JPS63299010A - Ceramic superconductive material - Google Patents
Ceramic superconductive materialInfo
- Publication number
- JPS63299010A JPS63299010A JP62133781A JP13378187A JPS63299010A JP S63299010 A JPS63299010 A JP S63299010A JP 62133781 A JP62133781 A JP 62133781A JP 13378187 A JP13378187 A JP 13378187A JP S63299010 A JPS63299010 A JP S63299010A
- Authority
- JP
- Japan
- Prior art keywords
- ceramic
- normal
- oxide
- superconductor
- superconductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 32
- 239000000463 material Substances 0.000 title claims abstract description 22
- 229910052751 metal Inorganic materials 0.000 claims abstract description 35
- 239000002184 metal Substances 0.000 claims abstract description 35
- 239000002245 particle Substances 0.000 claims abstract description 9
- 239000002887 superconductor Substances 0.000 claims description 38
- 239000010408 film Substances 0.000 claims description 22
- 239000000843 powder Substances 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 11
- 238000004544 sputter deposition Methods 0.000 claims description 7
- 239000010409 thin film Substances 0.000 claims description 6
- 238000005245 sintering Methods 0.000 claims description 5
- 239000000758 substrate Substances 0.000 claims description 3
- 238000007740 vapor deposition Methods 0.000 claims description 2
- 229910052761 rare earth metal Inorganic materials 0.000 abstract description 4
- 229910052802 copper Inorganic materials 0.000 abstract description 3
- 229910052709 silver Inorganic materials 0.000 abstract description 3
- 229910052737 gold Inorganic materials 0.000 abstract description 2
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000007639 printing Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Chemical compound [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000011195 cermet Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052574 oxide ceramic Inorganic materials 0.000 description 1
- 239000011224 oxide ceramic Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000010025 steaming Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
本発明は、高温超伝導体であるセラミック超伝導体材料
に関する。DETAILED DESCRIPTION OF THE INVENTION OBJECTS OF THE INVENTION Field of Industrial Application The present invention relates to ceramic superconductor materials that are high temperature superconductors.
(従来の技術)
最近、高温超伝導体として酸化物セラミック超伝導体が
注目されている。これらの多くは、希土類元素を含有す
るペロブスカイト型構造を有する酸化物である。この様
な酸化物超伝導体は、組成を選ぶことにより液体窒素温
度以上の高温で超伝導を示すことが確認されており、材
料作製技術の進歩により更に臨界温度の高いものが得ら
れる可能性がある。また酸化物超伝導体は、従来の金属
あるいは金属間化合物超伝導体と比べて大気中での安定
性にも優れている。(Prior Art) Oxide ceramic superconductors have recently attracted attention as high-temperature superconductors. Most of these are oxides containing rare earth elements and having a perovskite structure. It has been confirmed that such oxide superconductors can exhibit superconductivity at temperatures higher than the liquid nitrogen temperature depending on the composition, and it is possible that materials with even higher critical temperatures will be obtained with advances in material production technology. There is. Oxide superconductors also have superior stability in the atmosphere compared to conventional metal or intermetallic superconductors.
この様な酸化物超伝導体材料を作製するに当って、一つ
の大きい問題は、臨界電流の電流密度Jcを如何に大き
くするかということにある。臨界温度が高くても、臨界
電流の電流密度が小さければ、幅広い用途に適用するこ
とは難しい。電流密度を大きくするには、形成される酸
ンヒ物超伝導体をち密にすることが基本的に重要である
。しかし、焼結法やスパッタ法、蒸着法等のプロセス制
御のみでは、超伝導電流密度の向上は限界がある。In producing such an oxide superconductor material, one major problem is how to increase the current density Jc of the critical current. Even if the critical temperature is high, if the current density of the critical current is low, it is difficult to apply it to a wide range of applications. In order to increase the current density, it is fundamentally important to make the formed acid-arsenide superconductor dense. However, there is a limit to the improvement of superconducting current density by controlling processes such as sintering, sputtering, and vapor deposition alone.
(発明が解決しようとする問題点)
以上のように臨界温度の高い酸化物超伝導体が注目され
、各種用途への適用が期待されているが、・今後これを
実用に供するためには臨界電流密度をより高いものとす
ることが望まれている。(Problems to be solved by the invention) As mentioned above, oxide superconductors with high critical temperatures are attracting attention and are expected to be applied to various uses. It is desired to increase the current density.
本発明はこの様な点に鑑みなされたもので、新しい原理
により臨界電流密度の向上を図ったセラミック超伝導材
料を提供することを目的とする。The present invention was made in view of these points, and an object of the present invention is to provide a ceramic superconducting material with improved critical current density based on a new principle.
[発明の構成]
(問題点を解決するための手段)
本発明によるセラミック超伝導材料は、セラミック超伝
導体粒子の表面に薄く常伝導金属膜が形成され、常伝導
金属中に等価的に超伝導バンドギャップを有すること、
および超伝導体粒子が常伝導金属により電気的に強く結
合していることを特徴とする。[Structure of the Invention] (Means for Solving the Problems) The ceramic superconducting material according to the present invention has a thin normal metal film formed on the surface of ceramic superconductor particles, and an equivalent superconductor in the normal metal. having a conduction bandgap;
and the superconductor particles are strongly electrically coupled by a normal conducting metal.
(作用)
キャリア濃度の低いセラミック超伝導体と常伝導金属の
接合部は第1図のようになる。即ち両者の近接効果によ
り、超伝導体に接する常伝導金属部分が大きい超伝導バ
ンドギャップを持ち、超伝導体との接合部から所定距離
の範囲で常伝導金属が超伝導状態となる。この様な超伝
導体と常伝導金属の接合部の理論自体は例えば、 P、
G。(Function) The junction between a ceramic superconductor with a low carrier concentration and a normal metal is shown in Figure 1. That is, due to the proximity effect between the two, the normal-conducting metal portion in contact with the superconductor has a large superconducting bandgap, and the normal-conducting metal becomes superconducting within a predetermined distance from the junction with the superconductor. The theory itself of such a junction between a superconductor and a normal conducting metal is, for example, P,
G.
da G cnncsの論文等で知られている( R
cvicvsof’ Modern P hysi
cs、 J an、 1904゜pp225−21
7参照)。ここで、Δ。はセラミック超伝導体の超伝導
バンドギャップであり、ξ0は同じくセラミック超伝導
体のコヒーレンス長、ノは平均自由工程であり、Nは常
伝導金属の電子状態密度、nはセラミック超伝導体の電
子状態密度、Tjは接合界面を通しての電子の透過率で
ある。It is known for the papers of da G ncncs (R
cvicvsof' Modern Physi
cs, Jan, 1904゜pp225-21
(see 7). Here, Δ. is the superconducting bandgap of the ceramic superconductor, ξ0 is the coherence length of the ceramic superconductor, ノ is the mean free path, N is the electronic state density of the normal metal, and n is the electron of the ceramic superconductor. The density of states, Tj, is the transmittance of electrons through the junction interface.
常伝導金属側の超伝導体となる領域のコヒーレンス長ξ
Nは、
ξに謹h V F / k T
となる。hはブランク定数、Vpは金属のフェルミ速度
、kはボルツマン定数、Tは絶対温度である。酸化物超
伝導体の電子状態密度nが常伝導金属のそれNに比べて
2桁程度低く、透過率TJがほぼ1である場合には、図
示のように常伝導金属中の超伝導バンドギャップが上記
理論の近似の範囲ではセラ、ミック超伝導体のそれより
大きくなり、超伝導体として振舞う。Coherence length ξ of the region that becomes a superconductor on the normal metal side
N becomes h V F / k T in ξ. h is Blank's constant, Vp is the Fermi velocity of the metal, k is Boltzmann's constant, and T is the absolute temperature. When the electronic state density n of an oxide superconductor is about two orders of magnitude lower than that of a normal conducting metal and the transmittance TJ is approximately 1, the superconducting bandgap in the normal conducting metal as shown in the figure is larger than that of Ceramic and Mick superconductors within the approximation range of the above theory, and it behaves as a superconductor.
本発明はこの様な超伝導体−常伝導金属接合の理論を応
用し、セラミック超伝導体の粒子表面に適当な膜厚の常
伝導金属膜を形成することによって、等価的な超伝導バ
ンドギャップを持たせ、且つ粒子間の電気的結合を強く
し、もって臨界電流密度を高くしたセラミック超伝導体
材料を得るものである。The present invention applies the theory of superconductor-normal metal bonding to form a normal metal film of an appropriate thickness on the surface of ceramic superconductor particles, thereby achieving an equivalent superconducting band gap. The object of the present invention is to obtain a ceramic superconductor material which has a high critical current density by strengthening the electrical coupling between the particles and increasing the critical current density.
本発明で用いられるせらみ超伝導体は、希土類元素を有
するペロブスカイト型の酸化物が好ましい。 例えば、
酸素欠陥を有する
ABa 2 Cu 307−v系(AはY、Yb、Ho
。The serpentine superconductor used in the present invention is preferably a perovskite-type oxide containing a rare earth element. for example,
ABa 2 Cu 307-v system with oxygen defects (A is Y, Yb, Ho
.
Dy、Eu、Er、T@、Luなどの希土類元素)など
の欠陥ペロブスカイト型、Sr −La −Cu−〇系
等の層状ペロブスカイトなどの酸化物である。また本発
明で用いる常伝導金属には、Au。These are defective perovskite type oxides such as rare earth elements such as Dy, Eu, Er, T@, and Lu, and layered perovskites such as Sr-La-Cu-〇-based oxides. Further, the normal conductive metal used in the present invention includes Au.
Ag、Cu、Aノ、In、Nbなど多くの単体金属があ
るが、なかでも仕事関数が酸化物超伝導体のそれに近い
Au、Ag、Cuなどが好ましい。There are many simple metals such as Ag, Cu, Al, In, and Nb, but among them, Au, Ag, Cu, and the like, whose work functions are close to those of oxide superconductors, are preferable.
また本発明は、スパッタ法または蒸む法による薄膜材料
、焼結法による粉末集合体材料のいずれにも適用するこ
とが可能である。Further, the present invention can be applied to both a thin film material produced by a sputtering method or a steaming method, and a powder aggregate material produced by a sintering method.
(実施例)
酸化物超伝導体として例えば、Y−Ba−Cu−0を例
にとる。その一般的な製造方法は、まず原料である Y
20s 、Ba CO3およびCuOを混合して仮焼し
、粉砕して混合する。これをプレスし、焼結してアニー
ルすることにより、酸化物超伝導体が得られる。あるい
は仮焼後の粉砕混合粉末を金属管に詰め焼結してアニー
ルすることにより、酸化物超伝導体を得る。酸化物超伝
導薄膜は、出発原料である粉末を固めたターゲット、あ
るいは上述の仮焼、粉砕して混合した粉末を固めたター
ゲットを用いてスパッタ法により形成することができる
。または上述の粉末と適当な溶剤を組合わせた印刷ペー
ストを用いた印刷法により、酸化物超伝導体薄膜を形成
することもできる。(Example) Y-Ba-Cu-0 will be taken as an example of an oxide superconductor. Its general manufacturing method begins with the raw material Y
20s, BaCO3 and CuO are mixed, calcined, ground and mixed. By pressing, sintering, and annealing this, an oxide superconductor is obtained. Alternatively, the pulverized mixed powder after calcination is packed into a metal tube, sintered, and annealed to obtain an oxide superconductor. The oxide superconducting thin film can be formed by a sputtering method using a target made by solidifying powder as a starting material or a target made by solidifying the above-mentioned calcined, pulverized and mixed powder. Alternatively, an oxide superconductor thin film can also be formed by a printing method using a printing paste that is a combination of the above-mentioned powder and a suitable solvent.
本発明の酸化物超伝導材料のうち薄膜材料は、酸化物超
伝導材料膜と常伝導金属膜とを順次重ねて形成すること
により簡単に得られる。第2図はその一実施例である。Among the oxide superconducting materials of the present invention, the thin film material can be easily obtained by sequentially stacking an oxide superconducting material film and a normal conducting metal film. FIG. 2 shows an example of this.
所定の基板1に、酸化物超伝導体膜として、Y−Ba−
Cu−0膜2を厚さ3000人程度スパッタ法により堆
積し、この上にAu膜3を例えば500人蒸着する。こ
れにより、Y−Ba−Cu−0膜2の表面部位子がAu
膜3で覆われてAu膜膜内内等価的に超伝導バンドギャ
ップが生じ、且つ電気的結合が改善されて、面内の臨界
電流はAu膜3を形成しない場合より1桁近く大きい4
00A/cII2が得られる。A predetermined substrate 1 is coated with Y-Ba- as an oxide superconductor film.
A Cu-0 film 2 is deposited to a thickness of about 3,000 layers by sputtering, and an Au film 3 is deposited thereon by, for example, 500 layers. As a result, the surface molecules of the Y-Ba-Cu-0 film 2 become Au.
Covered with the Au film 3, a superconducting band gap is generated equivalently within the Au film, and the electrical coupling is improved, so that the in-plane critical current is nearly one order of magnitude larger than when the Au film 3 is not formed.
00A/cII2 is obtained.
スクリーン印刷法によりY−Ba−Cu−0膜を1μ尻
形成し、この上に1000人のAu膜を蒸着した場合も
、同様に臨界電流密度の向上が認められる。但し、スパ
ッタ法に比べて超伝導電流密度の値は小さい。これは、
膜のち密さがスパッタ法による場合より印刷法の方が劣
るためである。When a Y-Ba-Cu-0 film with a thickness of 1 μm was formed by screen printing and a 1,000-layer Au film was deposited thereon, the critical current density was similarly improved. However, the value of the superconducting current density is smaller than that of the sputtering method. this is,
This is because the density of the film obtained by the printing method is inferior to that obtained by the sputtering method.
焼結法による酸化物超伝導セラミックス材料の場合に、
その粒界に沿って薄く常伝導金属層を形成するには、サ
ーメット(セラミック粉の粒界に金属層ができているセ
ラミック焼結体)の製法を応用すればよい。具体的には
、■セラミックスより融点が低い金属を溶解し、この中
にセラミックス粉末を加えて冷却する、■セラミックス
粉末と金属粉末を混ぜて焼く、■セラミックス粉末の表
面に金属膜が形成されたものを焼く、等の方法が用いら
れる。金属被覆セラミックス粉を得るには、セラミック
ス粉末をかきまぜながら金属を蒸着あるいはスパッタす
る方法、セラミックス粉末を少しずつ落としながら、こ
れに金属を蒸着あるいはスパッタする方法等が用いられ
る。この様な方法により、粉末粒界に金属層を介在させ
て臨界電流を増大させた酸化物超伝導セラミックスを得
ることができる。In the case of oxide superconducting ceramic materials produced by the sintering method,
In order to form a thin normal metal layer along the grain boundaries, a method for manufacturing cermet (ceramic sintered body in which a metal layer is formed at the grain boundaries of ceramic powder) may be applied. Specifically, ■ melting a metal with a lower melting point than ceramics, adding ceramic powder to it and cooling it, ■ mixing ceramic powder and metal powder and baking, ■ forming a metal film on the surface of ceramic powder. Methods such as baking things are used. To obtain the metal-coated ceramic powder, a method is used in which metal is vapor-deposited or sputtered while stirring the ceramic powder, or a metal is vapor-deposited or sputtered on the ceramic powder while being dropped little by little. By such a method, it is possible to obtain an oxide superconducting ceramic in which a metal layer is interposed at the powder grain boundaries to increase the critical current.
[発明の効果]
以上述べたように本発明によれば、構成粒子の表面に薄
く常伝導金属膜を形成することにより、等価的に常伝導
金属中に超伝導バンドギャップを生じさせ且つ電気的結
合を改善することにより1臨界電流密度の向上を図った
セラミック超伝導材料を提供することができる。[Effects of the Invention] As described above, according to the present invention, by forming a thin normal metal film on the surface of the constituent particles, a superconducting band gap is equivalently generated in the normal metal and electrical By improving the bonding, it is possible to provide a ceramic superconducting material with an increased critical current density.
第1図は本発明にかかる酸化物超伝導材料の臨界電流が
増大することを説明するためのポテンシャル図、第2図
は本発明の一実施例の酸化物超伝導材料膜である。
1・・・基板、2−Y−Ba −Cu −0膜、3・・
・Au膜。
出願人代理人 弁理士 鈴江武彦
SN i
第1図
第2図FIG. 1 is a potential diagram for explaining the increase in critical current of the oxide superconducting material according to the present invention, and FIG. 2 is a film of the oxide superconducting material according to an embodiment of the present invention. 1...Substrate, 2-Y-Ba-Cu-0 film, 3...
・Au film. Applicant's agent Patent attorney Takehiko Suzue SN i Figure 1 Figure 2
Claims (3)
膜が形成され、常伝導金属中に等価的に超伝導バンドギ
ャップを有することを特徴とするセラミック超伝導材料
。(1) A ceramic superconducting material characterized by having a thin normal-conducting metal film formed on the surface of ceramic superconductor particles and having an equivalent superconducting band gap in the normal-conducting metal.
または蒸着法により形成された薄膜であり、この薄膜上
に常伝導金属膜が被覆されている特許請求の範囲第1項
記載のセラミック超伝導材料。(2) The ceramic superconductor according to claim 1, wherein the ceramic superconductor material is a thin film formed on a predetermined substrate by sputtering or vapor deposition, and this thin film is coated with a normal metal film. material.
粉末集合体であり、この集合体を構成する粉末の粒界に
常伝導金属膜を有する特許請求の範囲第1項記載のセラ
ミック超伝導材料。(3) The ceramic superconductor material is a powder aggregate formed by a sintering method, and the ceramic superconductor according to claim 1 has a normal-conducting metal film at the grain boundaries of the powder constituting the aggregate. material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62133781A JPS63299010A (en) | 1987-05-29 | 1987-05-29 | Ceramic superconductive material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62133781A JPS63299010A (en) | 1987-05-29 | 1987-05-29 | Ceramic superconductive material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63299010A true JPS63299010A (en) | 1988-12-06 |
Family
ID=15112842
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62133781A Pending JPS63299010A (en) | 1987-05-29 | 1987-05-29 | Ceramic superconductive material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63299010A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0720248A3 (en) * | 1994-12-28 | 1996-08-07 | Com Dev Ltd | |
EP0769823A4 (en) * | 1994-06-17 | 1997-12-17 | Matsushita Electric Ind Co Ltd | High-frequency circuit element |
-
1987
- 1987-05-29 JP JP62133781A patent/JPS63299010A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0769823A4 (en) * | 1994-06-17 | 1997-12-17 | Matsushita Electric Ind Co Ltd | High-frequency circuit element |
US6016434A (en) * | 1994-06-17 | 2000-01-18 | Matsushita Electric Industrial Co., Ltd. | High-frequency circuit element in which a resonator and input/ouputs are relatively movable |
EP1026773A1 (en) * | 1994-06-17 | 2000-08-09 | Matsushita Electric Industrial Co., Ltd. | High-frequency circuit element |
US6360112B1 (en) | 1994-06-17 | 2002-03-19 | Matsushita Electric Industrial Co., Ltd. | High-frequency circuit element having a superconductive resonator tuned by another movable resonator |
US6360111B1 (en) | 1994-06-17 | 2002-03-19 | Matsushita Electric Industrial Co., Ltd. | High-frequency circuit element having a superconductive resonator with an electroconductive film about the periphery |
EP0720248A3 (en) * | 1994-12-28 | 1996-08-07 | Com Dev Ltd |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0301952B1 (en) | Compound oxide superconducting material and method for preparing the same | |
US4866032A (en) | Method and apparatus for producing thin film of high to superconductor compound having large area | |
JPH02260674A (en) | Tunnel type josephson element and manufacture thereof | |
EP0301958B1 (en) | Superconducting material and a method for preparing the same | |
JPS63299010A (en) | Ceramic superconductive material | |
JPH11278837A (en) | Mg doped low anisotropy high temperature superconductor and its production | |
US4988672A (en) | Method of forming oxide superconducting layers by solid state diffusion | |
JP2516251B2 (en) | Manufacturing method of oxide superconducting film | |
JP2817048B2 (en) | Method for producing Bi-Sr-Ca-Cu-O-based superconducting film by screen printing | |
US5179075A (en) | Method of making a low electrical resistance connection between a metal and a high tc superconducting ceramic | |
JP2524421B2 (en) | Manufacturing method of patterned superconducting film | |
JP2889595B2 (en) | Method for forming electrode of oxide superconductor film | |
JP2569055B2 (en) | Preparation method of oxide superconductor thin film | |
JP2653448B2 (en) | Oxide superconducting element | |
US5629269A (en) | Process for forming oxide superconducting films with a plurality of metal buffer layers | |
JP2703227B2 (en) | Superconductor device | |
JP3448597B2 (en) | Bismuth-based oxide superconducting composite and method for producing the same | |
JPH0818837B2 (en) | Sputtering target and method for manufacturing superconducting thin film | |
JP2529746B2 (en) | Method for manufacturing superconducting film | |
JP2517055B2 (en) | Superconductor | |
EP0283023A2 (en) | Ceramic superconductor | |
JPH03263392A (en) | Superconducting thick-film circuit board and manufacture thereof | |
JPH05183208A (en) | Superconducting element and manufacture thereof | |
JPH0755826B2 (en) | Superconductor | |
JPH0561787B2 (en) |