Effects of the Invention] As described above, according to the present invention, by forming a thin normal metal film on the surface of the constituent particles, a superconducting band gap is equivalently generated in the normal metal and electrical By improving the bonding, it is possible to provide a ceramic superconducting material with an increased critical current density.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかる酸化物超伝導材料の臨界電流が
増大することを説明するためのポテンシャル図、第2図
は本発明の一実施例の酸化物超伝導材料膜である。 1・・・基板、2−Y−Ba −Cu −0膜、3・・
・Au膜。 出願人代理人 弁理士 鈴江武彦 SN     i 第1図 第2図
FIG. 1 is a potential diagram for explaining the increase in critical current of the oxide superconducting material according to the present invention, and FIG. 2 is a film of the oxide superconducting material according to an embodiment of the present invention. 1...Substrate, 2-Y-Ba-Cu-0 film, 3...
・Au film. Applicant's agent Patent attorney Takehiko Suzue SN i Figure 1 Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)セラミック超伝導体粒子の表面に薄く常伝導金属
膜が形成され、常伝導金属中に等価的に超伝導バンドギ
ャップを有することを特徴とするセラミック超伝導材料
(1) A ceramic superconducting material characterized by having a thin normal-conducting metal film formed on the surface of ceramic superconductor particles and having an equivalent superconducting band gap in the normal-conducting metal.
(2)セラミック超伝導材料は所定基板上にスパッタ法
または蒸着法により形成された薄膜であり、この薄膜上
に常伝導金属膜が被覆されている特許請求の範囲第1項
記載のセラミック超伝導材料。
(2) The ceramic superconductor according to claim 1, wherein the ceramic superconductor material is a thin film formed on a predetermined substrate by sputtering or vapor deposition, and this thin film is coated with a normal metal film. material.
(3)セラミック超伝導材料は焼結法により形成された
粉末集合体であり、この集合体を構成する粉末の粒界に
常伝導金属膜を有する特許請求の範囲第1項記載のセラ
ミック超伝導材料。
(3) The ceramic superconductor material is a powder aggregate formed by a sintering method, and the ceramic superconductor according to claim 1 has a normal-conducting metal film at the grain boundaries of the powder constituting the aggregate. material.
JP62133781A 1987-05-29 1987-05-29 Ceramic superconductive material Pending JPS63299010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62133781A JPS63299010A (en) 1987-05-29 1987-05-29 Ceramic superconductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62133781A JPS63299010A (en) 1987-05-29 1987-05-29 Ceramic superconductive material

Publications (1)

Publication Number Publication Date
JPS63299010A true JPS63299010A (en) 1988-12-06

Family

ID=15112842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62133781A Pending JPS63299010A (en) 1987-05-29 1987-05-29 Ceramic superconductive material

Country Status (1)

Country Link
JP (1) JPS63299010A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0720248A3 (en) * 1994-12-28 1996-08-07 Com Dev Ltd
EP0769823A4 (en) * 1994-06-17 1997-12-17 Matsushita Electric Ind Co Ltd High-frequency circuit element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0769823A4 (en) * 1994-06-17 1997-12-17 Matsushita Electric Ind Co Ltd High-frequency circuit element
US6016434A (en) * 1994-06-17 2000-01-18 Matsushita Electric Industrial Co., Ltd. High-frequency circuit element in which a resonator and input/ouputs are relatively movable
EP1026773A1 (en) * 1994-06-17 2000-08-09 Matsushita Electric Industrial Co., Ltd. High-frequency circuit element
US6360112B1 (en) 1994-06-17 2002-03-19 Matsushita Electric Industrial Co., Ltd. High-frequency circuit element having a superconductive resonator tuned by another movable resonator
US6360111B1 (en) 1994-06-17 2002-03-19 Matsushita Electric Industrial Co., Ltd. High-frequency circuit element having a superconductive resonator with an electroconductive film about the periphery
EP0720248A3 (en) * 1994-12-28 1996-08-07 Com Dev Ltd

Similar Documents

Publication Publication Date Title
EP0301952B1 (en) Compound oxide superconducting material and method for preparing the same
US4866032A (en) Method and apparatus for producing thin film of high to superconductor compound having large area
JPH02260674A (en) Tunnel type josephson element and manufacture thereof
EP0301958B1 (en) Superconducting material and a method for preparing the same
JPS63299010A (en) Ceramic superconductive material
JPH11278837A (en) Mg doped low anisotropy high temperature superconductor and its production
US4988672A (en) Method of forming oxide superconducting layers by solid state diffusion
JP2516251B2 (en) Manufacturing method of oxide superconducting film
JP2817048B2 (en) Method for producing Bi-Sr-Ca-Cu-O-based superconducting film by screen printing
US5179075A (en) Method of making a low electrical resistance connection between a metal and a high tc superconducting ceramic
JP2524421B2 (en) Manufacturing method of patterned superconducting film
JP2889595B2 (en) Method for forming electrode of oxide superconductor film
JP2569055B2 (en) Preparation method of oxide superconductor thin film
JP2653448B2 (en) Oxide superconducting element
US5629269A (en) Process for forming oxide superconducting films with a plurality of metal buffer layers
JP2703227B2 (en) Superconductor device
JP3448597B2 (en) Bismuth-based oxide superconducting composite and method for producing the same
JPH0818837B2 (en) Sputtering target and method for manufacturing superconducting thin film
JP2529746B2 (en) Method for manufacturing superconducting film
JP2517055B2 (en) Superconductor
EP0283023A2 (en) Ceramic superconductor
JPH03263392A (en) Superconducting thick-film circuit board and manufacture thereof
JPH05183208A (en) Superconducting element and manufacture thereof
JPH0755826B2 (en) Superconductor
JPH0561787B2 (en)