JPS6329562B2 - - Google Patents
Info
- Publication number
- JPS6329562B2 JPS6329562B2 JP12651680A JP12651680A JPS6329562B2 JP S6329562 B2 JPS6329562 B2 JP S6329562B2 JP 12651680 A JP12651680 A JP 12651680A JP 12651680 A JP12651680 A JP 12651680A JP S6329562 B2 JPS6329562 B2 JP S6329562B2
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- polysulfone
- aromatic
- water
- wet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Description
本発明は芳香族ポリスルホンと芳香族ポリカー
ボネートの混合物よりなる新規な選択透過性膜お
よびその製法に関する。
従来より選択透過性膜の素材としてはきわめて
多数の高分子化合物が使用されており、例えばセ
ルロース系、ポリアクリロニトリル系、ポリアミ
ド系、ポリスルホン系等が提案されているが、最
近省エネルギーの一環として高温被処理水例えば
排水、タンパク水溶液等を冷却することなく処理
ができる膜、しかも耐薬品性の良好な膜で強靭性
を有した選択透過性に優れた膜が要望されてい
る。
このような膜としては、従来エンジニアリング
プラスチツクとして使用されていた耐熱、耐薬品
性の良好な芳香族ポリスルホンを製膜し選択透過
性を付与する方法が広く試みられている。しか
し、これまでのポリスルホン膜は透水速度が極め
て低く、単位体積当りの膜面積を大きくできる中
空繊維状膜としても十分処理能力を発揮できない
のが現状である。
この欠点を解消するため、従来より行なわれて
きた方法としては、ポリスルホンの水との親和性
を高める方法又は異種のポリマーを混合する方法
があつた。例えば水との親和性を高める方法とし
ては―SO3Na基を芳香環に導入した芳香族ポリ
スルホン(J.Appl.polym.Sci.、20、1885(1976))
又は製膜原液に塩を添加する方法(特開昭54―
16378)があるが、前者の場合水との接触角が変
る程度で大巾な透水速度の向上は期待できず、又
後者の場合ポリマーの製膜原液への溶解性が悪く
なり、経時的変化が大きく、再現性ある膜は得に
くいのが欠点である。
さらに異種ポリマーを混合し製膜する方法はか
なり有力な方法であるが、芳香族ポリスルホンは
分子凝集力が大きくそれと相溶性のあるポリマー
は少ない。異種ポリマーを混合する例としてポリ
ビニルピロリドン(J.Appl.polym.Sci.、20、
2377(1976))さらには構造の異なるポリスルホン
同志をブレンドする方法(特開昭54―144456)、
さらには芳香族系のポリエーテルをブレンドする
方法(特開昭54―146279)が提案されている。
しかしポリビニルピロリドン混合系では、孔形
成の主体は水溶性のポリビニルピロリドンがポリ
スルホン膜基体より溶出されることにある。従つ
て比較的長い凝固作用が必要であつたり、ポリビ
ニルピロリドン抽出のための後工程が必要となり
工程が複雑となる。又ポリマー溶出による孔形成
のため膜構造特に透水速度をほぼ規制してしまう
表面緻密層の構造を大巾に変化させることはでき
ず、その結果大巾な透水速度の向上は期待できな
い。さらに同類のポリスルホン同志の組合せは原
液中でのポリマー同志の相溶性は良好なものの凝
固挙動が相互で大差なく同様に緻密層の構造を大
巾に変えられない結果透水速度の大巾な向上は望
めない。
次に芳香族ポリエーテルのブレンドはポリスル
ホンの膜の構造変化を起すのに都合がよいと推さ
れるが、ポリスルホンの強力な分子間力によりポ
リマー同志の原液中での相溶性が悪く、短時間で
相分離を起しやすくそれに伴う膜欠点(ピンホー
ル等)が出現し、安全で良好な性能を有する膜を
得ることは困難であつた。すなわち現在まで高透
水性でかつ高度な選択透過性を有する芳香族ポリ
スルホン系の膜は得られておらず、その開発が待
たれていた。
本発明者らは上記要求を満足すべき芳香族ポリ
スルホンを主体とする選択透過性膜を得んがため
鋭意検討した結果本発明に到達した。
すなわち本発明の要旨とする所は、芳香族ポリ
スルホンと芳香族ポリカーボネートの混合物より
なる選択透過膜であり、特に芳香族ポリスルホ
ン/芳香族ポリカーボネートの比が重量比で99/1
〜50/50であることが望ましく、さらに膜形態と
してはコンパクトな処理装置に組上げられる中空
糸状膜である。
本発明者らは有機溶剤中における芳香族ポリス
ルホンと相溶性のあるポリマー、さらには製膜時
凝固挙動の差を利用して膜構造を多様化するポリ
マーという2つの観点から各種ポリマーを検討し
てきた。ポリスルホンは極性の高い―SO2―基が
ポリマー主鎖中に導入されておりその分子引力は
大きいため、それと相溶性を持たせるポリマーに
も同様に極性の高い官能基、さらに膜構造の多様
化のためには―SO2―結合とは異なる官能基の導
入が適当と考えた。すなわち
The present invention relates to a novel permselective membrane made of a mixture of aromatic polysulfone and aromatic polycarbonate, and a method for producing the same. A large number of polymer compounds have traditionally been used as materials for selectively permeable membranes, such as cellulose, polyacrylonitrile, polyamide, and polysulfone. There is a need for a membrane that can treat treated water, such as waste water, aqueous protein solutions, etc., without cooling, and that has good chemical resistance, toughness, and excellent permselectivity. As such a membrane, a method of imparting permselectivity by forming a membrane from aromatic polysulfone, which has good heat resistance and chemical resistance, which has been conventionally used as an engineering plastic, has been widely attempted. However, the water permeation rate of conventional polysulfone membranes is extremely low, and even hollow fibrous membranes that can have a large membrane area per unit volume cannot exhibit sufficient processing capacity. In order to overcome this drawback, conventional methods have been to increase the affinity of polysulfone with water or to mix different types of polymers. For example, one way to increase affinity with water is to use aromatic polysulfone in which SO 3 Na groups are introduced into the aromatic ring (J.Appl.polym.Sci., 20 , 1885 (1976)).
Or a method of adding salt to the membrane forming stock solution (Japanese Patent Application Laid-Open No. 1983-
16378), but in the former case, the contact angle with water only changes and no significant improvement in the water permeation rate can be expected, and in the latter case, the solubility of the polymer in the membrane forming solution deteriorates, resulting in changes over time. The disadvantage is that it is difficult to obtain reproducible films because of the large amount of film. Furthermore, the method of forming a film by mixing different types of polymers is a fairly effective method, but aromatic polysulfone has a large molecular cohesive force and there are few polymers that are compatible with it. Polyvinylpyrrolidone (J.Appl.polym.Sci., 20 ,
2377 (1976)) and a method of blending polysulfones with different structures (Japanese Patent Application Laid-Open No. 144456-1977),
Furthermore, a method of blending aromatic polyethers has been proposed (Japanese Unexamined Patent Publication No. 146279/1983). However, in the polyvinylpyrrolidone mixed system, the main cause of pore formation is the elution of water-soluble polyvinylpyrrolidone from the polysulfone membrane substrate. Therefore, a relatively long coagulation action is required, and a post-process for extracting polyvinylpyrrolidone is required, making the process complicated. Furthermore, due to the formation of pores due to polymer elution, it is not possible to drastically change the membrane structure, particularly the structure of the surface dense layer that almost restricts the water permeation rate, and as a result, no significant improvement in the water permeation rate can be expected. Furthermore, when combining similar polysulfones, although the polymers have good compatibility in the stock solution, there is no significant difference in coagulation behavior between them, and similarly, the structure of the dense layer cannot be drastically changed, resulting in a significant improvement in water permeation rate. I can't hope. Next, blends of aromatic polyethers are considered to be convenient for causing structural changes in polysulfone membranes, but due to the strong intermolecular forces of polysulfones, the polymers have poor compatibility in the stock solution, resulting in short-term It has been difficult to obtain a membrane that is safe and has good performance because phase separation tends to occur and membrane defects (pinholes, etc.) occur as a result. That is, until now, an aromatic polysulfone membrane having high water permeability and high permselectivity has not been obtained, and its development has been awaited. The inventors of the present invention have arrived at the present invention as a result of extensive studies aimed at creating a permselective membrane mainly composed of aromatic polysulfone that satisfies the above requirements. That is, the gist of the present invention is a selectively permeable membrane made of a mixture of aromatic polysulfone and aromatic polycarbonate, and in particular, the ratio of aromatic polysulfone/aromatic polycarbonate is 99/1 by weight.
It is desirable that the ratio is ~50/50, and the membrane form is a hollow fiber membrane that can be assembled into a compact processing device. The present inventors have investigated various polymers from two perspectives: polymers that are compatible with aromatic polysulfone in organic solvents, and polymers that can diversify membrane structures by utilizing differences in solidification behavior during membrane formation. . Polysulfone has a highly polar - SO 2 - group introduced into the polymer main chain, and its molecular attraction is strong, so polymers that are compatible with polysulfone must also have highly polar functional groups, and further diversification of membrane structures. For this reason, we thought it would be appropriate to introduce a functional group different from the -SO 2 - bond. i.e.
【式】基の
導入が有効であり、かつ芳香環にこの基が導入さ
れている時ポリマー同志の相溶性が向上し、又凝
固挙動の差も大きく製膜時、膜構造を多様化でき
る見通しを得たのである。
本発明で用いる芳香族ポリスルホンとは少なく
とも芳香族環と―O―、―SO2―がポリマー主鎖
中に結合したポリマーで、例えば
等があげられるがこれに限定されるべきものでは
ない。
一方芳香族ポリカーボネートとは、芳香環と
[Formula] The introduction of a group is effective, and when this group is introduced into an aromatic ring, the compatibility between polymers improves, and the difference in solidification behavior is large, making it possible to diversify membrane structures during film formation. I got it. The aromatic polysulfone used in the present invention is a polymer in which at least an aromatic ring and -O-, -SO 2 - are bonded in the polymer main chain, such as etc., but should not be limited to these. On the other hand, aromatic polycarbonate consists of aromatic rings and
【式】基をポリマー主鎖中に有するポリ
マーでブロツク体、グラフト体等を含むものであ
り
等があげられるがこれに限定されるべきものでは
ない。
特に本発明においては、芳香族ポリスルホン/
芳香族ポリカーボネートの比が99/1〜50/50の範
囲、特に98/2〜60/40の範囲にある時透水性の向
上が著しく高くなり、従来のポリスルホン系の膜
より大巾に向上し、25℃の時透水速度は5〜1000
(/hr・m2・Kg/cm2)となり、かつそれにもか
かわらず血清アルブミンの阻止率は90%を超える
というおどろくべき性能を有した膜となる。
このような膜は平膜でも十分利用価値がある
が、単位体積当りの表面積を大きくできる中空繊
維状膜がより好ましい。
次にこのような良好な性能を有する選択透過性
膜を製造する方法であるが、その要旨とする所は
芳香族ポリスルホンの少なくとも1種と芳香族ポ
リカーボネートの少なくとも1種を該ポリスルホ
ン/該ポリカーボネートの重量混合比を99/1〜5
0/50の範囲とし、合計ポリマー量を製膜原液に対
し10〜40wt%となるように有機溶剤に溶解せし
め、引続き湿式又は乾湿式法にて成型せしめるこ
とである。
本発明で使用する有機溶剤は芳香族ポリスルホ
ンと芳香族ポリカーボネートを溶解するものであ
ればどのようなものでもよいが、製膜時溶剤の揮
散による膜の表面緻密化を防止する上で沸点が
100℃以上の溶剤が特に好ましい。
例えばジメチルホルムアミド、ジメチルアセト
アミド、ジメチルスルホキシド、酢酸等がある。
又該ポリスルホン/該ポリカーボネートの比を
99/1〜50/50とすることが不可欠で特に98/2〜60/
40の範囲が好ましい。この比が99/1より大きくな
るとポリカーボネートの共存効果が薄く透水速度
の向上は望めなく、一方50/50より小さくなると
ポリカーボネートの組成が多くなり耐薬品性が低
下する傾向が認められかつ透水速度はあまり改良
されず意味をもたなくなる。
さらに溶剤に溶解する全ポリマー量は10〜
40wt%である必要があり、10wt%未満では原液
粘度が低すぎ、成型加工が困難となり、40wt%
を越えると大巾に透水速度の低下が認められ好ま
しくない。
さらに重要な点であるが、本発明においては湿
式又は乾湿式成型でなければならないということ
である。乾式法、溶融法では全く透水速度は低く
なりすぎ使用にたえない膜となる。
さらに本発明においては、湿式成型において2
重管型ノズルを用いて外管環状部より原液を内管
部より液体を注入しながら同時に押出し水系の凝
固浴中で凝固し中空繊維を製造することは特に好
ましいことである。水系凝固浴とは、水又は水を
主成分とする凝固浴で水と製膜原液の調整に用い
た溶剤の混合水溶液が好んで用いられる。
内管部より注入する液体としては溶剤/水の組
合せ、炭化水素、脂肪酸エステル等が用いられ
る。
このようにして得られた中空繊維を20〜90℃の
温水又は水蒸気中等で延伸することにより透水速
度をかなりコントロールすることができる点も中
空繊維状膜の優れた点である。
このようにして得られた膜はそのまま用いても
よいがグリセリン等で可塑化処理後乾燥して用い
てもよい。
本発明の芳香族ポリスルホン/芳香族ポリカー
ボネートの混合物からなる半透膜は、耐熱性、耐
薬品性に優れると共に、透水速度が大きく、かつ
高い選択透過性を有するので、各種水処理分野や
医療分野、医薬品工業分野の膜分離用途へ有効に
使用することが出来る。
さらに本発明を具体例で示す。
実施例 1
()式に示される芳香族ポリスルホン15g
と、又次式に示される芳香族ポリカーボネート5
g
をジメチルホルムアミド80gに130℃で溶解せし
め過脱泡後、ガラス板上にドクターナイフを用
いて均一に流延し、40℃の20%ジメチルホルムア
ミド水溶液中で凝固した。
得られた膜は厚み80μでその透水速度は150
/hr・m2・Kg/cm2で血清アルブミンの水溶液を
過した場合のアルブミン阻止率は95%であつ
た。
実施例 2
実施例1と同じ組成の原液を用いて中空繊維を
紡糸した。使用したノズルは2重管状ノズルであ
り外管内径2mmφ、内管外径1mmφ、同内径0.5
mmφであり、環状部より原液を23c.c./min、内管
部よりジメチルホルムアミド/水=95/5の混合液
を12c.c./minの割合で押出しノズルより押出され
た中空状原液を空気中3cm落下せしめ、50℃に保
たれた30%ジメチルホルムアミド水溶液中で凝固
せしめた後80m/minの速度で引取り、引続き80
℃の温水中で1.5倍、2.0倍、3.0倍と延伸した。
得られた中空繊維を20本束となしミニモジユー
ルを作製後測定した膜性能は下記のごとくなり、
いずれも良好な性能を示した。[Formula] A polymer that has a group in its main chain, including block bodies, graft bodies, etc. etc., but should not be limited to these. In particular, in the present invention, aromatic polysulfone/
When the ratio of aromatic polycarbonate is in the range of 99/1 to 50/50, especially in the range of 98/2 to 60/40, the water permeability is significantly improved, and is significantly improved compared to conventional polysulfone membranes. , water permeability rate is 5~1000 at 25℃
(/hr・m 2・Kg/cm 2 ), and despite this, the membrane has a surprising performance in that the rejection rate of serum albumin exceeds 90%. Although such a membrane has sufficient utility as a flat membrane, a hollow fibrous membrane is more preferable since it can increase the surface area per unit volume. Next, there is a method for producing a permselective membrane having such good performance, the gist of which is to mix at least one aromatic polysulfone and at least one aromatic polycarbonate into a mixture of the polysulfone/polycarbonate. Weight mixing ratio 99/1~5
0/50, and the total amount of polymer is dissolved in an organic solvent to be 10 to 40 wt% based on the film-forming stock solution, and then molded using a wet or wet-dry method. The organic solvent used in the present invention may be any organic solvent as long as it dissolves the aromatic polysulfone and the aromatic polycarbonate.
Particularly preferred are solvents having a temperature of 100°C or higher. Examples include dimethylformamide, dimethylacetamide, dimethylsulfoxide, and acetic acid. In addition, it is essential that the polysulfone/polycarbonate ratio be 99/1 to 50/50, especially 98/2 to 60/50.
A range of 40 is preferred. When this ratio is larger than 99/1, the coexistence effect of polycarbonate is weak and no improvement in water permeation rate can be expected.On the other hand, when this ratio is smaller than 50/50, the composition of polycarbonate increases and there is a tendency for chemical resistance to decrease and the water permeation rate decreases. It will not be improved much and will no longer have any meaning. Furthermore, the total amount of polymer dissolved in the solvent is 10~
It must be 40wt%; if it is less than 10wt%, the viscosity of the stock solution will be too low and molding will be difficult;
Exceeding this is undesirable as a significant decrease in water permeation rate is observed. A further important point is that the present invention requires wet or wet-dry molding. In the dry method and the melting method, the water permeation rate becomes too low and the membrane becomes unusable. Furthermore, in the present invention, 2
It is particularly preferable to produce hollow fibers by using a double tube type nozzle to inject the stock solution from the annular portion of the outer tube and the liquid from the inner tube while simultaneously coagulating the extrusion in a water-based coagulation bath. The aqueous coagulation bath refers to water or a coagulation bath mainly composed of water, and a mixed aqueous solution of water and the solvent used for preparing the membrane-forming stock solution is preferably used. As the liquid injected from the inner tube, a combination of solvent/water, hydrocarbon, fatty acid ester, etc. are used. Another advantage of hollow fibrous membranes is that the water permeation rate can be considerably controlled by stretching the thus obtained hollow fibers in hot water or steam at 20 to 90°C. The membrane thus obtained may be used as it is, or it may be plasticized with glycerin or the like and then dried. The semipermeable membrane made of the aromatic polysulfone/aromatic polycarbonate mixture of the present invention has excellent heat resistance and chemical resistance, high water permeation rate, and high permselectivity, so it can be used in various water treatment fields and medical fields. , it can be effectively used for membrane separation applications in the pharmaceutical industry. Further, the present invention will be illustrated by specific examples. Example 1 15g of aromatic polysulfone shown in formula ()
and aromatic polycarbonate 5 represented by the following formula
g was dissolved in 80 g of dimethylformamide at 130°C, followed by excessive defoaming, uniformly cast on a glass plate using a doctor knife, and coagulated in a 20% dimethylformamide aqueous solution at 40°C. The resulting membrane has a thickness of 80 μm and a water permeation rate of 150 μm.
When an aqueous solution of serum albumin was passed through the filter at a rate of 95 % , the albumin inhibition rate was 95%. Example 2 A stock solution having the same composition as in Example 1 was used to spin hollow fibers. The nozzle used was a double tubular nozzle, with an outer tube inner diameter of 2 mmφ, an inner tube outer diameter of 1 mmφ, and an inner diameter of 0.5 mm.
mmφ, and the hollow-shaped stock solution is extruded from the annular part at a rate of 23c.c./min and from the inner tube part at a rate of 12c.c./min of a mixture of dimethylformamide/water = 95/5 and extruded from the extrusion nozzle. was dropped 3 cm into the air, coagulated in a 30% dimethylformamide aqueous solution kept at 50°C, then taken up at a speed of 80 m/min, and then
It was stretched 1.5 times, 2.0 times, and 3.0 times in warm water at ℃. The membrane performance measured after making a mini module by bundling 20 of the obtained hollow fibers is as follows.
All showed good performance.
【表】
比較例 1
実施例1で原液組成をポリスルホンのみの
20wt%とした場合を除いて同じ条件で製膜した
所その膜の透水速度は1.2/hr・m2・Kg/cm2と
著しく低下していた。
実施例 3
式()のポリスルホン18重量部、式()の
ポリカーボネート2重量部をジメチルアセトアミ
ド80重量部に120℃で3時間撹拌溶解せしめ、
過脱泡後紡糸原液となした。
該原液を2重管構造を有する紡糸口金の外管環
状部より、又内管部より30%ジメチルアセトアミ
ド水溶液をそれぞれ10ml/min、5ml/minの速
度で押出し、直ちに凝固せしめた。紡止口金は50
℃の60%ジメチルアセトアミド水溶液中に浸漬し
てあり、紡出した中空糸は6m/minの速度で捲
取つた。
紡糸口金は外管部内径1mmφ、内管部外径0.8
mmφ、同内径0.5mmφであつた。
得られた中空糸は内径1mmφ、肉厚150μであ
り、それを10本束となしミニモジユールを作製
後、中空糸内部より純水を流した時の透水速度は
120/hr・m2・Kg/cm2で、0.1g/dlの血清アル
ブミンの水溶液における阻止率は97%であつた。
実施例 4
式()のポリエーテルスルホン12g、実施例
1の式()のポリカーボネート3gをジメチル
スルホキシド85gに溶解せしめた。
該原液をガラス板上にドクターナイフで流延
し、60℃の60%ジメチルスルホキシド中に浸漬し
た。得られた膜は厚みは100μであり透水速度は
700/hr・m2・Kg/cm2で血清アルブミンの阻止
率は91%であつた。[Table] Comparative Example 1 In Example 1, the stock solution composition was changed to only polysulfone.
When a membrane was formed under the same conditions except for the case where the concentration was 20 wt%, the water permeation rate of the membrane was significantly lower to 1.2/hr·m 2 ·Kg/cm 2 . Example 3 18 parts by weight of polysulfone of formula () and 2 parts by weight of polycarbonate of formula () were dissolved in 80 parts by weight of dimethylacetamide with stirring at 120°C for 3 hours,
After excessive defoaming, a spinning stock solution was prepared. A 30% dimethylacetamide aqueous solution was extruded from the outer ring of a spinneret having a double tube structure and from the inner tube at a rate of 10 ml/min and 5 ml/min, respectively, and the stock solution was immediately coagulated. Spinneret is 50
The hollow fibers were immersed in a 60% dimethylacetamide aqueous solution at ℃, and the spun hollow fibers were wound up at a speed of 6 m/min. The spinneret has an inner diameter of 1 mmφ for the outer tube and an outer diameter of 0.8 for the inner tube.
mmφ, and the inner diameter was 0.5 mmφ. The obtained hollow fibers have an inner diameter of 1 mmφ and a wall thickness of 150 μm. After making a mini module by bundling 10 fibers, the water permeation rate when pure water is poured from inside the hollow fibers is
At 120/hr·m 2 ·Kg/cm 2 , the inhibition rate in an aqueous solution of 0.1 g/dl serum albumin was 97%. Example 4 12 g of polyether sulfone of formula () and 3 g of polycarbonate of formula () of Example 1 were dissolved in 85 g of dimethyl sulfoxide. The stock solution was cast onto a glass plate using a doctor knife, and the plate was immersed in 60% dimethyl sulfoxide at 60°C. The resulting membrane has a thickness of 100μ and a water permeation rate of
At 700/hr・m 2・Kg/cm 2 , the inhibition rate of serum albumin was 91%.
Claims (1)
族ポリカーボネートの少なくとも1種の混合物か
らなることを特徴とする選択透過性膜。 2 芳香族ポリスルホン/芳香族ポリカーボネー
トの重量混合比が99/1〜50/50であることを特徴
とする特許請求の範囲第1項記載の選択透過性
膜。 3 膜形態が中空繊維状膜であることを特徴とす
る特許請求の範囲第1項又は第2項記載の選択透
過性膜。 4 純水の透水速度が25℃で5〜1000/hr・
m2・Kg/cm2、かつ血清アルブミンの阻止率が90%
以上であることを特徴とする特許請求の範囲第1
項、又は第2項、又は第3項記載の選択透過性
膜。 5 芳香族ポリスルホンの少なくとも1種と芳香
族ポリカーボネートの少なくとも1種をポリスル
ホン/ポリカーボネートの重量混合比を99/1〜5
0/50の範囲とし、合計ポリマー量を製膜原液に対
し10〜40wt%となるように有機溶剤に溶解せし
め、引続き湿式又は乾湿式法にて成型せしめるこ
とを特徴とする選択透過性膜の製造方法。 6 有機溶剤として水に可溶な、しかも沸点が
100℃以上である溶剤を用いることを特徴とする
特許請求の範囲第5項記載の方法。 7 湿式又は乾湿式成型に際し2重管型ノズルを
用いて、外管環状部より製膜原液を内管部より液
体を同時に吐出しながら水系凝固浴で凝固せし
め、中空繊維状膜を製造することを特徴とする特
許請求の範囲第5項又は第6項記載の方法。[Scope of Claims] 1. A permselective membrane comprising a mixture of at least one aromatic polysulfone and at least one aromatic polycarbonate. 2. The permselective membrane according to claim 1, wherein the weight mixing ratio of aromatic polysulfone/aromatic polycarbonate is 99/1 to 50/50. 3. The permselective membrane according to claim 1 or 2, characterized in that the membrane form is a hollow fibrous membrane. 4 The water permeation rate of pure water is 5 to 1000/hr at 25℃.
m2・Kg/ cm2 , and serum albumin inhibition rate is 90%
Claim 1 characterized in that:
The permselective membrane according to item 1, or 2 or 3. 5 At least one aromatic polysulfone and at least one aromatic polycarbonate are mixed at a polysulfone/polycarbonate weight mixing ratio of 99/1 to 5.
0/50 range, the total amount of polymer is dissolved in an organic solvent to be 10 to 40 wt% based on the membrane forming stock solution, and then formed by a wet or wet-dry method. Production method. 6 As an organic solvent, it is soluble in water and has a boiling point.
The method according to claim 5, characterized in that a solvent having a temperature of 100°C or higher is used. 7. During wet or wet-dry molding, a double-tube nozzle is used to coagulate the membrane-forming stock solution from the annular part of the outer tube in an aqueous coagulation bath while simultaneously discharging the liquid from the inner tube to produce a hollow fibrous membrane. The method according to claim 5 or 6, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12651680A JPS5750508A (en) | 1980-09-11 | 1980-09-11 | Permselective membrane and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12651680A JPS5750508A (en) | 1980-09-11 | 1980-09-11 | Permselective membrane and its production |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5750508A JPS5750508A (en) | 1982-03-25 |
JPS6329562B2 true JPS6329562B2 (en) | 1988-06-14 |
Family
ID=14937137
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12651680A Granted JPS5750508A (en) | 1980-09-11 | 1980-09-11 | Permselective membrane and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5750508A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE8204103L (en) * | 1982-07-02 | 1984-01-03 | Gambro Lundia Ab | FILTRATION MEMBRANE AND SET TO MAKE THE MEMBRANE |
JPS60206416A (en) * | 1984-03-29 | 1985-10-18 | Toyo Soda Mfg Co Ltd | Preparation of polysulfone membrane |
US5480554A (en) * | 1992-05-13 | 1996-01-02 | Pall Corporation | Integrity-testable wet-dry-reversible ultrafiltration membranes and method for testing same |
JP6577781B2 (en) * | 2015-08-03 | 2019-09-18 | 株式会社クラレ | Hollow fiber membrane and method for producing hollow fiber membrane |
-
1980
- 1980-09-11 JP JP12651680A patent/JPS5750508A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5750508A (en) | 1982-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1935341A (en) | Polysulfone and polyethy lene base polymer blend membrane, and its preparing and use | |
JPS6356802B2 (en) | ||
JP4057217B2 (en) | Method for producing solvent-resistant microporous polybenzimidazole thin film | |
JPH0347127B2 (en) | ||
JPH053335B2 (en) | ||
JPS6329562B2 (en) | ||
JPS6153085B2 (en) | ||
JPH08108053A (en) | Cellulose acetate hollow-fiber separation membrane and its production | |
JPH0419890B2 (en) | ||
JPH0929078A (en) | Hollow fiber membrane manufacturing method | |
JP2713294B2 (en) | Method for producing polysulfone-based resin semipermeable membrane | |
JP2882658B2 (en) | Method for producing polysulfone-based semipermeable membrane | |
JPS60172312A (en) | Preparation of polysulfone hollow yarn film | |
KR20010061733A (en) | A polysulfone typed hollow fiber membrane, and a process of preparing for the same | |
JPS62168503A (en) | Separation membrane | |
JPH0712421B2 (en) | Method for producing hollow fiber membrane made of polysulfone | |
JP2533787B2 (en) | Aromatic polysulfone hollow fiber membrane | |
KR930003738B1 (en) | Method for producing aromatic polysulfone hollow fiber membrane | |
JPH0756084B2 (en) | Polysulfone resin hollow system and method for producing the same | |
KR100200040B1 (en) | Sponge-like polysulphone hollow fibre membrane and manufacturing method thereof | |
JP2505496B2 (en) | Semipermeable membrane and manufacturing method thereof | |
JPS6045358A (en) | Serum separating membrane and its preparation | |
JPS5851911A (en) | Method for producing aromatic polyether sulfone hollow fiber semipermeable membrane | |
JPH02164424A (en) | Manufacture of hollow fiber membrane of synthetic polymer | |
KR950004919B1 (en) | Manufacturing method for polysulfone membrane |