[go: up one dir, main page]

JPS63298130A - Pressure sensor - Google Patents

Pressure sensor

Info

Publication number
JPS63298130A
JPS63298130A JP13662387A JP13662387A JPS63298130A JP S63298130 A JPS63298130 A JP S63298130A JP 13662387 A JP13662387 A JP 13662387A JP 13662387 A JP13662387 A JP 13662387A JP S63298130 A JPS63298130 A JP S63298130A
Authority
JP
Japan
Prior art keywords
pressure sensor
glass
minute hole
light sensitive
circular part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13662387A
Other languages
Japanese (ja)
Inventor
Hideji Saneyoshi
実吉 秀治
Yasuhiko Inami
井波 靖彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP13662387A priority Critical patent/JPS63298130A/en
Publication of JPS63298130A publication Critical patent/JPS63298130A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To make a pressure sensor compact and to make the characteristics of an element excellent, in the electrostatic capacitor type pressure sensor, by using light sensitive glass as an insulating substrate, and forming a minute hole in the light sensitive glass. CONSTITUTION:Ultraviolet rays are projected only on the circular part of light sensitive glass 8. Heat treatment is performed, and the circular part, which is to become a minute hole 12, is developed. A lower fixed electrode 9 and an insulating film 10 are formed on the glass. Thereafter, poly alpha-methyl styrene, which is a thermally decomposing material, is spin-coated so as to form a pattern. A diaphragm 11 comprising a nickel film is formed on the poly alpha-methyl styrene. Thereafter, the rear surface of the glass is dipped in the solution of diluted fluoric acid. Only the exposed circular part is etched, and the minute hole 12 is formed. The poly alpha-methyl styrene, which is decomposed by heating, is removed from the minute hole 12. Thus, a pressure sensor is made compact, and the characteristics of the element become excellent.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、雰囲気中の圧力変化を静電容量変化として検
出する圧力センサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a pressure sensor that detects pressure changes in an atmosphere as changes in capacitance.

〈従来の技術〉 、雰囲気中の圧力を測るセンサとして、主にピエゾ抵抗
式及び静電容」式圧カセンサが研究開発されている。ピ
エゾ抵抗式圧力センサは、金属材料又は半導体材料の薄
膜が圧力によって歪むと、それらの抵抗値が変化する、
いわゆるピエゾ抵抗効果を利用しており、現在、主にシ
リコンダイヤフラム圧力センサが多く市販されている。
<Prior Art> Piezoresistive and capacitive pressure sensors have been mainly researched and developed as sensors for measuring pressure in an atmosphere. Piezoresistive pressure sensors change their resistance when a thin film of metal or semiconductor material is distorted by pressure.
It utilizes the so-called piezoresistance effect, and currently there are many silicon diaphragm pressure sensors on the market.

他方、静電容量式圧力センサは、特定の空間を介して対
向し合っている一対の電極によって構成されており圧力
によってその電極間隔が変化すると一対の電極間の静電
容量が変化することを利用した圧力センサである。静電
容量式圧力センサは、その測定原理が簡単で作製が容易
であり、さらに静電容量変化はデジタル出力変化へと変
換し易く、測定回路が簡易であるという特徴を有してい
る。
On the other hand, a capacitive pressure sensor is composed of a pair of electrodes facing each other with a specific space in between, and it is possible to detect changes in the capacitance between the pair of electrodes when the distance between the electrodes changes due to pressure. This is the pressure sensor used. A capacitance pressure sensor has a simple measurement principle, is easy to manufacture, and has the characteristics that a change in capacitance is easily converted into a change in digital output, and a measurement circuit is simple.

これらの特徴を有する静電容量式圧力センサについて、
現在作製されているセンサの素子構造及び作製方法は、
例えば特開昭59−214727号に示されているよう
に、セラミックからなる薄膜ダイヤフラムとセラミック
基板にそれぞれ電極を形成し、次にこれらセラミック板
をスペーサーを介して接着した構造となっている。
Regarding capacitive pressure sensors with these characteristics,
The element structure and manufacturing method of currently manufactured sensors are as follows:
For example, as shown in Japanese Patent Application Laid-Open No. 59-214727, electrodes are formed on a ceramic thin film diaphragm and a ceramic substrate, respectively, and then these ceramic plates are bonded together via a spacer.

〈発明が解決しようとする問題点〉 従来作製されている静電容量式圧力センサは、その形状
が数α角と大きく、またスペーサヲ介シてセラミックダ
イヤフラムとセラミック基板ヲ接着剤(融着剤)で接着
しているため、ダイヤフラムと基板との間隔を精度良く
制御することが困難で、さらにバッチ処理によってセン
サを大量生産するのは困難である。本発明は、圧力セン
サを小型化し、さらにバッチ処理により安価に再現性良
く作製できる静電容量式圧力センサを提供すること全1
.目的とするものである。
<Problems to be Solved by the Invention> Conventionally produced capacitive pressure sensors have a large shape of several α angles, and also require adhesive (fusing agent) to connect the ceramic diaphragm and ceramic substrate via a spacer. Since the diaphragm and the substrate are bonded together, it is difficult to accurately control the distance between the diaphragm and the substrate, and furthermore, it is difficult to mass-produce sensors by batch processing. The present invention aims to provide a capacitive pressure sensor that can be miniaturized and further manufactured at low cost and with good reproducibility through batch processing.
.. This is the purpose.

〈発明の概要〉 従来の静電容量1式圧力センサを再現性良くバッチ処理
で安価に作製することが困難である原因として、作製プ
ロセスに接着工程を含み、さらに素子形状の大きいこと
が掲げられる。作製プロセスにおいて接着は静電容量を
測るための一対の電極をある特定の間隔をへだでて形成
するために用いられておシ、本発明では接着方法とは異
なる方法により、特定の間隔をへだでて一対の電極を形
成することを可能としている。
<Summary of the Invention> The reasons why it is difficult to fabricate a conventional capacitive one-type pressure sensor at low cost through batch processing with good reproducibility include the fact that the fabrication process includes an adhesion step and the element size is large. . In the manufacturing process, adhesion is used to form a pair of electrodes for measuring capacitance with a certain distance apart. This makes it possible to extend out to form a pair of electrodes.

さらに、従来の静電容量式圧力センサの形状が大きい一
つの原因は、一対の電極間隔が太きくなるためである。
Furthermore, one reason why the conventional capacitive pressure sensor has a large shape is that the distance between the pair of electrodes becomes large.

すなわち、電極間隔が大きくなると電極間の静電容量が
小さくなって測定が困難になるため、電極面積を大きく
する必要があり、そのために素子形状が大きくなるので
ある。未発明では、電極間隔を小さくし半導体プロセス
で再現性良く一対の電極を形成することを可能としたも
のである。
That is, as the electrode spacing increases, the capacitance between the electrodes decreases, making measurement difficult, so the electrode area must be increased, and the element shape therefore becomes larger. In the present invention, the distance between the electrodes is reduced and it is possible to form a pair of electrodes with good reproducibility in a semiconductor process.

以上に述べたように、微小な間隔をへだてて一対の電極
を形成する方法は静電容量式圧力センサを作製するうえ
で最も重要な技術であり、本発明では、接着方法とは異
なった昇華性又は加熱分解性物質を用い、半導体プロセ
スで作製することを可能としている。
As mentioned above, the method of forming a pair of electrodes with a minute gap between them is the most important technique for manufacturing capacitive pressure sensors. It is possible to manufacture the device using a semiconductor process using a chemical or thermally decomposable substance.

予め、下部電極を形成した絶縁性基板上に昇華性又は加
熱分解性物質をコーティングし、ホトリソ技術で特定形
状にパターン化した後、パターン化された昇華性又は加
熱分解性物質上に上部電極となる金属膜を形成する。次
に、真空中で加熱することにより昇華性又は加熱分解性
物質を微細孔より除去することにより、特定の間隔をへ
だてた一対の電極を形成し、フェロセンサとする。ここ
で、特定の間隔はパターン化膜の膜厚によって決定され
、該膜厚は数μm厚を精度良く作製可能であるため、静
電容量式圧力センサの特性も均一なものとすることがで
きる。
A sublimable or thermally decomposable substance is coated on an insulating substrate on which a lower electrode has been formed in advance, and after patterned into a specific shape using photolithography, an upper electrode and an upper electrode are coated on the patterned sublimable or thermally decomposable substance. A metal film is formed. Next, the sublimable or thermally decomposable substance is removed from the micropores by heating in a vacuum, thereby forming a pair of electrodes separated by a specific distance, thereby forming a ferrosensor. Here, the specific spacing is determined by the thickness of the patterned film, which can be manufactured to a thickness of several μm with high precision, so that the characteristics of the capacitive pressure sensor can be made uniform. .

昇華性又は加熱分解性物質を用いて静電容量式圧力セン
サを作製する場合、パターン化されたこれらの物質が真
空加熱によって除去されるためには、絶縁性基板には微
細孔が必要である。
When fabricating capacitive pressure sensors using sublimable or thermally decomposable materials, the insulating substrate must have micropores in order for the patterned materials to be removed by vacuum heating. .

一般に、基板に細孔を形成する方法としては、超音波加
工による方法、エツチングによる方法等が知られている
。超音波加工による方法は、砥粒と超音波振動を利用し
た方法であるが、直径1頗以下の細孔を形成するのは困
難であり、さらに作業性が悪い欠点を有している。一方
、エツチングによる方法は、通常のガラスをフッ酸水溶
液でエツチングを行なった場合、基板が1n以上と厚い
時は穴をあけるのが困難であり、−!たエツチングが等
方向に進むためガラスの深さ方向にエツチングの不均一
が生じ、微細孔を形成するのけ不可能である。しかし、
基板として感光性ガラスを用い感光性ガラスを露光・熱
処理することにより、露光された部分が選択的にエツチ
ングされることを利用すると、最小径数10μ、1での
微細孔を形成することが可能である。
Generally, methods using ultrasonic processing, etching, etc. are known as methods for forming pores in a substrate. The ultrasonic machining method uses abrasive grains and ultrasonic vibration, but it is difficult to form pores with a diameter of less than 1 mm, and has the disadvantage of poor workability. On the other hand, in the etching method, when ordinary glass is etched with an aqueous hydrofluoric acid solution, it is difficult to make a hole when the substrate is thicker than 1 nm. Since the etching proceeds in the same direction, the etching becomes non-uniform in the depth direction of the glass, making it impossible to form micropores. but,
By using photosensitive glass as a substrate and exposing and heat-treating the photosensitive glass, it is possible to form micropores with a minimum diameter of several 10 μm by utilizing the fact that the exposed portions are selectively etched. It is.

第2図はセラミック基板及びセラミックダイヤフラムを
低融点ガラスで接着して作製する静電容量式圧力センサ
の基本素子構造図を示している。
FIG. 2 shows a basic element structure of a capacitive pressure sensor manufactured by bonding a ceramic substrate and a ceramic diaphragm with low-melting glass.

細孔(2)ヲ有するセラミック基板(1)に下部固定電
極(3)を形成した後、スクリーン印刷等で低融点ガラ
スからなるスペーサー(4)全形成する。次に、上部可
動電極(6)ヲ有するセラミックダイヤフラム(5)ヲ
加熱接着して、静電容量式圧力センサを作製する。
After forming a lower fixed electrode (3) on a ceramic substrate (1) having pores (2), a spacer (4) made of low melting point glass is entirely formed by screen printing or the like. Next, the ceramic diaphragm (5) having the upper movable electrode (6) is heat-bonded to produce a capacitive pressure sensor.

この様に作製された静電容量式圧力センサは、スペーサ
ーの厚みが数10μmと厚く、素子サイズは数a角の大
きさになる。マタ、スペーサーの厚みを制御するのは困
難であるため、素子特性が不均一でバッチ処理により大
量生産が困難となる。
In the capacitive pressure sensor manufactured in this manner, the spacer has a thickness of several tens of micrometers, and the element size is several square meters. However, since it is difficult to control the thickness of the spacer, device characteristics are non-uniform and mass production is difficult due to batch processing.

〈実施例〉 本発明の一実施例として昇華性又は加熱分解性物質を用
いて作製した静電容量式圧力センサの素子構造図を第1
図に示す。感光性ガラス(8)ヲホトマスクを用いて約
800μm直径の円形部分のみに紫外線を照射し、約5
00℃で2回熱処理を行なって微細孔となる円形部を現
象する。次に該感光性ガラス(8)上に、下部固定電極
(9)及び絶縁膜(至)を蒸着又はスパッタリング等に
より形成した後、加熱分解性物質であるポリα−メチル
スチレンをスピンコードし、特定形状にホトリソ技術を
用いてパターン化する。さらに、パターン化したポリα
−メチルスチレン上に無電解メッキ法によりニッケル膜
73島らなるダイヤフラム又は上部可動電極α1)を形
成した後、感光性ガラス(8)の裏面を希釈フッ酸溶液
に浸漬し、露光された円形部分のみをエツチングして微
細孔a2ヲ形成する。
<Example> As an example of the present invention, a first element structure diagram of a capacitive pressure sensor manufactured using a sublimable or thermally decomposable substance is shown.
As shown in the figure. Using a photosensitive glass (8) photomask, only the circular part with a diameter of about 800 μm was irradiated with ultraviolet rays.
Heat treatment is performed twice at 00° C. to form circular portions that will become micropores. Next, a lower fixed electrode (9) and an insulating film (2) are formed on the photosensitive glass (8) by vapor deposition or sputtering, and then poly α-methylstyrene, which is a thermally decomposable substance, is spin-coded. Patterned into a specific shape using photolithography technology. Furthermore, patterned polyα
- After forming a diaphragm or upper movable electrode α1) consisting of 73 islands of nickel film on methylstyrene by electroless plating, the back side of the photosensitive glass (8) is immersed in a diluted hydrofluoric acid solution, and the exposed circular part is Only etching is performed to form micropores a2.

次に、該基板を真空中で加熱してポリα−メチルスチレ
ンを分解し、微細孔(イ)よりポリα−メチルスチレン
を除去して第1図に示す静電容量式圧力センサを作製す
る。
Next, the substrate is heated in a vacuum to decompose the polyα-methylstyrene, and the polyα-methylstyrene is removed from the micropores (A) to produce the capacitive pressure sensor shown in FIG. .

このように作製された静電容量式圧力センサは13・・
・リード線 下部固定電極(9)と上部固定電極0Dの間隔がポリα
−メチルスチレンの膜厚によって規定され、その膜厚は
数μmと薄く再現良く作製されるため、静電容量式圧力
センサのバラツキが少なく、バッチ処理で大皿に生産す
ることが可能である。
The capacitive pressure sensor fabricated in this way is 13...
・The distance between the lead wire lower fixed electrode (9) and upper fixed electrode 0D is poly α
- It is defined by the film thickness of methylstyrene, and the film thickness is as thin as several micrometers and can be manufactured with good reproducibility, so there is little variation in capacitive pressure sensors, and it is possible to produce large plates by batch processing.

〈実施例〉 以上説明したように、感光性ガラスを用い、微細孔を形
成した圧力センサは小型化することが可能であり、さら
にバッチ処理により素子特性を再現性良く大量生産する
ことができる。
<Example> As described above, a pressure sensor in which a photosensitive glass is used and micropores are formed can be miniaturized, and furthermore, it can be mass-produced with good reproducibility of device characteristics by batch processing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の静電容量式圧力センサの一実施例を示
す構造断面図である。第2図は静電容量式圧力センサの
従来の基本構成を示す断面図である。 1・・・セラミック基板、2・・・細孔、3・・・下部
固定電極、4・・・スペーサー、5・・・セラミックダ
イヤフラム、6・・・上部可動電極、7・・・リード線
、8・・・感光性ガラス基板、9・・・下部固定電極、
10・・・絶縁膜、11・・・金属膜ダイヤフラム、1
2・・・微細孔、代理人 弁理士 杉 山 毅 至(他
1名)第1図 第2図
FIG. 1 is a structural sectional view showing an embodiment of the capacitive pressure sensor of the present invention. FIG. 2 is a sectional view showing the basic configuration of a conventional capacitive pressure sensor. DESCRIPTION OF SYMBOLS 1... Ceramic substrate, 2... Pore, 3... Lower fixed electrode, 4... Spacer, 5... Ceramic diaphragm, 6... Upper movable electrode, 7... Lead wire, 8... Photosensitive glass substrate, 9... Lower fixed electrode,
10... Insulating film, 11... Metal film diaphragm, 1
2...Minor hole, agent: Takeshi Sugiyama (and 1 other person), Figure 1, Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、下部固定電極を形成した絶縁性基板に空洞を介して
上部可動電極又はダイヤフラムを形成してなる静電容量
式圧力センサにおいて、前記絶縁性基板が感光性ガラス
であり微細孔が形成されていることを特徴とする静電容
量式圧力センサ。
1. In a capacitive pressure sensor in which an upper movable electrode or diaphragm is formed through a cavity in an insulating substrate on which a lower fixed electrode is formed, the insulating substrate is made of photosensitive glass and micropores are formed. A capacitive pressure sensor characterized by:
JP13662387A 1987-05-29 1987-05-29 Pressure sensor Pending JPS63298130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13662387A JPS63298130A (en) 1987-05-29 1987-05-29 Pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13662387A JPS63298130A (en) 1987-05-29 1987-05-29 Pressure sensor

Publications (1)

Publication Number Publication Date
JPS63298130A true JPS63298130A (en) 1988-12-05

Family

ID=15179628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13662387A Pending JPS63298130A (en) 1987-05-29 1987-05-29 Pressure sensor

Country Status (1)

Country Link
JP (1) JPS63298130A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5211058A (en) * 1990-10-05 1993-05-18 Yamatake-Honeywell Co., Ltd. Capacitive pressure sensor and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5211058A (en) * 1990-10-05 1993-05-18 Yamatake-Honeywell Co., Ltd. Capacitive pressure sensor and method of manufacturing the same

Similar Documents

Publication Publication Date Title
KR100230891B1 (en) Capacitive sensor and manufacturing method
JPH02290524A (en) Semiconductor wafer, forming method of the same, transducer and manufacturing method of the same
JPH06217396A (en) Method of manufacturing integrated capacitive transducer
CN103543183B (en) High sensitivity gas sensor preparation method based on microchannel plate three-dimensional structure
JPH09511571A (en) Method of manufacturing micro mechanical silicon-on-glass tuning fork gyroscope
US5406109A (en) Micro electronic element and method of making same
CN108931321A (en) Beam-island-film integration resonant mode pressure sensor structure and manufacturing method
CN114275731A (en) MEMS-based double-beam type micro-pressure sensing core and preparation process thereof
US3868719A (en) Thin ribbon-like glass backed transducers
CN112479151A (en) Manufacturing method of multi-sensor layer, multi-sensor chip and manufacturing method thereof
JPH04269628A (en) Sensor for measuring speed and flow rate of fluid medium and manufacture thereof
JPS63298130A (en) Pressure sensor
CN112798153A (en) Flexible capacitive pressure sensor and preparation method thereof
JP2896728B2 (en) Capacitive pressure sensor
JPH06130081A (en) Acceleration sensor and manufacture thereof
JP2005274175A (en) Capacitance type pressure sensor and its manufacturing method
JP3906548B2 (en) Switch-type acceleration sensor and manufacturing method thereof
JPS63120236A (en) Preparation of pressure sensor
JPH0618345A (en) Production of pressure sensor
JP2838049B2 (en) Capacitive sensor and method of manufacturing the same
JPH0442834B2 (en)
JP4311531B2 (en) Manufacturing method of three-dimensional wiring and capacitive pressure sensor
JPH0797642B2 (en) Method for manufacturing pressure transducer
JP2003004566A (en) Capacitive pressure sensor and its manufacturing method
JPS60253944A (en) Pressure sensor and its manufacture