JPS63298980A - Solid electrolyte battery - Google Patents
Solid electrolyte batteryInfo
- Publication number
- JPS63298980A JPS63298980A JP62132894A JP13289487A JPS63298980A JP S63298980 A JPS63298980 A JP S63298980A JP 62132894 A JP62132894 A JP 62132894A JP 13289487 A JP13289487 A JP 13289487A JP S63298980 A JPS63298980 A JP S63298980A
- Authority
- JP
- Japan
- Prior art keywords
- solid electrolyte
- pts
- negative electrode
- acetonitrile
- electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007784 solid electrolyte Substances 0.000 title claims abstract description 25
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 10
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000005518 polymer electrolyte Substances 0.000 claims description 9
- 239000007787 solid Substances 0.000 claims description 9
- BHZCMUVGYXEBMY-UHFFFAOYSA-N trilithium;azanide Chemical compound [Li+].[Li+].[Li+].[NH2-] BHZCMUVGYXEBMY-UHFFFAOYSA-N 0.000 claims 1
- IDBFBDSKYCUNPW-UHFFFAOYSA-N lithium nitride Chemical compound [Li]N([Li])[Li] IDBFBDSKYCUNPW-UHFFFAOYSA-N 0.000 abstract description 14
- 229920000642 polymer Polymers 0.000 abstract description 12
- 239000011888 foil Substances 0.000 abstract description 3
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 abstract description 3
- 239000002985 plastic film Substances 0.000 abstract description 3
- 229920006255 plastic film Polymers 0.000 abstract description 3
- 238000001291 vacuum drying Methods 0.000 abstract description 3
- 239000012212 insulator Substances 0.000 abstract description 2
- 239000002904 solvent Substances 0.000 abstract description 2
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 abstract 12
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 abstract 2
- 229910001220 stainless steel Inorganic materials 0.000 abstract 2
- 239000010935 stainless steel Substances 0.000 abstract 2
- 229910003092 TiS2 Inorganic materials 0.000 abstract 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 abstract 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 abstract 1
- 229910001486 lithium perchlorate Inorganic materials 0.000 abstract 1
- 229910052759 nickel Inorganic materials 0.000 abstract 1
- 239000010936 titanium Substances 0.000 abstract 1
- 229910052719 titanium Inorganic materials 0.000 abstract 1
- 239000003792 electrolyte Substances 0.000 description 14
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000006230 acetylene black Substances 0.000 description 3
- 239000011149 active material Substances 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 239000004020 conductor Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000006182 cathode active material Substances 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 239000002001 electrolyte material Substances 0.000 description 1
- 229910003480 inorganic solid Inorganic materials 0.000 description 1
- 239000011244 liquid electrolyte Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000137 polyphosphoric acid Polymers 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0565—Polymeric materials, e.g. gel-type or solid-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Dispersion Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は固体電Fl!*[池、特にリチウムイオン導電
性の高分子固体電解質な用いた二次電池の改良に関する
ものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is a solid-state electric film! *[Concerning the improvement of batteries, especially secondary batteries using lithium ion conductive polymer solid electrolytes.
従来技術とその問題点
近年、ポリエチレンオキシド(PEO)やポリフォヌフ
ォアゼンを電解質材料に用いた高分子固体電解質電池の
開発研究が盛んに行われている。この電池は無漏液であ
り、容易に積層構造や扁平型にすることができ、高エネ
ルギー密度を有するという利点がある。BACKGROUND OF THE INVENTION In recent years, research and development efforts have been actively conducted on polymer solid electrolyte batteries using polyethylene oxide (PEO) and polyphonuphozene as electrolyte materials. This battery has the advantage of not leaking, can be easily formed into a stacked structure or flat type, and has a high energy density.
又、高分子固体電解質は弾力性を有するため、緊圧を加
えることにより、電解質と電槽との密着を良くすること
ができる。Furthermore, since the solid polymer electrolyte has elasticity, applying tight pressure can improve the adhesion between the electrolyte and the battery case.
さらにフレキシブルである等、無機系の固体電解質にな
い利点がある。反面、高分子固体電解質は導電率が小さ
く、可塑性があり外圧によつて変形する欠点がある。Furthermore, it has advantages that inorganic solid electrolytes do not have, such as being flexible. On the other hand, solid polymer electrolytes have the drawbacks of low conductivity, plasticity, and deformation due to external pressure.
従来の高分子固体電解質を用いた電池は、例えばドクタ
ー・グレード法により製膜した電解質を正極活物質層/
[解質層/負極活物質層の順に積層された構成であった
。Batteries using conventional polymer solid electrolytes, for example, use an electrolyte film formed by the doctor grade method as a cathode active material layer/
[The configuration was such that the solute layer/negative electrode active material layer were laminated in this order.
こ\で高分子固体電解質はPEOとLi(JO4やLi
0F3SO3との複合体からなるLi+導伝体である。Here, the polymer solid electrolyte is PEO and Li (JO4 and Li
It is a Li+ conductor made of a complex with 0F3SO3.
正極はTiS 2やV6O13等の正極活物質にアセチ
レンブラック等の導電剤、および上記高分子固体電解質
の混合物からなる層である。負極はLi又はLi−An
?等のL1合金の箔からなっている。The positive electrode is a layer consisting of a mixture of a positive electrode active material such as TiS 2 or V6O13, a conductive agent such as acetylene black, and the above solid polymer electrolyte. Negative electrode is Li or Li-An
? It is made of L1 alloy foil.
高分子固体電解質の導電率は、室温で約1O8−12−
1であり、プロピレンカーボネイト等の有機溶媒にLi
0104等を溶解させた液体状電解質の導電率・約10
−23−cm’に比べ非常に劣る。The conductivity of solid polymer electrolytes is approximately 1O8-12- at room temperature.
1, and Li is added to an organic solvent such as propylene carbonate.
Conductivity of liquid electrolyte in which 0104 etc. is dissolved: approximately 10
-23-cm'.
従って高分子固体電解質電池では電解質層の電気抵抗を
低くするために、電解質層の厚みをできるだけ(望まし
くは30μm以下)薄くすることが求められている。Therefore, in polymer solid electrolyte batteries, in order to lower the electrical resistance of the electrolyte layer, it is required that the thickness of the electrolyte layer be made as thin as possible (preferably 30 μm or less).
一方、固体電解質電池では、電解質と電極との接触を良
好な状部に保つために、層状のセルに対して絶えず緊圧
を加えておく必要がある。On the other hand, in solid electrolyte batteries, it is necessary to constantly apply tension to the layered cells in order to maintain good contact between the electrolyte and the electrodes.
しかしながら前述の如<、PEO等からなる高分子固体
電解質には可塑性があり、緊圧が加わった条件では、?
I!極表面に僅かな突出部(凸部)があっても変形し、
電解質層の厚みが薄いと、電極表面が凸の部分で絶縁が
破れ短絡に至った。However, as mentioned above, solid polymer electrolytes such as PEO have plasticity, and under pressure conditions, ?
I! Even if there is a slight protrusion (protrusion) on the extreme surface, it will deform,
If the electrolyte layer was thin, the insulation would break at the convex portions of the electrode surface, resulting in a short circuit.
上記した如き理由により、従来の高分子固体電解質電池
では、電解質層の厚さは最低80〜100μm必要であ
り、内部抵抗が高く室温で作動させることは困難であり
、従うて、100〜150℃の高温で作動させるという
のが一般的であった。For the reasons mentioned above, in conventional polymer solid electrolyte batteries, the thickness of the electrolyte layer must be at least 80 to 100 μm, and the internal resistance is high, making it difficult to operate at room temperature. It was common to operate at high temperatures.
発明の目的
不発明は上記従来の問題点に鑑みなされたものであり、
室温で作動し、活物質利用率の優れた且つ内部短絡のな
い信頼性の高い固体電解質電池を提供することを目的と
する。The purpose of the invention was made in view of the above-mentioned conventional problems,
An object of the present invention is to provide a highly reliable solid electrolyte battery that operates at room temperature, has an excellent active material utilization rate, and is free from internal short circuits.
発明の構成
本発明は上記目的を達成するべく、正極、高分子固体電
解質、リチウム負極からなる電池において、該リチウム
負極の高分子固体電解質との対向面にチッ化リチウム(
Li5N)の薄層な設けたことを特徴とする固体電解質
電池である。Structure of the Invention In order to achieve the above object, the present invention provides a battery consisting of a positive electrode, a solid polymer electrolyte, and a lithium negative electrode, in which lithium nitride (
This is a solid electrolyte battery characterized by a thin layer of Li5N).
実施例 以下、本発明な一実施例により説明する。Example Hereinafter, one embodiment of the present invention will be explained.
第1図は本発明のコイン型固体電解質電池の断面図であ
る。FIG. 1 is a sectional view of a coin-type solid electrolyte battery of the present invention.
こ−で、1はチッ化リチウムの層、2は高分子固体電解
質、3はリチウム負極、4は正極、5は正極集電体、6
はプラスチックフィルム、7は電槽、8は蓋、9はリー
ド線、10は正極端子、である。Here, 1 is a layer of lithium nitride, 2 is a polymer solid electrolyte, 3 is a lithium negative electrode, 4 is a positive electrode, 5 is a positive electrode current collector, and 6
1 is a plastic film, 7 is a battery case, 8 is a lid, 9 is a lead wire, and 10 is a positive terminal.
チッ化リチウムの層は、厚み約10μmで、組み立て前
のリチウム負極の片面を、水分100〜200pp#1
含むN2ガスに室温で15〜20分間接触させることに
よって生成させる。高分子固体電解質は、分子量50万
〜200万のPKOに5〜10%のLi0JO4を溶解
させた厚み約20μmのLi0IO4−P E O複合
体からなるものである。The lithium nitride layer has a thickness of about 10 μm, and one side of the lithium negative electrode before assembly is coated with 100 to 200 pp of moisture #1.
It is produced by contacting the containing N2 gas for 15 to 20 minutes at room temperature. The solid polymer electrolyte is made of a Li0IO4-PEO composite with a thickness of approximately 20 μm, which is obtained by dissolving 5 to 10% Li0JO4 in PKO having a molecular weight of 500,000 to 2,000,000.
高分子固体電解質の層は、PKo 9部、Li0IO4
1部をア七トニ)!JA/(AN)に溶解させたペース
トをドクターブレード法により、前記したLi負極のチ
ッ化すチウム生成面に塗布した後、90℃で約1時間の
減圧乾燥によりANを除去することによって作成する◎
正極は厚み50〜200μmでTiS 2他にアセチレ
ンブラック、Li0104−pgo複合体混合物から成
る。’r1s270部、アセチレンブラック(ムB)1
0部、Li0104−PEO複合体20部を含むムNを
溶媒とするペーストをドクターグレード法により、先の
固体電解質上に塗布するか、平板の上に塗布して製膜し
た後、90℃で約1時間の減圧乾燥によりANを除去し
、固体電解質の上に積層させる。正極集電体はSUS又
はTi製の箔よりなり、ロールプレスによって正極に密
着させる。プラスチックフィルムはポリエチレンや他の
弾力性のあるもので、正fli集電体と電池蓋との絶縁
体としての他に、材質自体の有する弾力性により、V!
極、電解質の積層体に対して緊圧を加える。The layer of polymer solid electrolyte consists of 9 parts PKo, Li0IO4
Part 1 (A7 Toni)! Created by applying a paste dissolved in JA/(AN) to the lithium nitride-generating surface of the Li negative electrode described above using a doctor blade method, and then removing AN by drying under reduced pressure at 90°C for about 1 hour.
The positive electrode has a thickness of 50 to 200 μm and is made of TiS 2 as well as acetylene black and a Li0104-pgo composite mixture. 'r1s 270 parts, acetylene black (MuB) 1
A paste containing 0 parts of Li0104-PEO complex and 20 parts of Li0104-PEO complex as a solvent was coated on the solid electrolyte or on a flat plate to form a film by the doctor grade method, and then heated at 90°C. The AN is removed by vacuum drying for about 1 hour and laminated onto the solid electrolyte. The positive electrode current collector is made of SUS or Ti foil, and is brought into close contact with the positive electrode by roll pressing. The plastic film is made of polyethylene or other elastic material, and in addition to serving as an insulator between the positive fli current collector and the battery cover, the elasticity of the material itself allows it to maintain V!
Apply pressure to the stack of electrodes and electrolyte.
N3NはSUSwNi等からなり、壺と溶接されている
。N3N is made of SUSwNi or the like and is welded to the pot.
正極端子はハーメチックシーMでリード線により正極集
電体と電気的に接続されている。The positive electrode terminal is electrically connected to the positive electrode current collector by a lead wire through a hermetic seam M.
チッ化リチウムは現在までに見い出されているL1+導
伝性物質の中で最も高い4伝性(約1「3B−cWV″
1)を持つ物質として注目されている。加圧に対する機
械的強度は大きい、但し弾性は無< Li3Nのみを電
解質とする電池に於ては、電解質と[41の良好な接触
を維持することが困難であり、フレキシブル性は無く渦
巻状など曲がったセルには不適である。Lithium nitride has the highest 4 conductivity (approximately 1"3B-cWV") among the L1+ conductive materials discovered to date.
It is attracting attention as a substance that has 1). The mechanical strength against pressurization is high, but the elasticity is low. In batteries using only Li3N as an electrolyte, it is difficult to maintain good contact with the electrolyte, and there is no flexibility and the shape of a spiral etc. Not suitable for curved cells.
しかし本発明では、負極リチウムの電解質対向面にチッ
化リチウムの薄層(厚み5〜10μm)が配されている
ので、PFOやポリフォスフオフ セントLi1X’0
4 ヤLi0F3SO3等の複合体からなる高分子固体
電解質の厚みが10〜30μmと従来の厚みの数分の1
から10分の1としてもLi3Nがあるため、従来みら
れた電解質層の絶縁が破れ短絡に至ることはないQ又、
高分子固体電解質の弾性により、電解質と1!極の接触
は良好に保たれる。However, in the present invention, a thin layer (5 to 10 μm thick) of lithium nitride is disposed on the surface of the negative electrode lithium facing the electrolyte, so PFO or polyphosphoric acid Li1X'0
4 The thickness of the polymer solid electrolyte made of a composite such as Li0F3SO3 is 10 to 30 μm, which is a fraction of the conventional thickness.
Since there is Li3N even if it is 1/10th of that, the insulation of the electrolyte layer will not be broken and short circuits will not occur, which was the case in the past.Also,
Due to the elasticity of the polymer solid electrolyte, the electrolyte and 1! Good contact between the poles is maintained.
さらに、Li3Nの厚みを極めて薄くシているので、セ
ルとして層状にした状態でフレキシブ〃であり、渦巻き
状の形態にもすることができるO
本発明の電池の常温放電における活物質利用率は80〜
90%と良好であるが、固体電解質がチッ化リチウムの
みからなる電池では、常温放電における活物質利用率は
5〜10%と低く放電性能が悪い。これは、チッ化リチ
ウムに柔軟性がなく、電解質と電極との接触が悪いため
である。Furthermore, since the thickness of Li3N is extremely thin, it is flexible when layered as a cell, and can be formed into a spiral shape. ~
However, in a battery in which the solid electrolyte is made only of lithium nitride, the active material utilization rate in room temperature discharge is as low as 5 to 10%, and the discharge performance is poor. This is because lithium nitride is inflexible and the contact between the electrolyte and the electrode is poor.
尚、Li3Nの薄層の形成法は上記に限定されるもので
はない。Note that the method for forming the thin layer of Li3N is not limited to the above method.
発明の効果
上述した如く、本発明は室温で作動し活物質利用率の優
れた、且つ内部短絡のない信頼性の高い固体電解質電池
を提供することが出来るので、その工業的価値は極めて
大である。Effects of the Invention As mentioned above, the present invention can provide a highly reliable solid electrolyte battery that operates at room temperature, has an excellent active material utilization rate, and is free from internal short circuits, so its industrial value is extremely large. be.
第1図は本発明の一実施例である固体電解質電池の断面
図である。
1・・・チッ化リチウムの層
2・・・高分子固体電解質FIG. 1 is a sectional view of a solid electrolyte battery that is an embodiment of the present invention. 1... Lithium nitride layer 2... Polymer solid electrolyte
Claims (1)
チウム負極の高分子固体電解質との対向面にチッ化リチ
ウム(Li_3N)の薄層を設けたことを特徴とする固
体電解質電池。A solid electrolyte battery consisting of a positive electrode, a solid polymer electrolyte, and a lithium negative electrode, characterized in that a thin layer of lithium nitride (Li_3N) is provided on the surface of the lithium negative electrode facing the solid polymer electrolyte.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62132894A JPS63298980A (en) | 1987-05-28 | 1987-05-28 | Solid electrolyte battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62132894A JPS63298980A (en) | 1987-05-28 | 1987-05-28 | Solid electrolyte battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63298980A true JPS63298980A (en) | 1988-12-06 |
Family
ID=15092037
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62132894A Pending JPS63298980A (en) | 1987-05-28 | 1987-05-28 | Solid electrolyte battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63298980A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05275077A (en) * | 1992-03-24 | 1993-10-22 | Agency Of Ind Science & Technol | Negative electrode for lithium secondary battery |
JPH06290773A (en) * | 1993-03-30 | 1994-10-18 | Nippondenso Co Ltd | Lithium secondary battery |
JP2001015162A (en) * | 1999-06-29 | 2001-01-19 | Sony Corp | Solid electrolyte battery |
JP2001351615A (en) * | 2000-06-08 | 2001-12-21 | Sumitomo Electric Ind Ltd | Lithium secondary battery negative electrode |
WO2009001526A1 (en) * | 2007-06-22 | 2008-12-31 | Panasonic Corporation | All solid polymer battery |
US7524577B2 (en) | 2005-09-06 | 2009-04-28 | Oak Ridge Micro-Energy, Inc. | Long life thin film battery and method therefor |
JP2009104891A (en) * | 2007-10-23 | 2009-05-14 | Panasonic Corp | Dry polymer electrolyte and all solid polymer battery |
JP2009123610A (en) * | 2007-11-16 | 2009-06-04 | Panasonic Corp | All solid-state polymer battery and method for producing the same |
JP2015146320A (en) * | 2010-01-15 | 2015-08-13 | 株式会社半導体エネルギー研究所 | Electricity storage device |
-
1987
- 1987-05-28 JP JP62132894A patent/JPS63298980A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05275077A (en) * | 1992-03-24 | 1993-10-22 | Agency Of Ind Science & Technol | Negative electrode for lithium secondary battery |
JPH06290773A (en) * | 1993-03-30 | 1994-10-18 | Nippondenso Co Ltd | Lithium secondary battery |
JP2001015162A (en) * | 1999-06-29 | 2001-01-19 | Sony Corp | Solid electrolyte battery |
JP2001351615A (en) * | 2000-06-08 | 2001-12-21 | Sumitomo Electric Ind Ltd | Lithium secondary battery negative electrode |
US7524577B2 (en) | 2005-09-06 | 2009-04-28 | Oak Ridge Micro-Energy, Inc. | Long life thin film battery and method therefor |
WO2009001526A1 (en) * | 2007-06-22 | 2008-12-31 | Panasonic Corporation | All solid polymer battery |
US8318342B2 (en) | 2007-06-22 | 2012-11-27 | Panasonic Corporation | All solid-state polymer battery |
JP2009104891A (en) * | 2007-10-23 | 2009-05-14 | Panasonic Corp | Dry polymer electrolyte and all solid polymer battery |
JP2009123610A (en) * | 2007-11-16 | 2009-06-04 | Panasonic Corp | All solid-state polymer battery and method for producing the same |
JP2015146320A (en) * | 2010-01-15 | 2015-08-13 | 株式会社半導体エネルギー研究所 | Electricity storage device |
US9590249B2 (en) | 2010-01-15 | 2017-03-07 | Semiconductor Energy Laboratory Co., Ltd. | Electricity storage device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7413582B2 (en) | Lithium battery | |
JP3767151B2 (en) | Thin battery | |
US6528204B1 (en) | Lithium secondary battery comprising individual cells with one another, as well as watches, computers and communication equipment provided with a battery | |
US5512389A (en) | Rechargeable non-aqueous thin film lithium battery | |
US3353999A (en) | Conductive film battery | |
CN211045591U (en) | Cells and batteries | |
JPH0222982B2 (en) | ||
CN115347227A (en) | All solid battery | |
JP4138172B2 (en) | Electrochemical device and manufacturing method thereof | |
JP2001015152A (en) | All-solid-state battery | |
JPS63298980A (en) | Solid electrolyte battery | |
JP3402002B2 (en) | All-solid lithium battery | |
JP4021592B2 (en) | Electrochemical devices | |
JP2001148234A (en) | Electrochemical device | |
JPS6229071A (en) | Organic electrolyte battery | |
JP2000195495A (en) | Sheet battery | |
JP4202549B2 (en) | Electrochemical device and manufacturing method thereof | |
JP2004127839A (en) | Electrochemical device | |
JP2760090B2 (en) | Solid electrolyte | |
JP2001155777A (en) | Lithium battery | |
JPS63289768A (en) | Solid electrolyte battery | |
WO2022266866A1 (en) | Electrochemical apparatus and electric device | |
JP4363558B2 (en) | Flat non-aqueous electrolyte secondary battery | |
JP2001143763A (en) | Flat non-aqueous electrolyte secondary battery | |
JPH05182650A (en) | Thin type battery |