JPS63294342A - Injection-blow molding multilayer container - Google Patents
Injection-blow molding multilayer containerInfo
- Publication number
- JPS63294342A JPS63294342A JP62121186A JP12118687A JPS63294342A JP S63294342 A JPS63294342 A JP S63294342A JP 62121186 A JP62121186 A JP 62121186A JP 12118687 A JP12118687 A JP 12118687A JP S63294342 A JPS63294342 A JP S63294342A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- injection
- container
- intermediate layer
- multilayer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010102 injection blow moulding Methods 0.000 title 1
- 239000010410 layer Substances 0.000 claims abstract description 189
- 229920000728 polyester Polymers 0.000 claims abstract description 62
- 230000004888 barrier function Effects 0.000 claims abstract description 60
- 239000002344 surface layer Substances 0.000 claims abstract description 38
- 229920001169 thermoplastic Polymers 0.000 claims abstract description 12
- 239000004416 thermosoftening plastic Substances 0.000 claims abstract description 12
- 229920005992 thermoplastic resin Polymers 0.000 claims abstract description 7
- 238000000071 blow moulding Methods 0.000 claims description 25
- 238000001746 injection moulding Methods 0.000 claims description 11
- 229920003023 plastic Polymers 0.000 claims description 4
- 239000004033 plastic Substances 0.000 claims description 4
- 229920005989 resin Polymers 0.000 abstract description 50
- 239000011347 resin Substances 0.000 abstract description 50
- 230000002087 whitening effect Effects 0.000 abstract description 7
- 238000004383 yellowing Methods 0.000 abstract description 6
- 238000002347 injection Methods 0.000 description 106
- 239000007924 injection Substances 0.000 description 106
- 229920000139 polyethylene terephthalate Polymers 0.000 description 60
- 239000005020 polyethylene terephthalate Substances 0.000 description 60
- 239000007789 gas Substances 0.000 description 56
- 230000035699 permeability Effects 0.000 description 36
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 31
- 239000001301 oxygen Substances 0.000 description 31
- 229910052760 oxygen Inorganic materials 0.000 description 31
- -1 polyethylene Polymers 0.000 description 24
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 18
- 239000002253 acid Substances 0.000 description 18
- 229910001882 dioxygen Inorganic materials 0.000 description 18
- 239000002356 single layer Substances 0.000 description 16
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 12
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 11
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 10
- 239000004952 Polyamide Substances 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 238000000465 moulding Methods 0.000 description 9
- 229920002647 polyamide Polymers 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 229920001577 copolymer Polymers 0.000 description 6
- 230000032798 delamination Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 5
- 150000004985 diamines Chemical class 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 4
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 4
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 4
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 4
- 230000002950 deficient Effects 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 125000006839 xylylene group Chemical group 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- 239000004840 adhesive resin Substances 0.000 description 3
- 229920006223 adhesive resin Polymers 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- UFRKOOWSQGXVKV-UHFFFAOYSA-N ethene;ethenol Chemical compound C=C.OC=C UFRKOOWSQGXVKV-UHFFFAOYSA-N 0.000 description 3
- 239000004715 ethylene vinyl alcohol Substances 0.000 description 3
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000000088 plastic resin Substances 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 239000008399 tap water Substances 0.000 description 3
- 235000020679 tap water Nutrition 0.000 description 3
- JWTDCPGVNRBTKT-UHFFFAOYSA-N 2-[2-(2-hydroxyethoxy)phenoxy]ethanol Chemical compound OCCOC1=CC=CC=C1OCCO JWTDCPGVNRBTKT-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229920001634 Copolyester Polymers 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 241001648319 Toronia toru Species 0.000 description 2
- FDLQZKYLHJJBHD-UHFFFAOYSA-N [3-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=CC(CN)=C1 FDLQZKYLHJJBHD-UHFFFAOYSA-N 0.000 description 2
- 239000001361 adipic acid Substances 0.000 description 2
- 235000011037 adipic acid Nutrition 0.000 description 2
- 125000005907 alkyl ester group Chemical class 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 2
- 230000003203 everyday effect Effects 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 229920001225 polyester resin Polymers 0.000 description 2
- 239000004645 polyester resin Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- IAXFZZHBFXRZMT-UHFFFAOYSA-N 2-[3-(2-hydroxyethoxy)phenoxy]ethanol Chemical compound OCCOC1=CC=CC(OCCO)=C1 IAXFZZHBFXRZMT-UHFFFAOYSA-N 0.000 description 1
- 239000004953 Aliphatic polyamide Substances 0.000 description 1
- 244000201986 Cassia tora Species 0.000 description 1
- 235000016795 Cola Nutrition 0.000 description 1
- 235000011824 Cola pachycarpa Nutrition 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920006121 Polyxylylene adipamide Polymers 0.000 description 1
- 229920002323 Silicone foam Polymers 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- ORLQHILJRHBSAY-UHFFFAOYSA-N [1-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1(CO)CCCCC1 ORLQHILJRHBSAY-UHFFFAOYSA-N 0.000 description 1
- GKXVJHDEWHKBFH-UHFFFAOYSA-N [2-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=CC=C1CN GKXVJHDEWHKBFH-UHFFFAOYSA-N 0.000 description 1
- ISKQADXMHQSTHK-UHFFFAOYSA-N [4-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=C(CN)C=C1 ISKQADXMHQSTHK-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229920003231 aliphatic polyamide Polymers 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 150000001408 amides Chemical group 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 235000013405 beer Nutrition 0.000 description 1
- UBAZGMLMVVQSCD-UHFFFAOYSA-N carbon dioxide;molecular oxygen Chemical compound O=O.O=C=O UBAZGMLMVVQSCD-UHFFFAOYSA-N 0.000 description 1
- 235000014171 carbonated beverage Nutrition 0.000 description 1
- 235000019987 cider Nutrition 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000012809 cooling fluid Substances 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 210000004709 eyebrow Anatomy 0.000 description 1
- 238000002795 fluorescence method Methods 0.000 description 1
- 238000001506 fluorescence spectroscopy Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 235000015203 fruit juice Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 229940051250 hexylene glycol Drugs 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- QZUPTXGVPYNUIT-UHFFFAOYSA-N isophthalamide Chemical compound NC(=O)C1=CC=CC(C(N)=O)=C1 QZUPTXGVPYNUIT-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- RXOHFPCZGPKIRD-UHFFFAOYSA-N naphthalene-2,6-dicarboxylic acid Chemical compound C1=C(C(O)=O)C=CC2=CC(C(=O)O)=CC=C21 RXOHFPCZGPKIRD-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- NCAIGTHBQTXTLR-UHFFFAOYSA-N phentermine hydrochloride Chemical compound [Cl-].CC(C)([NH3+])CC1=CC=CC=C1 NCAIGTHBQTXTLR-UHFFFAOYSA-N 0.000 description 1
- 238000005375 photometry Methods 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 235000015067 sauces Nutrition 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000002453 shampoo Substances 0.000 description 1
- 239000013514 silicone foam Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 235000014214 soft drink Nutrition 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 235000013555 soy sauce Nutrition 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- 238000003856 thermoforming Methods 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
Landscapes
- Containers Having Bodies Formed In One Piece (AREA)
- Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
21明は、プラスチックの射出−ブロー成形多層容器に
関するもので、より詳細には外観特性の改善された二軸
分子配向射出−ブロー成形多層容器に関する。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) No. 21 relates to a plastic injection-blow molded multilayer container, and more particularly to a biaxially oriented injection-blow molded multilayer container with improved appearance characteristics. Regarding.
(従来の技術)
延伸ブロー成形法によるポリエステル容器は、優れた透
明性、適度の剛性を有し、液体洗剤、シャンプー、化粧
品、醤油、ソース等の他に、ビール、コーラ、サイダー
等の炭酸飲料や、果汁、ミネラルウォーターなどの清涼
飲料用容器にも広く使用されるに至っている。(Prior art) Polyester containers made by stretch blow molding have excellent transparency and appropriate rigidity, and can be used for liquid detergents, shampoos, cosmetics, soy sauce, sauces, etc., as well as carbonated beverages such as beer, cola, and cider. It has also come to be widely used in containers for soft drinks such as fruit juice and mineral water.
この延伸Iリエステル容器は、71?リエチレンやポリ
プロピレン等の汎用樹脂容器に比べれば、ガスバリヤ−
性Kiれているとしても、罐やびんがガス透過性が殆ん
どゼロであるのに対して、無視し得ない酸素や炭酸ガス
の透過性を有しており、内容物の保存期間は比較的短か
い期間に限られている。This stretched I polyester container is 71? Compared to general-purpose resin containers such as polyethylene and polypropylene, the gas barrier
Although cans and bottles have almost zero gas permeability, they have a non-negligible permeability to oxygen and carbon dioxide, and the shelf life of the contents is limited. Limited to a relatively short period of time.
この欠点を改善するため、ポリエステルに対して、エチ
レン−ビニルアルコール共重合体ヤキシリレン基含有ポ
リアミドの如きガスバリヤ−性樹脂を組合せ、多層構造
とすることにより、容器のガスバリヤ−性を向上させる
ことが種々提案されている。In order to improve this drawback, various efforts have been made to improve the gas barrier properties of containers by combining polyester with gas barrier resins such as ethylene-vinyl alcohol copolymers and polyamides containing xylylene groups to create a multilayer structure. Proposed.
延伸多層プラスチック容器を製造するには先ず、多層構
造のプリフォームを製造する必要があり、この多層プリ
フォームを製造するために、共押出成形法、多段射出成
形法、共射出成形法等の種々の方法が知られている。To manufacture a stretched multilayer plastic container, it is first necessary to manufacture a multilayer preform, and various methods such as coextrusion, multistage injection molding, and coinjection molding are used to manufacture this multilayer preform. method is known.
(発明が解決しようとする問題点)
共射出成形法で多層プリフォームを形成させる場合、内
外表面層を熱可塑性ポリエステル及び中間層をガスバリ
ヤ−性樹脂として層構成が一般に採用されるが、従来の
共射出成形法(特開昭51−2773号公報)では、多
層プリフォーム内の各層の厚み分布に関して成る種の欠
点を生じることが認められる。(Problems to be Solved by the Invention) When forming a multilayer preform by co-injection molding, a layer structure is generally adopted in which the inner and outer surface layers are thermoplastic polyester and the intermediate layer is a gas barrier resin. It has been recognized that the co-injection molding method (Japanese Patent Application Laid-Open No. 51-2773) suffers from certain drawbacks regarding the thickness distribution of each layer within the multilayer preform.
即ち、プリフォーム底部におけるガスノ9リヤ一層(中
間層)の肉厚方向の位置が内側に偏より、内表面層ポリ
エステルの厚みが底部において著しく減少するのである
。例えば外表面層の厚み(A)と内表面層の厚み(B)
との比が、胴部ではA:B=2:1
であったものが、底部では
A:B=5:1
のよりに、底部内表面層の厚みが著しく減少するのであ
る。That is, the thickness of the inner surface layer of polyester is significantly reduced at the bottom of the preform because the thickness direction of the Gasno9 rear layer (intermediate layer) is biased inward at the bottom of the preform. For example, the thickness of the outer surface layer (A) and the thickness of the inner surface layer (B)
The ratio of A:B in the body was 2:1, but in the bottom the ratio was A:B=5:1, and the thickness of the inner surface layer of the bottom was significantly reduced.
この理由は、射出金型にキャピテイにおいて、溶融樹脂
が流入されるダートは底部に設けられており、従って底
部は他の部分において高温であると共に、底部内表面の
樹脂も他の部分へ流動されるような圧力を受けるためと
考えられる。The reason for this is that in the injection mold cavity, the dart into which the molten resin flows is provided at the bottom, so other parts of the bottom are at a high temperature, and the resin on the inner surface of the bottom also flows to other parts. This is thought to be due to the pressure that they receive.
このように底部内表面層が薄くなると、延伸ブロー成形
に際して内表面層が一段と薄くなり、著しい場合にはガ
スバリヤ一層が内部に露出する傾向をも生じて、内容物
からのがスパリャ一層の吸湿を生じ、これによシ中間層
の気体透過度が増大したり、或いは中間層とポリエステ
ル層との1間剥離を生じたり、更には剥離し、内部に露
出したガスバリヤ一層が内容物中に浮遊する彦どの欠点
を生じる。When the bottom inner surface layer becomes thinner in this way, the inner surface layer becomes even thinner during stretch blow molding, and in severe cases, there is a tendency for the gas barrier layer to be exposed inside, which prevents moisture absorption from the contents. This may increase the gas permeability of the intermediate layer, or cause separation between the intermediate layer and the polyester layer, or even cause separation, with the exposed gas barrier layer floating in the contents. Hikodo has some drawbacks.
また、射出−ブロー成形容器においては、容器の口部、
肩部及び底部の内厚は容器の胴部のそれよりも厚く、従
って、ガスバリヤ−性中間層の厚みも口部、肩部及び底
部においては胴部における、1厚みよりも大きくなるが
、ガスバリヤ−性中間層が未延伸の厚肉の状態で存在す
ることは、容器の外観特性に著しい悪影響をもたらすこ
とがわかった。In addition, in injection-blow molded containers, the mouth of the container,
The internal thickness of the shoulders and bottom is thicker than that of the body of the container, and therefore the thickness of the gas barrier intermediate layer is also greater than the thickness of the gas barrier intermediate layer at the mouth, shoulders and bottom. It has been found that the presence of a thick unstretched intermediate layer has a significant negative effect on the appearance characteristics of the container.
例えば、ガスバリヤ−性に最も優れた熱可塑性樹脂の一
つであるエチレン−ビニルアルコール共重合体は、共射
出に際してプリフォーム周方向に厚みのバラツキを生じ
易く、延伸の程度の少ない容器の肩部や底部では、この
厚みのバラツキが縦スジとなって表われ、容器の外観特
性を損う。また、酸成分の一部としてイソフタル酸成分
及びグリコール成分の一部としてビス(2−ヒドロキシ
エトキシ)ベンゼン成分を含有するガスバリヤ−性ポリ
エステルを中間層としたものでは、底部や肩部が黄色の
外観を呈して、やはり容器全体の外観特性を損う。更に
、メタキシリレン基含有ポリアミドを中間層としたもの
では、底部や肩部が白化し曇った外観を呈し、やはり容
器全体の外観特性を損う傾向がある。For example, ethylene-vinyl alcohol copolymer, which is one of the thermoplastic resins with the best gas barrier properties, tends to have thickness variations in the circumferential direction of the preform during co-injection, and the shoulder area of the container where the degree of stretching is low. At the bottom of the container, this variation in thickness appears as vertical lines, which impairs the appearance characteristics of the container. In addition, when the intermediate layer is made of gas barrier polyester containing an isophthalic acid component as part of the acid component and a bis(2-hydroxyethoxy)benzene component as part of the glycol component, the bottom and shoulders have a yellow appearance. This also impairs the overall appearance of the container. Furthermore, when the intermediate layer is made of metaxylylene group-containing polyamide, the bottom and shoulders become white and have a cloudy appearance, which also tends to impair the overall appearance of the container.
従って、本発明の目的は、従来の射出−ブロー成形多層
容器における上記欠点が解消され、外観特性の顕著に向
上した二軸分子配向射出−ブロー成形多層容器を提供す
るにある。SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a biaxially oriented injection-blow-molded multilayer container which eliminates the above-mentioned drawbacks of conventional injection-blow-molded multilayer containers and has significantly improved appearance characteristics.
(問題点を解決するための手段)
本発明によれば、射出成形法によって製造された、プラ
スチックの多層プリフォームを延伸ブロー成形して製造
された多層容器でありて、口部、肩部及び底部の肉厚は
胴部の肉厚よりも大きく、
少なくとも胴部ハ、熱可塑性ポリエステルから成る内及
び外表面層と、両表面層間に位置するガスバリヤ−性態
可塑性樹脂中間層との多層構造であり、Ul、fスバリ
ャー性熱可塑性樹脂中間層は、内及び外表面層の面内配
向度係数(l+m)が0.50以上の容器部分には必ら
ず存在するが、内及び外表面層の面内配向係数(l+m
)が0.35以下の容器部分では欠如されていることを
特徴とする特許
ロー成形多層容器が提供される。(Means for Solving the Problems) According to the present invention, there is provided a multilayer container manufactured by stretch blow molding a plastic multilayer preform manufactured by an injection molding method. The wall thickness of the bottom part is larger than that of the body part, and at least the body part C has a multilayer structure consisting of inner and outer surface layers made of thermoplastic polyester and a gas barrier-type plastic resin intermediate layer located between both surface layers. Yes, Ul, f Svalier thermoplastic resin intermediate layer is always present in the container part where the in-plane orientation coefficient (l+m) of the inner and outer surface layers is 0.50 or more, but the inner and outer surface layers The in-plane orientation coefficient (l+m
) is absent in the container portion of 0.35 or less.
(作用)
本発明の二軸分子配向射出−ブロー成形多層容器の一例
を示す第1図において、この容器は、口部1、肩部2、
胴部3及び底@4から成っている。(Function) In FIG. 1 showing an example of the biaxial molecular orientation injection-blow molded multilayer container of the present invention, this container has a mouth portion 1, a shoulder portion 2,
It consists of a body 3 and a bottom 4.
この容器では口部1、肩部2及び底部4の肉厚は、胴部
3の肉厚よりも大である。今、容器の胴部中央の厚みを
1として、各容器部分の肉厚の比を表わすと下記第1表
の通りとなる。勿論、肩部2の場合は、首部との接続部
で肉厚が最大で胴部との接続部で肉厚が最小となる肉厚
分布を示し、一方底部4の場合は、底部中心で肉厚が最
大で胴部との接続部で肉厚が最小となる肉厚分布を示す
が、肩部2及び底部4の厚み比は,これらの中間部の厚
み比として示した。In this container, the wall thickness of the mouth portion 1, shoulder portion 2 and bottom portion 4 is greater than the wall thickness of the body portion 3. Now, assuming that the thickness at the center of the body of the container is 1, the ratio of the wall thickness of each container part is as shown in Table 1 below. Of course, in the case of the shoulder part 2, the wall thickness distribution is such that the wall thickness is maximum at the connection part with the neck part and the wall thickness is the minimum thickness at the connection part with the torso part, while in the case of the bottom part 4, the thickness distribution is such that the wall thickness is the maximum at the connection part with the neck part, and the thickness distribution is such that the wall thickness is the minimum thickness at the connection part with the body part. A wall thickness distribution is shown in which the thickness is the maximum and the thickness is the minimum at the connection part with the body, but the thickness ratio of the shoulder part 2 and the bottom part 4 is shown as the thickness ratio of the intermediate part.
第1表
一般的範囲 好適範囲
口 部 2〜2 5 3〜20肩部
1.1〜15 1.3〜10
胴部 1l
底部 1,2〜30 1.5〜25
本発明の容器の内、少なくとも胴部3は、熱可塑性ポリ
エステルの内表面NI5及び外表面層6と、これら両表
面間に位置するガスバリヤ−性態可塑性樹脂の中間NI
7との多層構造体から成るが、このガスバリヤ−性態可
塑性樹脂の中間層7を、内表面層5及び外表面層6の面
内配向係数(l+m)がO.SO以上の容器部分には必
らず存在するが、内表面層5及び外表面層6の面内配向
度係数(を十m)が0.35以下の容器部分では欠如さ
れるように設けていることが顕著な特徴である。第1図
に示される具体例では、容器の口部1では、ガスバリヤ
−性樹脂の中間層7が欠如されており(口部がポリエス
テルのみから成り)、肩部2及び底部4では、中間層7
がこれらの途中に至るように設けられていることが明ら
かである。Table 1 General range Preferred range Opening part 2-2 5 3-20 Shoulder part 1.1-15 1.3-10 Body part 1l Bottom part 1.2-30 1.5-25 Among the containers of the present invention, At least the body 3 has an inner surface NI5 and an outer surface layer 6 made of thermoplastic polyester, and an intermediate NI made of a gas barrier-like plastic resin located between these two surfaces.
7, the intermediate layer 7 of the gas barrier plastic resin has an in-plane orientation coefficient (l+m) of the inner surface layer 5 and the outer surface layer 6 of O. Although it is always present in the container portion of SO or higher, it is provided so that it is absent in the container portion where the in-plane orientation coefficient (10 m) of the inner surface layer 5 and outer surface layer 6 is 0.35 or less. A notable feature is that In the specific example shown in FIG. 1, the middle layer 7 of the gas barrier resin is missing at the mouth 1 of the container (the mouth consists only of polyester), and the middle layer 7 at the shoulder 2 and bottom 4 is omitted. 7
It is clear that the area is located in the middle of these areas.
本明細書において.面内配向度係数(l+m)とは、偏
光螢光光度法で求められる容器壁面方向の分子配向の程
度を定量的に示す特性値である。In this specification. The in-plane orientation coefficient (l+m) is a characteristic value that quantitatively indicates the degree of molecular orientation in the direction of the container wall surface determined by polarized fluorescence photometry.
ポリエステルの分子配向を表わす尺度としてポリエステ
ルの密度が一般に使用されているが、ポリエステルの密
度は分子配向の程度のみならず、熱固定の程度(即ち結
晶化度)によっても大きく変化するため、本発明の場合
分子配向の尺度とはなし得ない。The density of polyester is generally used as a measure to express the molecular orientation of polyester, but since the density of polyester varies greatly depending not only on the degree of molecular orientation but also on the degree of heat fixation (i.e. crystallinity), the present invention In this case, it cannot be used as a measure of molecular orientation.
これに対して、偏光螢光法では、分子配向高分子に吸着
された螢光性分子の光学的異方性を利用して、高分子の
分子配向を定量的に測定するものであり、前述した熱固
定の影響を受けずに分子配向の程度を求め得るものであ
る.この偏光螢光法による容器壁内における二次元配向
度係数は下記式で表わされる。On the other hand, polarized fluorescence spectroscopy uses the optical anisotropy of fluorescent molecules adsorbed on molecularly oriented polymers to quantitatively measure the molecular orientation of polymers. This allows the degree of molecular orientation to be determined without being affected by heat fixation. The two-dimensional orientation coefficient within the wall of the container obtained by this polarized fluorescence method is expressed by the following formula.
1、(ω)=にφ(群s’ω−1−msfn’ω+’n
) −・−ct>上式においてI,(ω)は試料であ
る熱可塑性樹脂系から発するケイ光の偏光成分強度を表
し、lは入射偏光の振動方向と測光偏光方向が平行であ
る事を示し、ωは上記偏光の振動方向に対する試料の回
転角を示す.には試料分子軸と励起ケイ光の振動方向が
平行である時の最大励起確率、φは分子ケイ光収率を示
す。Lは最終成形容器壁面内任意の一方向へ分子が配向
している割合、mはtと直角方向へ分子が配向している
割合、aFi面内無配向の割合を示し、
L + m + n = 1である。1, (ω) = φ (group s'ω-1-msfn'ω+'n
) -・-ct>In the above equation, I and (ω) represent the polarization component intensity of fluorescent light emitted from the thermoplastic resin sample, and l indicates that the vibration direction of the incident polarized light and the photometric polarization direction are parallel. where ω indicates the rotation angle of the sample with respect to the vibration direction of the polarized light. is the maximum excitation probability when the vibration direction of the excited fluorescence is parallel to the sample molecular axis, and φ is the molecular fluorescence yield. L is the ratio of molecules oriented in one arbitrary direction within the wall surface of the final molded container, m is the ratio of molecules oriented in the direction perpendicular to t, and the ratio of non-orientation in the aFi plane, L + m + n = 1.
で定量的に表わす事が出来る。It can be expressed quantitatively.
かくして、ωを変化させ(0°,45°.90°)、こ
のωに対する偏光成分強度1,(ω)を測定し、この3
つの連立方程式の解としてl,m及びnの値を求めるこ
とができる。In this way, ω is changed (0°, 45°, 90°), the polarization component intensity 1,(ω) for this ω is measured, and this 3
The values of l, m, and n can be found as solutions to the two simultaneous equations.
本発明は、ポリエステルの内外表面層の面内配向係数<
L十m >との関係で、ガス・9リヤー性樹脂の中間
層を、容器の特定部分には必らず介在させ且つ他の特定
部分には欠如させることが、容器全体のガスバリヤ−性
を実質上低下させずに、外観特性を向上させるために重
要であるという知見に基づくものである。In the present invention, the in-plane orientation coefficient of the inner and outer surface layers of polyester <
In relation to L0m>, the gas barrier properties of the entire container can be improved by making sure that the intermediate layer of the gas-resistance resin is present in specific parts of the container and absent in other specific parts. This is based on the knowledge that it is important to improve the appearance characteristics without substantially reducing them.
即ち、ポリエステル内外表面層が、面内配向度係数(l
+m)が0.50以上になるように二軸分子配向されて
いる容器部分では1列?リエステルの延伸薄肉化に伴な
い、ガスバリヤ−性樹脂中間層もかなシ薄肉化され、そ
の結果として、ガスバリヤ−性樹脂中間層の存在は、前
述した縦スジ発生、黄色化傾向或いは白化傾向等は肉眼
で判別できない程度に解消されており、外観不良が解消
されている。ま之、この容器部分では器壁全体が薄肉化
されているが、ガスバリヤ−性樹脂中間層が介在するこ
とにより、ガス透過量は小さいレベルに抑制される。That is, the polyester inner and outer surface layers have an in-plane orientation coefficient (l
+m) is 0.50 or more in the container part where the molecules are biaxially oriented in one row? Along with the thinning of the polyester by stretching, the gas barrier resin intermediate layer also becomes thinner, and as a result, the presence of the gas barrier resin intermediate layer causes the above-mentioned vertical streaks, yellowing tendency, whitening tendency, etc. The problem has been resolved to the extent that it cannot be discerned with the naked eye, and the appearance defect has been resolved. Although the entire container wall is thinned in this container portion, the amount of gas permeation is suppressed to a small level due to the presence of the gas barrier resin intermediate layer.
一方、ポリエステル内外表面層が、面内配向度係数(l
−)−m)が0,35以下となるようにしか分子配向さ
れていない容器部分では、容器壁全体が厚肉であるが、
この部分にガスバリヤ−性樹脂中間層を設けないことに
よシ、ポリエステル自体が有する優れた外観特性が維持
され、前述した縦スジ発生、黄色化傾向及び白化傾向が
防止される。On the other hand, the polyester inner and outer surface layers have an in-plane orientation coefficient (l
-) In the container part where the molecules are oriented only so that -m) is 0.35 or less, the entire container wall is thick, but
By not providing a gas barrier resin intermediate layer in this area, the excellent appearance characteristics of the polyester itself are maintained, and the aforementioned vertical streaks, yellowing tendency, and whitening tendency are prevented.
また、この低配向乃至未配向部分は、器壁が肉厚であり
、また容器全体に占める面積比が小さいことから、この
部分を通してのガス透過量も小さいレベルに維持するこ
とができる。Furthermore, since this low-orientation or non-orientation portion has a thick vessel wall and occupies a small area ratio to the entire container, the amount of gas permeation through this portion can also be maintained at a small level.
尚、ポリエステル内外表面層の両方もしくはいずれかの
内、面内配向度係数(L + m )が0.35よυ大
で0.50未満の容器部分には、ガスバリヤ−性樹脂眉
が設けられていてもよいし、また設けられていなくても
よいことが了解されるべきである。Furthermore, gas barrier resin eyebrows are provided in the portion of the container where the in-plane orientation coefficient (L + m) is greater than 0.35 and less than 0.50 in both or either of the inner and outer surface layers of polyester. It should be understood that it may or may not be provided.
今5面内配向度係数(l−)−m)が0.50以上の容
器部分(高配向度部分)の面積をSH1厚みをtH。Now, the area of the container part (high degree of orientation part) where the in-plane orientation coefficient (l-)-m) is 0.50 or more is SH1 the thickness is tH.
酸素透過度係数をPIKとしくt+m)が0,35以下
の容器部分(低配向度部分)の面積をSL、厚みをtL
、酸素透過度係数を九としくt+m)がこれらの中間の
部分(中間配向度部分)の面積をSM、厚みをtM酸素
透過度係数をPM とすると、容器全体としての単位時
間当りの酸素透過量をQとすると、
で表わされる。The oxygen permeability coefficient is PIK, and the area of the container part (low orientation part) where t+m) is 0.35 or less is SL, and the thickness is tL.
, the oxygen permeability coefficient is 9, and t+m) is the area of the intermediate portion (intermediate degree of orientation), SM, the thickness is tM, and the oxygen permeability coefficient is PM, then the oxygen permeation per unit time for the entire container is When the quantity is Q, it is expressed as follows.
また、三層構造の部分、例えば高配向度部分の酸素透過
度係数(p、g、ポリエステル層の酸素透過度をPP、
及び厚みをtPとし、ガスノ々リヤー性樹脂の酸素透過
度係数をP。及び厚みをtoとすると、で表わされる。In addition, the oxygen permeability coefficient (p, g) of the three-layer structure part, for example, the highly oriented part, the oxygen permeability of the polyester layer is PP,
and the thickness is tP, and the oxygen permeability coefficient of the gas-reactive resin is P. and the thickness is expressed as .
ポリエステル層、及び各種ガスバリヤ−性樹脂の27℃
、RH100%の雰囲気下での酸素透過係数(POx
×10” cc”cm/cm2.see−cmHg)を
示すと下記第2表の通りである。27℃ of polyester layer and various gas barrier resins
, oxygen permeability coefficient (POx
×10”cc”cm/cm2. See-cmHg) is shown in Table 2 below.
第2表
ポリエチレンテレフタレート(未延伸) 4.06
(二軸延伸) 2.14
エチレン−ビニルアルコール共重合体
(ビニルアルコール含有! 69.9モル%未1.43
延伸)
同 二軸延伸 0.39ポリ−丁
キシリレンアジパミド(未延伸) 1.04同
二軸延伸 0.42がスパリャー
性ポリエステル(未延伸) 0.88同 二軸延
伸 0,51一般に、分子配向射
出−ブロー成形容器において、容器全表面積当りの各部
分の占める割合いは、SLがS□の2乃至100%、及
びSMがSIIの5乃至200%である。また、各容器
部分の厚みけtLがt8の1.5乃至25倍であり、t
MはtLとtl(との中間の厚みである。Table 2 Polyethylene terephthalate (unstretched) 4.06
(Biaxial stretching) 2.14 Ethylene-vinyl alcohol copolymer (contains vinyl alcohol! 69.9 mol% less than 1.43
Stretched) Biaxial stretching 0.39 Poly-xylylene adipamide (unstretched) 1.04 Same
Biaxial stretching 0.42 is sparring polyester (unstretched) 0.88 Biaxial stretching 0.51 In general, in molecularly oriented injection-blow molded containers, the ratio of each part to the total surface area of the container, SL is S□ is 2 to 100%, and SM is 5 to 200% of SII. Further, the thickness tL of each container portion is 1.5 to 25 times t8, and t
M is the intermediate thickness between tL and tl.
そこで、例えばtL=4XtH,tM=2X稲。So, for example, tL=4XtH, tM=2Xrice.
5L=0.IXS、 l SM=0.2XS、 I 中
間層がポリーm−キシリレンアジパミドであって、内外
層厚み当りの中間層の比率が10%であるとして、器曳
全体にわたって中間層を設けたものの酸素透過量(Ql
)当りの、高配向度部分にのみ中間層を設けたものの
酸素透過ff1(Qz)の比率、Q2/Qlを式(2)
及び(3)から計算すると、Qz/Qxの値は1.02
2となり、低配向乃至未配向度の部分からガスバリヤ−
性樹脂中間層を除外しても、酸素透過量の増大は約2%
と、殆んど無視し得ることが明らかとなる。また、fス
パリャー性樹脂中間漕を除いたポリエステル単層容器に
ついても同様に計算を行い、その酸素透過量(Q3 )
を求め、Q*/QsO比を求めると、0.76の値とな
って。5L=0. IXS, l SM = 0.2 Oxygen permeation rate (Ql
), the ratio of oxygen permeation ff1 (Qz), Q2/Ql, is calculated using the formula (2) when the intermediate layer is provided only in the highly oriented portion.
Calculating from (3), the value of Qz/Qx is 1.02
2, and the gas barrier is
Even if the intermediate resin layer is excluded, the increase in oxygen permeation is approximately 2%.
It becomes clear that it can be almost ignored. In addition, the same calculation was performed for the polyester single-layer container excluding the f-sparring resin intermediate tank, and its oxygen permeation amount (Q3)
, and the Q*/QsO ratio is found to be 0.76.
酸素透過量を約374の値に抑制し得ることもわかる。It can also be seen that the amount of oxygen permeation can be suppressed to a value of about 374.
かくして、本発明によれば、容器の優れたガスバリヤ−
性を維持しながら、容器の外観特性を顕著に向上させ得
ることが明らかとなる。Thus, according to the invention, the container has an excellent gas barrier.
It becomes clear that the appearance characteristics of the container can be significantly improved while maintaining its properties.
構成樹脂材料 上述した容器に使用される樹脂は以下の通りである。Constituent resin material The resins used in the container described above are as follows.
熱可塑性ポリエステル(以下、単にPETと記すことも
ある。)として、ポリエチレンテレフタレートが好適に
使用されるが、ポリエチレンテレフタレートの本質を損
わない限り、エチレンテレフタレート単位を主体とし、
他のポリエステル単位を含むコポリエステルをも使用し
得る。このようなコポリエステル形成用の共重合成分と
しては、イソフタル酸・p−β−オキシエトキシ安息香
酸Φナフタレン2,6−ジカルゲン酸−ジフェノキシエ
タン−4,4′−ジカルゲン醸・5−ナトリウムスルホ
イソフタル酸・アゾビン酸Φセパシン酸またはこれらの
アルキルエステル誘導体などのジカル?ン醸成分、プロ
ピレングリコール・1.4−ブタンジオール・ネオペン
チルグリコール・1゜6−ヘキジレングリコール・シク
ロヘキサンジメタツール・ビスフェノールAのエチレン
オキサイド付加物、ジエチレングリコール、トリエチレ
ングリコール等のグリコール成分を挙げることができる
。Polyethylene terephthalate is preferably used as the thermoplastic polyester (hereinafter sometimes simply referred to as PET), but as long as it does not impair the essence of polyethylene terephthalate, polyethylene terephthalate units are the main component,
Copolyesters containing other polyester units may also be used. Copolymerization components for forming such a copolyester include isophthalic acid, p-β-oxyethoxybenzoic acid, Φnaphthalene, 2,6-dicargenic acid, diphenoxyethane-4,4'-dicargen, and 5-sodium sulfonate. Radicals such as isophthalic acid, azobic acid, Φsepacic acid, or their alkyl ester derivatives? Examples of glycol components include propylene glycol, 1,4-butanediol, neopentyl glycol, 1゜6-hexylene glycol, cyclohexane dimetatool, ethylene oxide adduct of bisphenol A, diethylene glycol, triethylene glycol, etc. be able to.
用いる熱可塑性ポリエステルは、器壁の機械的な性質の
点からは、一般にフェノールとテトラクロルエタンとの
60:40の重量比の混合溶媒中。The thermoplastic polyester used is generally in a mixed solvent of phenol and tetrachloroethane in a weight ratio of 60:40 from the viewpoint of the mechanical properties of the vessel wall.
30℃の温度で測定した場合の固有粘度(IV)が0.
5dl19以上特にo、6a/g以上であることが望ま
しい。更にこのポリエステルは顔料・染料等の着色剤、
紫外線吸収剤、帯電防止剤などの添加剤を含有すること
も出来る。The intrinsic viscosity (IV) when measured at a temperature of 30°C is 0.
It is desirable that it is 5dl19 or more, especially o, 6a/g or more. Furthermore, this polyester can be used as colorants such as pigments and dyes,
It may also contain additives such as ultraviolet absorbers and antistatic agents.
本発明の一態様においては、中間層用ガスバリヤ−性樹
脂層として、ビニルアルコール含有量が40乃至85モ
ル係、特に50乃至80モル係のエチレン−ビニルアル
コール共重合体を用いることが重要である。即ち、エチ
レン−ビニルアルコール共重合体は、′ガスバリヤー性
に最も優れた樹脂の一つであり、そのガスバリヤ−性や
熱成形性はビニルアルコール単位含有量に依存する。ビ
ニルアルコール含有量が40モル係よりも小さい場合に
は、上記範囲内にある場合に比して、酸素や炭酸ガスに
対する透過度が大きく、ガスバリヤ−性を改善するとい
う本発明の目的には適さず、一方この含有量が85モル
係を越えると、水蒸気に対する透過性が大きくなると共
に、溶融成形性が低下するのでやはり本発明の目的に適
さない。In one aspect of the present invention, it is important to use an ethylene-vinyl alcohol copolymer having a vinyl alcohol content of 40 to 85 mol, particularly 50 to 80 mol, as the intermediate gas barrier resin layer. . That is, the ethylene-vinyl alcohol copolymer is one of the resins with the best gas barrier properties, and its gas barrier properties and thermoformability depend on the vinyl alcohol unit content. When the vinyl alcohol content is less than 40 molar ratios, the permeability to oxygen and carbon dioxide is greater than when it is within the above range, and it is not suitable for the purpose of the present invention, which is to improve gas barrier properties. On the other hand, if the content exceeds 85 mol, the permeability to water vapor increases and the melt moldability decreases, which is not suitable for the purpose of the present invention.
エチレン−ビニルアルコール共重合体ハ、エチレンと酢
酸ビニル等のビニルエステルとの共重合体を、そのケン
化度が96%以上、特に99%以上となるようにケン化
することにより得られるが、この共重合体は、上記成分
以外に、酸素や炭酸ガス等へのバリヤー性を損わない範
囲内で、例えば3モル係迄の範囲内で、プロピレン、ブ
チレン−1、イソブチレン等の炭素数3以上のオレフィ
ンを共単量体成分として含有していてもよい。Ethylene-vinyl alcohol copolymer C. Obtained by saponifying a copolymer of ethylene and a vinyl ester such as vinyl acetate so that the degree of saponification is 96% or more, particularly 99% or more, In addition to the above-mentioned components, this copolymer may contain propylene, butylene-1, isobutylene, etc. having a carbon number of 3, within a range that does not impair the barrier properties against oxygen, carbon dioxide, etc., for example, within a range of 3 mol. The above olefin may be contained as a comonomer component.
エチレン−ビニルアルコール共重合体の分子itは、フ
ィルムを形成し得るに足る分子量であれば特に制限はな
いが、一般VCVi、フェノール85重量係と水15重
量係との混合浴媒中、30℃の温度で測定して、固有粘
度(IV)が0.07乃至0A71/9の範囲にあるの
がよい。The molecule it of the ethylene-vinyl alcohol copolymer is not particularly limited as long as it has a molecular weight sufficient to form a film. It is preferable that the intrinsic viscosity (IV) is in the range of 0.07 to 0A71/9 when measured at a temperature of .
本発明の別の態様においては、キシリレン基含有ポリア
ミドを中間層用ガスバリヤ−性樹脂として使用する。キ
シリレン基含有ポリアミドとは、m−キシリレンジアミ
ン及び/又はp−キシリレンジアミンをジアミン成分と
して含むポリアミドであり、より具体的にはジアミン成
分の35モル%以上、特に50モル%以上がm−キシリ
レン及び/又hp−キシリレンジアミンであり、二塩基
酸成分が脂肪族ジカルボン酸及び/又は芳香族ジカルボ
ン酸であり、所望により、全アミド反復単位当り25モ
ル係以下、特に20モル係以下のω−アミノカルボン酸
単位を含む。In another embodiment of the invention, a xylylene group-containing polyamide is used as the gas barrier resin for the intermediate layer. The xylylene group-containing polyamide is a polyamide containing m-xylylene diamine and/or p-xylylene diamine as a diamine component, and more specifically, 35 mol% or more, especially 50 mol% or more of the diamine component is m- xylylene and/or hp-xylylene diamine, in which the dibasic acid component is an aliphatic dicarboxylic acid and/or an aromatic dicarboxylic acid, optionally containing up to 25 molar units, especially up to 20 molar units per total amide repeating unit. Contains ω-aminocarboxylic acid units.
キシリレンジアミン以外のジアミン成分としては、ヘキ
サメチレンジアミンのような脂肪族ジアミン、ピペラジ
ンのような脂環族ジアミン等を挙げることができ、脂肪
族ジカルボン酸としては、アジピン酸、セパシン酸、ス
ペリン酸等が、また芳香族ジカルボン酸としては、テレ
フタル酸、イソフタル酸等が挙げられる。また、ω−ア
ミノカルメン酸成分としては、ε−カプロラクタム、ア
ミンへブタン酸、アミンオクタン識等が挙げられる。キ
シリレン基含有ポリアミドの例は、これに限定されない
が、−リメタキシリレンアジノぐミド、ポリメタキシリ
レンセパカミド、ポリメタキシリレンスベラミド、m−
キシリレン/p−キシリレンアジパミド共重合体、m−
キシリレンアジツクミド/イソフタラミド共重合体、m
−キシリレンアジパミド/イソフタラミド/ε−アミツ
カゾロン酸共重合体などである。Diamine components other than xylylene diamine include aliphatic diamines such as hexamethylene diamine, alicyclic diamines such as piperazine, and examples of aliphatic dicarboxylic acids include adipic acid, sepacic acid, and speric acid. Examples of aromatic dicarboxylic acids include terephthalic acid and isophthalic acid. Examples of the ω-aminocarmenic acid component include ε-caprolactam, aminehebutanoic acid, and amineoctane. Examples of xylylene group-containing polyamides include, but are not limited to, -rimetaxylylene azinogumide, polymethaxylylene sepacamide, polymethaxylylene sveramide, m-
Xylylene/p-xylylene adipamide copolymer, m-
xylylene azitzumide/isophthalamide copolymer, m
-xylylene adipamide/isophthalamide/ε-amitsukazolonic acid copolymer, etc.
また、本発明におけるポリアミドを使用する場合の別の
態様においては、例えば特開昭60−232952号公
報、特開昭60−240452号公報などに記載されて
いるよりな、インフタル酸成分単位を30乃至1000
0モル%囲で含有するジアミン成分単位が35乃至50
モル%、メタキシリレンジアミン成分単位を主成分とす
るジアミン成分単位が35乃至50モル%、及び炭素原
子数が5乃至12の範囲にあるアミノカルメン酸成分単
位がO乃至30モル%から構成される実質上線状の共縮
合ポリアミドも中間層用ガスバリヤ−性樹脂として使用
することができる。In another embodiment of the present invention when the polyamide is used, 30 inphthalic acid component units can be used as described in, for example, JP-A No. 60-232952, JP-A No. 60-240452, etc. ~1000
Diamine component units contained in the 0 mol% range are 35 to 50
mol%, 35 to 50 mol% of diamine component units mainly composed of metaxylylenediamine component units, and O to 30 mol% of aminocarmenic acid component units having a carbon number of 5 to 12. Substantially linear co-condensed polyamides can also be used as gas barrier resins for the intermediate layer.
用いる前記のポリアミド類は、96重量係硫酸を使用し
1.9/100−の濃度及び25℃の温度で測定して0
.4乃至4.5の相対粘度(ηrel )を有すること
が望ましい。The polyamides used are 0% as measured using 96% sulfuric acid at a concentration of 1.9/100 and a temperature of 25°C.
.. It is desirable to have a relative viscosity (ηrel) of 4 to 4.5.
本発明の更に別の態様では、中間層としてガスバリヤ−
性ポリエステルを使用する。In yet another aspect of the invention, a gas barrier is used as the intermediate layer.
Use synthetic polyester.
本発明に用いるガスバリヤ−性ポリエステル(以下BP
Rと記すこともある。)は、重合体鎖中に、テレフタル
醸成分(T)とイソフタル酸成分(I)とを、
T:I = 95 : 5乃至 5:95特に 7
5:25乃至 25ニア5
のモル比で含有し且つエチレングリコール成分(ト))
とビス(2−ヒドロキシエトキシ)ヘンメン成分(BH
EB )とを
E:BHEB=99.999: 0.001乃至2.
0 : 98.0特に 99.95 : 0.05
乃至40:60のモル比で含有する。BHEBとして
は、1.3−ビス(2−ヒドロキシエトキシ)ベンゼン
カ好マしい。Gas barrier polyester (hereinafter referred to as BP) used in the present invention
It is sometimes written as R. ) contains the terephthalic component (T) and the isophthalic acid component (I) in the polymer chain, T:I = 95:5 to 5:95, especially 7
Contained in a molar ratio of 5:25 to 25nia 5 and an ethylene glycol component (g))
and bis(2-hydroxyethoxy)henmen component (BH
EB) and E:BHEB=99.999: 0.001 to 2.
0: 98.0 especially 99.95: 0.05
It is contained in a molar ratio of 40:60 to 40:60. As BHEB, 1,3-bis(2-hydroxyethoxy)benzene is preferred.
本発明に用いるT・I/I: −BHEBコIリエステ
ル(BPR鄭、ポリエチレンテレフタレートに比して約
1/3乃至1/4のオーダーの酸素透過係数(POりを
示し、酸素透過係数の湿度依存性が殆んどないこと、熱
成形が他のガスノ々リヤー性樹脂に比して安定に行われ
ること、及びポリエチレンテレフタレートとの接着が極
めてよいことが利点である。T・I/I used in the present invention: -BHEB co-I polyester (BPR Zheng, exhibits an oxygen permeability coefficient (PO) of the order of about 1/3 to 1/4 compared to polyethylene terephthalate, and has an oxygen permeability coefficient of humidity The advantages are that there is almost no dependence, that thermoforming is more stable than with other gas-based resins, and that the adhesion to polyethylene terephthalate is extremely good.
勿論1本発明に用いるガスバリヤ−性ポリエステル(B
PR)は、その本質を損わない範囲内で少量の他の二塩
基酸成分や他のジオール成分を含有していても何等差支
えなく、例えば、p−β−オキシエトキシ安息香酸等の
オキシカルメン酸類や、ナフタレン2.6−ジカルボン
酸、ジフェノキシエタン−4,4′−ジカルボン酸、5
−ナトリウムスルホイソフタル酸、アジピン酸、七ノ4
シン酸またはこれらのアルキルエステル誘導体などのジ
カルボン酸成分や、プロピレングリコール、1.4−ブ
タンジオール、ネオペンチルグリコール、1.6−ヘキ
ジレングリコール、シクロヘキサンジメタノール、ビス
フェノールAのエチレンオキサイド付加物などのグリコ
ール成分等を含有していてもよい。Of course, one gas barrier polyester (B
PR) may contain small amounts of other dibasic acid components or other diol components within the range that does not impair its essence; for example, oxycarmene such as p-β-oxyethoxybenzoic acid Acids, naphthalene 2,6-dicarboxylic acid, diphenoxyethane-4,4'-dicarboxylic acid, 5
-Sodium sulfoisophthalic acid, adipic acid, 7-4
Dicarboxylic acid components such as cinic acid or their alkyl ester derivatives, propylene glycol, 1,4-butanediol, neopentyl glycol, 1,6-hexylene glycol, cyclohexanedimethanol, ethylene oxide adducts of bisphenol A, etc. It may also contain a glycol component or the like.
このポリエステル(BPR)は、少なくともフィルムを
形成し得るに足る分子址を有するべきであり、一般にフ
ェノールとテトラクロルエタンとの60:40のit比
の混合溶媒中、30℃の温度で測定して、0.3乃至2
.8J/9、特KO,4乃至t、sdx/9の固有粘度
〔η〕を有することが望ましい。This polyester (BPR) should have at least a sufficient molecular weight to form a film, and is generally measured at a temperature of 30°C in a mixed solvent of phenol and tetrachloroethane in an IT ratio of 60:40. , 0.3 to 2
.. It is desirable to have an intrinsic viscosity [η] of 8J/9, special KO, 4 to t, and sdx/9.
上に例示した中間層用ガスバリヤ−性樹脂は、それ単独
で使用し得る他、2種以上の混合物の形でも使用し得る
。また、内外層ポリエステルとの接着性を向上させるた
め、接着剤樹脂とのトライブレンド物やメルトブレンド
物を中間層用射出機に供給して、中間層の射出を行うこ
ともできる。The gas barrier resins for the intermediate layer exemplified above can be used alone or in the form of a mixture of two or more. Furthermore, in order to improve the adhesion between the inner and outer polyester layers, the intermediate layer can be injected by supplying a tri-blend or melt blend with an adhesive resin to an injection machine for the intermediate layer.
接着剤樹脂の適当な例は、脂肪族ポリアミド樹脂、殊に
ナイロン6/ナイロン6.6共重合体の如き共重合ポリ
アミド類である。接着剤樹脂はガスバリヤ−性樹脂10
0重量部当り1乃至100重量部、特に5乃至50重量
部の割合いで用いることができる。Suitable examples of adhesive resins are aliphatic polyamide resins, especially copolyamides such as nylon 6/nylon 6.6 copolymers. Adhesive resin is gas barrier resin 10
It can be used in a proportion of 1 to 100 parts by weight, especially 5 to 50 parts by weight per 0 parts by weight.
多層プリフォームの製造
本発明の射出−ブロー成形多層容器は、共射出法により
多層プリフォームを製造し、この多層プリフォームを延
伸ブロー成形することにより製造されるが、最終容器の
内表面層に対応する熱可塑性ポリエステルを中実流、外
表面層に対応する熱可塑性ポリエステルを外環状流、中
間層に対応するガスバリヤ−性樹脂を中実流と外環状流
との間に位置する内環状流として、ホットランナ−及び
ダートを介して射出金型内に併進的に共射出し、この共
射出に際して、中間層に対応するガスバリヤ−性樹脂の
射出タイミングを、熱可塑性ポリエステルの射出タイミ
ングに比して、射出初期において遅く、射出終期におい
て早くなるように制御し、容器口部並びに肩部及び底部
の低配向乃至未配向の部分に対応するプリフォームの部
分では、ガスバリヤ−性樹脂中間層が欠如されるように
することにより製造される。Manufacture of multilayer preform The injection-blow molded multilayer container of the present invention is manufactured by manufacturing a multilayer preform by a co-injection method and stretch blow molding this multilayer preform. The corresponding thermoplastic polyester is in the solid flow, the thermoplastic polyester corresponding to the outer surface layer is in the outer annular flow, and the gas barrier resin corresponding to the intermediate layer is in the inner annular flow between the solid flow and the outer annular flow. In this co-injection, the injection timing of the gas barrier resin corresponding to the intermediate layer is compared to the injection timing of the thermoplastic polyester. The gas barrier resin intermediate layer is controlled to be slow at the beginning of injection and fast at the end of injection, and the gas barrier resin intermediate layer is absent in the preform parts corresponding to the low or non-oriented parts of the container mouth, shoulders and bottom. Manufactured by
本発明に用いる多層ダイの断面構造を簡略化して概念的
に示す第2図において、この多層ダイ11には、多層プ
リフォームの内表面層に対応するポリエステル用中実流
路12.多層プリフォームの外表面層に対応するポリエ
ステル用外環状流路13、及びこれらの間に多層プリフ
ォームの中間層(ガスバリヤ−性樹脂層)に対応するf
スパリャー性樹脂用内環状流路14が夫々設けられ、こ
れらの各流路12,13及び14fl射出金型ダート(
図示せず)と接続される単一のホットランナ−ノズル1
5に開口している。In FIG. 2, which conceptually shows a simplified cross-sectional structure of the multilayer die used in the present invention, the multilayer die 11 includes solid channels 12 for polyester corresponding to the inner surface layer of the multilayer preform. An outer annular channel 13 for polyester corresponding to the outer surface layer of the multilayer preform, and an F corresponding to the intermediate layer (gas barrier resin layer) of the multilayer preform between these.
Inner annular channels 14 for the sparring resin are provided, and each of these channels 12, 13 and 14fl injection mold dart (
a single hot runner nozzle 1 connected to a hot runner (not shown)
It opens at 5.
本発明においては、内表面層用ポリエステル、外表面層
用ポリエステル及び中間層用ガスバリヤ−性樹脂を、上
記ホットランナ−の各流路及びダートを通して射出金型
内に併進的に射出する。本明X書において、「併進的に
射出する」とは各流路を通して各樹脂が揃った状態で同
時に射出されることを意味する。In the present invention, the polyester for the inner surface layer, the polyester for the outer surface layer, and the gas barrier resin for the intermediate layer are injected translationally into an injection mold through the channels and darts of the hot runner. In this specification, "translationally injected" means that each resin is simultaneously injected in a uniform state through each channel.
ガスバリヤ−性樹脂の射出に先立ったポリエステルの射
出及びガスバリヤ−性樹脂の射出後におけるポリエステ
ルの射出は、内表面層用ポリエステル又は外表面層用ポ
リエステルの何れで行ってもよいし、また両者によって
行ってもよい。好適な一例として、予備射出を内表面層
用、d リエステルで行ない、後射出を外表面層用ポリ
エステルを用いて行なう。The injection of polyester prior to the injection of the gas barrier resin and the injection of the polyester after the injection of the gas barrier resin may be performed using either the polyester for the inner surface layer or the polyester for the outer surface layer, or may be performed using both. It's okay. As a preferred example, a pre-injection is carried out with a d polyester for the inner surface layer and a post-injection is carried out with a polyester for the outer surface layer.
上述した共射出成形法による多層プリフォームの製造を
第3図乃至第5図を例にとって具体的に説明する。The production of a multilayer preform by the above-mentioned co-injection molding method will be specifically explained using FIGS. 3 to 5 as examples.
本発明方法の実施に使用する装置の概略配置を示す第3
図ておいて、内Nポリエステル用射出機16、外層ポリ
エステル用射出機17、及び中間層ガスバリヤ−性樹脂
用射出機18が夫々設けられる。これらの射出機の各々
は、それらの各先端ノズル15a、17a、18mを介
してホットランナ−ブロック19の対応ランナー16
b 、17b及び18bに夫々接続される。ホットラン
ナ−ノズル15には、中心に内層ポリエステル用中実流
路12があり、その周囲に環状の中間層ガスバリヤ−性
樹脂用内環状流路14及び更にその外周に外層ポリエス
テル用外環状流路13が位置しておシ、これら各流路は
ホットランナ−ノズル先端20の近傍で合流するように
なりでいる。第3図に示す多層ダイでは、第一の中央流
路12はプリフォームの内層、内環状流路14Viプリ
フオームの中間層及び外環状流路13はプリフォームの
外層の射出に夫々対応するものである。ホットランナ−
ブロック19には一個のホットランナ−ノズルのみが示
されているが、複数個のホットランナ−ノズルが設けら
れていてもよいことが理解されるべきである。ブロック
19の上方にはこれと一体に締結されたキャビティ型2
1が設けられている。“キャピテイ型21は軸が垂直方
向に延びているキャビティ22を備えており、このキャ
ビティ22け、デー)23を介して、ブロック19のホ
ットランナ−ノズル15に接続される。キャビティ22
け、当然のことながら、ホットランナ−ノズル15に対
応する数だけ並列的に設けられている。Part 3 showing the schematic arrangement of the equipment used to carry out the method of the present invention.
In the figure, an injection machine 16 for inner N polyester, an injection machine 17 for outer layer polyester, and an injection machine 18 for intermediate layer gas barrier resin are provided, respectively. Each of these injection machines injects a corresponding runner 16 of the hot runner block 19 through their respective tip nozzles 15a, 17a, 18m.
b, 17b and 18b, respectively. The hot runner nozzle 15 has a solid flow path 12 for the inner layer polyester at the center, an annular inner annular flow path 14 for the intermediate layer gas barrier resin around the solid flow path 12, and an outer annular flow path for the outer layer polyester around the outer periphery. 13 is located so that these flow paths merge near the hot runner nozzle tip 20. In the multilayer die shown in FIG. 3, the first central channel 12 corresponds to the injection of the inner layer of the preform, the inner annular channel 14 corresponds to the intermediate layer of the preform, and the outer annular channel 13 corresponds to the injection of the outer layer of the preform. be. hot runner
Although only one hot runner nozzle is shown in block 19, it should be understood that multiple hot runner nozzles may be provided. Above the block 19 is a cavity mold 2 which is integrally connected to the block 19.
1 is provided. The cavity mold 21 is provided with a cavity 22 whose axis extends vertically and is connected to the hot runner nozzle 15 of the block 19 via a shaft 23.
As a matter of course, the number of hot runner nozzles 15 corresponds to the number of hot runner nozzles 15 provided in parallel.
このキャビティ型21と射出成形時に組合わされるよう
に、成形に際しプリフォーム内面を規定するコア24及
び成形に際しプリフォームロ部外側を規定する首部把持
割金型(図示せず)が設けられる。A core 24 that defines the inner surface of the preform during molding and a neck grip split mold (not shown) that defines the outer side of the preform bottom during molding are provided to be combined with this cavity mold 21 during injection molding.
先ず、射出成形に際して、各射出機、ホットランナ−ブ
ロック、射出金型は第3図に示す状態にある。First, during injection molding, each injection machine, hot runner block, and injection mold are in the state shown in FIG. 3.
この位置において内層射出機16のスクリューが前進し
、ポリエステル樹脂をノズル16’5FF3層樹脂ラン
ナー16b、ホットランナ−ノズル内の中実流路12、
デート23を通してキャビティ22V3に一定量だけ射
出せしめる。これと若干タイミングを遅らせて、外層用
射出機17のスクリュー並びに中間層射出機18のスク
リューを前進せしめる。これにより、外層樹脂は、ノズ
ル17&、ランナー17b、外環状流路13を通して、
ホットランナ−ノズル先端20に供給され、中間層樹脂
はノズル18a、ランナー18b、内環状流路14を通
して、ホットランナ−ノズル先端20に供給される。At this position, the screw of the inner layer injection machine 16 advances, and the polyester resin is transferred to the nozzle 16'5FF three-layer resin runner 16b, the solid flow path 12 in the hot runner nozzle,
A certain amount is injected into the cavity 22V3 through the date 23. With a slight delay in timing, the screws of the outer layer injection machine 17 and the intermediate layer injection machine 18 are moved forward. As a result, the outer layer resin passes through the nozzle 17&, the runner 17b, and the outer annular flow path 13.
The intermediate layer resin is supplied to the hot runner nozzle tip 20 through the nozzle 18a, the runner 18b, and the inner annular channel 14.
射出初期の段階を示す第4図において、樹脂流の先端2
5がポリエステルから成り、ポリエステル中実流12&
、その周囲の〃スパリャー性樹脂の環状流14m、及び
その外周のポリエステル環状流13mとなった多層樹脂
流がノズル先端に形成される。次いで、射出が進行した
状態を示す第5図において、この多層樹脂流は射出金型
内のオリフィスに流入し、ポリエステル中実流12aが
プリフォーム内表面層26、ポリエステル外環状流13
1が外表面RfI27及びガスバリヤ−性樹脂内環状流
14aがプリフォーム中間層28となることがわかる。In FIG. 4, which shows the initial stage of injection, the tip 2 of the resin flow
5 is made of polyester, polyester solid flow 12 &
A multilayer resin flow is formed at the nozzle tip, consisting of a ring-shaped flow of 14 m of sparring resin around it, and a ring-shaped polyester flow of 13 m around its outer periphery. Next, in FIG. 5, which shows a state in which the injection has progressed, this multilayer resin flow flows into the orifice in the injection mold, and the polyester solid flow 12a flows into the preform inner surface layer 26 and the polyester outer annular flow 13.
It can be seen that 1 is the outer surface RfI 27 and the gas barrier resin inner annular flow 14a is the preform intermediate layer 28.
また、射出金型のキャビティ22が樹脂で充満される前
の一定時期に、ガスバリヤ−性樹脂の射出を終了する。Furthermore, the injection of the gas barrier resin is finished at a certain time before the cavity 22 of the injection mold is filled with the resin.
上述した操作により、高配向度部分に対応するプリフォ
ームの部分には中間Ir128が位置し、低配向乃至未
配向度部分に対応するプリフォームの部分には中間層2
8が欠如されている多層プリフォームが形成される。By the above-described operation, the intermediate Ir128 is located in the part of the preform corresponding to the highly oriented part, and the intermediate layer 2 is located in the part of the preform corresponding to the low oriented or non-oriented part.
A multilayer preform is formed in which 8 is missing.
延伸ブロー成形
かくして得られた多層プリフォームは、多層容器への延
伸ブロー成形に供される。Stretch Blow Molding The multilayer preform thus obtained is subjected to stretch blow molding into a multilayer container.
この延伸ブロー成形に先立って、多層プリフォームを先
ず主樹脂層の延伸可能温度、即ちポリエステルの延伸温
度、一般に80乃至135℃、特に90乃至125℃の
温度に維持する。この調温行程は、多層プリフォームの
ポリエステル樹脂層が実質上非結晶状態(アモルファス
状態)に維持されるように過冷却した後、熱風、赤外線
ヒーター、高周波誘電加熱等のそれ自体公知の加熱機構
により、多層プリフォームを上記温度に加熱することに
よりて行うこともできるし、また前記射出金型内戚いは
前記金型内で、多層プリフォームの温度が前記温度に達
する迄冷却乃至は放冷することによっても行うことがで
きる。Prior to this stretch blow molding, the multilayer preform is first maintained at the stretchable temperature of the main resin layer, ie the stretching temperature of the polyester, generally from 80 to 135°C, particularly from 90 to 125°C. In this temperature control process, the polyester resin layer of the multilayer preform is supercooled so as to be maintained in a substantially non-crystalline state (amorphous state), and then heated using a heating mechanism known per se such as hot air, an infrared heater, or a high-frequency dielectric heating. This can be carried out by heating the multilayer preform to the above temperature, or by cooling or releasing the multilayer preform in the injection mold or the mold until the temperature of the multilayer preform reaches the above temperature. This can also be done by cooling.
延伸ブロー成形操作を説明するための第6図及び第7図
において、有底多層プリフォーム30の口部にマンドレ
ル31を挿入すると共に、その口部を一対の割金型32
a、32bで挾持する。マンドレル31と同軸に垂直移
動可能な延伸棒33が設けられており、この延伸$33
とマンドレル31との間には、流体吸込用の環状通路3
4がある。6 and 7 for explaining the stretch blow molding operation, a mandrel 31 is inserted into the mouth of a bottomed multilayer preform 30, and the mouth is inserted into a pair of split molds 32.
Clamp with a and 32b. A vertically movable stretching rod 33 is provided coaxially with the mandrel 31, and this stretching $33
An annular passage 3 for fluid suction is provided between the mandrel 31 and the mandrel 31.
There are 4.
延伸棒33の先端35をプリフォーム30の底@36の
内側に当てがい、この延伸棒33を下方に移動させるこ
とにより軸方向に引張延伸を行うと共に、前記通路34
を経てプリフォーム30内に流体を吹込み、この流体圧
により金型内でプリフォームを膨張延伸させて容器37
を成形する。The tip 35 of the stretching rod 33 is applied to the inside of the bottom @ 36 of the preform 30 and the stretching rod 33 is moved downward to perform tensile stretching in the axial direction.
A fluid is blown into the preform 30 through the pressure of the fluid, and the preform is expanded and stretched within the mold to form a container 37.
to form.
プリフォームの延伸の程度は、少なくとも胴部に前述し
た分子配向を付与するに足るものであるが、そのために
は、容器軸方向への延伸倍率を1.5乃至5倍、周方向
に2乃至7倍とすることが望ましい。The degree of stretching of the preform is sufficient to give at least the above-mentioned molecular orientation to the body, but for this purpose, the stretching ratio should be 1.5 to 5 times in the axial direction of the container, and 2 to 5 times in the circumferential direction. It is desirable to make it 7 times.
容器を延伸ブロー成形後、容器を構成するポリエステル
を、例えば110乃至230℃に熱処理して、配向ポリ
エステルの熱固定を行うこともできる。After stretch-blow molding the container, the polyester constituting the container can be heat-treated, for example, at 110 to 230° C. to heat-set the oriented polyester.
かくして得られた射出−ブロー成形多層容器の形状は、
単なる円筒状のもののみならず、容器に耐熱性を賦与す
る目的で、例えば特願昭62−23491号公報に記載
されているように、核胴部にピラー状凸部とパネル状凹
部とを備えたものであってもよい。The shape of the injection-blow molded multilayer container thus obtained is as follows:
In addition to a simple cylindrical shape, for the purpose of imparting heat resistance to the container, for example, as described in Japanese Patent Application No. 62-23491, a pillar-shaped convex part and a panel-shaped concave part are provided in the core body. It may be prepared.
また、同じく容器に耐熱性を与えるために、前述した多
層プリフォーム、或いは容器成形完了後に口頚部を、熱
処理により結晶化し、白化させてもよい。Similarly, in order to impart heat resistance to the container, the multilayer preform described above or the mouth and neck portion may be crystallized and whitened by heat treatment after completion of molding of the container.
(発明の効果)
本発明によれば、分子配向射出−ブロー成形多層容器に
おける優れたガスバリヤ−性を保全しながら、その外観
特性を顕著に向上させることができた。(Effects of the Invention) According to the present invention, it was possible to significantly improve the appearance characteristics of a molecularly oriented injection-blow molded multilayer container while maintaining its excellent gas barrier properties.
(実施例) 本発明を次の実施例で更に詳しく説明する。(Example) The invention will be explained in more detail in the following examples.
実施例 1゜
内層用及び外層用射出機がそれぞれハスキー社製のH3
8SPH型、中間J−用射出機が日精樹脂工業(株)製
のFS−17ON型の各射出機、及び岐阜ハスキー(株
)製の試作共射出用金型(共射出用グイ)からなる共射
出装置を使用して、内層用及び外層用射出機に、それぞ
れ固有粘度(IV)が0.77dl19のポリエチレン
テレフタレー)(pE’r、各酸素透過係数は第2表に
記載)′!i−1また中間層用射出機に相対粘度(ηR
EL)が2,24のポリーm−キシレリンアノパミド(
ナイロンぬ■6.各酸素透過係数は第2表に記載)をそ
れぞれ供給した。Example 1゜Injection machines for inner layer and outer layer are H3 manufactured by Husky Co., Ltd.
The injection machines for the 8SPH type and the intermediate J- are the FS-17ON type injection machines made by Nissei Jushi Kogyo Co., Ltd., and the prototype co-injection mold (co-injection goo) made by Gifu Husky Co., Ltd. Using an injection device, polyethylene terephthalate (pE'r, each oxygen permeability coefficient is listed in Table 2)'! i-1 Also, the relative viscosity (ηR
Poly m-xylerin anopamide (EL) of 2,24 (
Nylon ■6. Each oxygen permeability coefficient is listed in Table 2) was supplied.
そして、
■内層用及び外層用射出機の設定温度:後部;280℃
、中間部;280℃、ノズル部;285℃■中間層用射
出機の設定温度:後部;250℃。And, ■Setting temperature of injection machine for inner layer and outer layer: Rear; 280℃
, Middle part: 280°C, Nozzle part: 285°C ■ Setting temperature of the injection machine for the middle layer: Rear part: 250°C.
中間部:250℃、ノズル部;260℃■ホットランナ
−のノズル部温i : 285℃の各温度条件下で、射
出初期に内層用射出機からキャビティ内に溶融PETの
一部を射出し、引き続いて内層用射出機及び外層用射出
機から前記溶融PET、中間層用射出機から溶融■■6
を同時に射出し、射出終期に内層用射出機及び中間層用
射出機を止め、外層用射出機のみから前記溶融PETを
射出して、重量が32.89で、全体の平均肉厚が3.
35−の2種3層構成の多層プリフォームを成形した。Intermediate part: 250°C, nozzle part: 260°C ■Hot runner nozzle part temperature i: 285°C Under each temperature condition, a part of molten PET was injected into the cavity from the inner layer injection machine at the initial stage of injection, Subsequently, the molten PET is melted from the injection machine for the inner layer and the injection machine for the outer layer, and the melted PET is melted from the injection machine for the middle layer.
were simultaneously injected, the inner layer injection machine and the intermediate layer injection machine were stopped at the end of the injection, and the molten PET was injected only from the outer layer injection machine, and the weight was 32.89 mm and the overall average wall thickness was 3.5 mm.
A multilayer preform of 2 types and 3 layers was molded.
得られ九グリフオームを、東洋食品機械(株)製のOB
M−1型二軸延伸ブロ一成形機を使用して、口内径が3
01m、滴注内容積が102 :3LA!(重量は32
.81の円筒状のボトルを成形した。The obtained nine glyphomes were processed using OB manufactured by Toyo Food Machinery Co., Ltd.
Using an M-1 biaxial stretch blow molding machine, the inner diameter of the mouth was 3.
01m, dripping internal volume is 102:3LA! (The weight is 32
.. 81 cylindrical bottles were molded.
ボトルの成形条件は、プリフォーム温度が100℃で2
6秒間加熱した後、金型内で4秒間、ブロー成形をおこ
なった。The bottle molding conditions are a preform temperature of 100℃ and a
After heating for 6 seconds, blow molding was performed in the mold for 4 seconds.
&トルの延伸倍率は縦(軸)方向が2.3倍、横(周)
方向が3.5倍であシ、口部を除<テトル全体の総平均
肉厚は約0.415m、内層:中間RA:外層の厚さ比
は5二1:5であった。以下この多層がトルを”A−A
’と記す。&Tor's stretching ratio is 2.3 times in the vertical (axial) direction, and 2.3 times in the horizontal (circumferential) direction.
The direction was 3.5 times, the total average wall thickness of the entire tettle excluding the mouth was about 0.415 m, and the thickness ratio of inner layer: middle RA: outer layer was 521:5. Below, this multi-layered
'
比較のために、上述した共射出装置及び前記二軸延伸ブ
ロー成形機を使用し、特開昭51−2773号公報に記
載されたような従来の共射出成形法によシ、上記と同一
の形状、肉厚、内容積及び重量を有し、且つ中間層(席
■6)が&)ルの口部、肩部、胴部及び底部の全域に亘
って存在する2種3層構成の多ff4ホトルを成形した
。以下、この多層ボトルを@A−B”と記す。For comparison, using the above-mentioned co-injection apparatus and the above-mentioned biaxial stretch blow molding machine, a conventional co-injection molding method such as that described in JP-A No. 51-2773 was carried out. It has a shape, wall thickness, internal volume, and weight, and the middle layer (seat 6) is present over the entire area of the mouth, shoulders, body, and bottom of the door. A ff4 hotol was molded. Hereinafter, this multilayer bottle will be referred to as "@A-B".
さらK、比較のために、上述した共射出装置のうち、内
層用射出機のみを使用して、前記溶融PETを射出し、
重量が32.89、全体の平均肉厚が3.35mの単層
グリフオームを成形した後、上記の二軸延伸ブロー成形
機により、上記と同じ成形条件で単層のPETylSト
ルを成形した。以下、このPET単層ボトルを”A−C
”と記す。Furthermore, for comparison, the molten PET was injected using only the inner layer injection machine among the co-injection apparatuses described above;
After molding a single-layer glyform having a weight of 32.89 mm and an overall average wall thickness of 3.35 m, a single-layer PETylS mold was molded using the above biaxial stretch blow molding machine under the same molding conditions as above. Below, this PET single-layer bottle will be described as “A-C”.
”.
これら3徨類のPET系多層及びPET単層ボトルのう
ち、A−A、3?)ルについて、口部を除く肩部の軸方
向4個所、同じく胴部5個所、及び同じく底部3個所、
そして、&)ルの周方向には、時計の文字盤に例えた場
合、12時、3時、6時、9時の4個所、即ち合計48
8個所各部分を切取り、明m舊に記載した方法に従って
、PET内層及び外層(但し、中間層が欠如されている
場合にはPET全層)の面内配向度係数(l+m )を
測定した。Among these three types of PET multi-layer and PET single-layer bottles, A-A, 3? ), 4 locations in the axial direction of the shoulder excluding the mouth, 5 locations on the body, and 3 locations on the bottom.
In the circumferential direction of &), if compared to a clock face, there are four locations at 12 o'clock, 3 o'clock, 6 o'clock, and 9 o'clock, that is, a total of 48
Eight portions were cut out, and the in-plane orientation coefficient (l+m) of the PET inner layer and outer layer (however, if the intermediate layer was omitted, the entire PET layer) was measured according to the method described above.
結果を第3表に記す。また、該ボトルの口部を除く肩部
、胴部及び底部の全表面積は約570crn2であり、
そのうち高配向度(面内配向度係数が0.50以上)部
分の面積ssH’に方眼紙を用いて測定したところ、全
体の約75%(当該部分の全体の平均厚さ、tHは0.
28 m ) 、中間配向度(面内配向度係数が0.3
5と0.50との間)部分の面積、SMが同じく約16
%(当該部分の全体の平均厚さ、tlは0.62 tt
m )であり、低配向度(面内配向度係数が0.35以
下)部分の面積。The results are shown in Table 3. Further, the total surface area of the shoulder, body, and bottom of the bottle excluding the mouth is approximately 570 crn2,
When the area ssH' of the highly oriented part (in-plane orientation coefficient is 0.50 or more) was measured using graph paper, it was found to be about 75% of the whole (the average thickness of the whole part, tH is 0.5%).
28 m), intermediate degree of orientation (in-plane orientation coefficient is 0.3
5 and 0.50), the area of the part, SM is also about 16
% (the overall average thickness of the part, tl is 0.62 tt
m ), and the area of the low orientation degree (in-plane orientation coefficient is 0.35 or less) portion.
SLが同じく約9チ(当該部分の全体の平均厚さ。SL is also about 9 inches (the overall average thickness of the part.
tLは1.19 tm )であった。tL was 1.19 tm).
次に、@A−A”、”A−B”及び@A−C”の38類
のメトルについて、「酸素ガス透過度」の測定を、また
、@A−A”及び@A−B”の2種類の&)ルについて
、「容器の外観」及び「容器底部の剥離状態」の各試験
をそれぞれ施行した。Next, we measured the "oxygen gas permeability" of the 38 class metres of @A-A", "A-B" and @A-C". For the two types of &) bottles, tests were conducted on the appearance of the container and the state of peeling at the bottom of the container.
(1)酸素ガス透過度:
測定すべきaai類のボトル内に少量の水を入れ、真空
中で窒素ガスに置換しく窒素濃度は99.99%以上)
1.さらにゴトルロ部とゴム栓との接触衣11fi部分
をエポキシ系接着剤で扱ったのち、該ボトルを温度が3
0℃、相対湿度が80%RHK設定された恒温恒湿槽内
に5週間保存した。(1) Oxygen gas permeability: Put a small amount of water in the AAI bottle to be measured and replace it with nitrogen gas in a vacuum (nitrogen concentration is 99.99% or more)
1. Furthermore, after treating the contact area 11fi between the gotrud and the rubber stopper with epoxy adhesive, the bottle was heated to a temperature of 3.
It was stored for 5 weeks in a constant temperature and humidity chamber set at 0°C and relative humidity of 80% RHK.
その後、各ボトル内へ透過した酸素の濃度をガスクロマ
トグラフを使用して測定し1次式に従って容器の酸素ガ
ス透過度(QO2,単位はe(27m2・day−a
tm )を計算した:Qo* = (mXCt /10
0 〕/ t XOp XAここで、
m : M トル内への窒素ガスの充填i(m)、t;
恒温恒湿槽内での保存期間(=35) (day)、C
tHt日後のがトル内の酸素濃度(マof%)、0p;
酸素ガス分圧(=0.209 ) (atm)、A;ボ
トルの有効面積(m2)。After that, the concentration of oxygen that permeated into each bottle was measured using a gas chromatograph, and the oxygen gas permeability of the container (QO2, unit: e(27m2・day-a
tm ) was calculated: Qo* = (mXCt /10
0]/t
Storage period in constant temperature and humidity chamber (=35) (day), C
After tHt days, the oxygen concentration in Toru (Maof%), 0p;
Oxygen gas partial pressure (=0.209) (atm), A; Effective area of bottle (m2).
酸素ガス透過度# QO2は、1種類のメトルについて
、それぞれ10本ずつ測定した。Oxygen gas permeability #QO2 was measured for 10 meters of each type.
A−A、A−B及びA−Cの各ボトルについて、得られ
た酸素がス透過度の相加平均値、及び標準偏差値を、第
4表にそれぞれ示す。Table 4 shows the arithmetic mean value and standard deviation value of the oxygen permeability obtained for each bottle AA, AB, and AC.
第3表及びig4表から、中間層(W2O層)が約25
%欠如された多層yjf)ル[A−A]と、中間層(W
O2層)がyl?)ルの全域に亘って存在している多層
ボトル[A−B)とでは、酸素ガス透過度の相加平均値
と標準偏差値から酸素バリヤー性に有意差がなく、これ
らのyj?)ルはPET単層のyN)ルよりも、明らか
に酸素バリヤー性に優れていることが知られる。From Table 3 and Table ig4, the middle layer (W2O layer) is approximately 25
% missing multilayer yjf) le [A-A] and intermediate layer (W
O2 layer) is yl? ) There is no significant difference in oxygen barrier properties from the arithmetic mean value and standard deviation value of oxygen gas permeability between the multilayer bottle [A-B] which exists over the entire area of the bottle, and these yj? ) is known to have clearly superior oxygen barrier properties than the PET single layer yN).
(2)容器の外観:
11名のパネルに、@A−A”及び−A−13’の両y
l?)ル(但し、いずれも空ざトル)の肩部及び胴部の
良、不良状態(白化の度合、黄変の度合、縦すじなど)
を視覚によって比較判定させた。(2) Appearance of the container: A panel of 11 people said that both @A-A" and -A-13'
l? ) (however, all are empty). Good or bad condition of the shoulders and body (degree of whitening, degree of yellowing, vertical streaks, etc.)
They were asked to compare and judge visually.
その結果、11名の・ンネル全員が、中間層がボトルの
全域に亘って存在する“A−B”&)ル(比較例)のほ
うが、本発明による@A−A”&トルよりも「白化の度
合が明らかに大きい(部ち不良)。」と回答した。As a result, all 11 people agreed that the "A-B"&)ru (comparative example) in which the middle layer was present over the entire area of the bottle was better than the @A-A''&toru according to the present invention. The degree of whitening is clearly large (part defective).''
(3)容器底部の剥離状態:
あらかじめ空の重量を測定した@A−A”及び″A−B
”の各yf?)ルそれぞれ5本ずつに滴注内容積の50
乃至80%の水道水を充填した後に、21.8.9のク
エン酸と26.2.9の重炭酸ナトリウムを加え、さら
に水道水を充填してボトル内を滴注にした直後に、東洋
食品機械(株)製のM401A−PN型シーリングマシ
ーンを使用して、セプタム付きのアルミニウム製キャッ
プにより、ボトルの口部をシールした。このようにして
得られた各サンプル・メトルを、30 ’C。(3) Peeling condition at the bottom of the container: @A-A” and “A-B” whose empty weight was measured in advance
50 of the injected volume into each of the 5 bottles of each yf?
After filling the bottle with 80% tap water, add citric acid (21.8.9) and sodium bicarbonate (26.2.9), and immediately after filling the bottle with tap water and dripping, Using an M401A-PN sealing machine manufactured by Shokuhin Kikai Co., Ltd., the mouth of the bottle was sealed with an aluminum cap with a septum. Each sample meter thus obtained was incubated at 30'C.
80 %RHに設定された恒温恒湿槽内で一昼夜保存し
た後、キャップのセプタムよシ三方コック付き圧力計を
差し込み、ドレインバルブを開けて、ボトル内平衡圧(
ゲージ圧)が3.95 kl/cm2(4,0ガスグオ
リユーム)になる迄、ガス抜きをおこなった。そして、
それらのサンプル・ボトルを、30℃、80%RHの恒
温恒湿槽内に再び静置し、毎日一定の時間に、目視によ
って各供試ytr)ル(各種ボトルにつき5本ずつ)を
観察し、&)ル底部のゲート部付近にデラミネーション
(剥離)が発生した日数を調べた。After storing it for a day and night in a constant temperature and humidity chamber set at 80% RH, insert a pressure gauge with a three-way cock through the septum of the cap, open the drain valve, and check the equilibrium pressure inside the bottle (
Gas was vented until the gauge pressure became 3.95 kl/cm2 (4.0 gas olium). and,
The sample bottles were placed again in a constant temperature and humidity chamber at 30°C and 80% RH, and each sample bottle (5 bottles of each type) was visually observed at a fixed time every day. , &) The number of days during which delamination (peeling) occurred near the gate at the bottom of the mold was investigated.
本発明による@A−A”&)ルについては。Regarding @A-A”&)le according to the present invention.
35日間における観察では、全数(5本)が底部にデラ
ミネーション(剥離)が発生しなかったのに対し、“A
−B″yf)ル(比較例)では、4日後に最初の1本に
底部剥離が発生し、35日後には全数に底部剥離が発生
していた。Observation for 35 days revealed that no delamination (peeling) occurred on the bottom of all the pieces (5 pieces), while “A”
-B″yf) (comparative example), bottom peeling occurred in the first one after 4 days, and bottom peeling occurred in all the samples after 35 days.
実施例 2゜
日精ニーエスピー機械(株)製のASB−65ONTH
改良型共射出/二軸延伸プロ一成形機を使用して、同機
の内層用及び外層用射出機に、実施例1に記載したポリ
エチレンテレフタレ−1−(PET)ヲそれぞれ供給し
、また中間層用射出機にビニルアルコール含有量が69
.9モルチ、固有粘度が0.1st7gtvエチレンー
ビニルアルコール共重合体(EVOH、各酸素透過係数
は第2表に記載)を供給した。そして、
■内層用及び外層用射出機の設定温度:後部;280℃
、中間部;280℃、ノズル部;285℃。Example 2 ASB-65ONTH manufactured by Nissei NSP Machinery Co., Ltd.
Using an improved co-injection/biaxial stretching molding machine, the polyethylene terephthalate (PET) described in Example 1 was supplied to the inner layer and outer layer injection machines of the same machine, and the intermediate The vinyl alcohol content in the layer injection machine is 69
.. An ethylene-vinyl alcohol copolymer (EVOH, whose oxygen permeability coefficients are listed in Table 2) with a 9 molt and an intrinsic viscosity of 0.1 st and 7 gtv was supplied. And, ■Setting temperature of injection machine for inner layer and outer layer: Rear; 280℃
, middle part: 280°C, nozzle part: 285°C.
■中間層用射出機の設定温度:後部;230℃。■Setting temperature of the injection machine for the middle layer: Rear; 230℃.
中間部;230℃、ノズル部;225℃。Middle part: 230°C, nozzle part: 225°C.
■ホットランナーのノズル部温度:285℃。■Hot runner nozzle temperature: 285℃.
の各温度条件下で、射出初期に内層用射出機からキャビ
ティ内に浴融PETの一部を射出し、引き続いて内層用
射出機及び外層用射出機から前記浴融PET、中間層用
射出機から溶融EVOHを同時に射出し、射出終期に内
層用射出機及び中間層用射出機を止め、外層用射出機の
みから前記溶融PETを射出して、重着が50.1 /
iで、全体の平均肉厚が4.00諺の2種3層構成の多
層グリフオームを成形シ、次いでブローゾーンに於いて
、
■前記多ノープリフォームの加熱温度:130℃。Under each temperature condition, a part of the bath melted PET is injected into the cavity from the inner layer injection machine at the initial stage of injection, and then the bath melted PET and the middle layer injection machine are injected from the inner layer injection machine and the outer layer injection machine. At the end of the injection, the inner layer injection machine and the intermediate layer injection machine were stopped, and the molten PET was injected only from the outer layer injection machine.
In step 1, a multilayer glyform consisting of 2 types and 3 layers with an overall average thickness of 4.00 mm was molded, and then in a blow zone: (1) Heating temperature of the multi-no preform: 130°C.
の条件下で、縦(軸)方向延伸倍率が2.5倍、横(周
)方向延伸倍率が3.4倍の二軸延伸ブロー成形をおこ
なって、口部内径が26rPR1満注内容積が1517
ゴ(重着はs o、 1g)であって、且つ口部を除<
テトル全体の総平均肉厚が約0.473鵠、内層:中間
層:外層の厚さ比は5:1:15の2種3層構成の円筒
状多層ボトルを成形した。Under these conditions, biaxial stretch blow molding was performed with a longitudinal (axial) direction stretch ratio of 2.5 times and a transverse (circumferential) direction stretch ratio of 3.4 times. 1517
(heavy weight is so, 1g), and excluding the mouth part.
A cylindrical multi-layered bottle was molded with a total average wall thickness of about 0.473 mm and a 2-type, 3-layer structure with an inner layer: intermediate layer: outer layer thickness ratio of 5:1:15.
以下、この多層&)ルを°B−A”と記す。Hereinafter, this multilayer &) layer will be referred to as °B-A''.
比較のため、上述した共射出/、:軸延伸ブロー成形機
を使用し、特開昭51−2773号公報に記載されてい
るような従来の共射出成形法により、上記と同一の形状
、肉厚、内容積及び重量を有し、且つ中間層(EVOH
)がボトルの口部、肩部、胴部及び底部の全域に亘って
存在する2種3層の多層ボトルを成形した。以下、この
多層ボトルを”B−B”と記す。For comparison, the same shape and thickness as above were obtained by using the above-mentioned co-injection/, :axial stretch blow molding machine and the conventional co-injection molding method as described in JP-A No. 51-2773. thickness, internal volume and weight, and an intermediate layer (EVOH
) is present throughout the mouth, shoulder, body, and bottom of the bottle, and a multilayer bottle with two types and three layers was molded. Hereinafter, this multilayer bottle will be referred to as "BB".
さらに、比較のために、上述した共射出/二軸延伸ブロ
ー成形機のうち、外層用射出機のみを使用して、前記溶
融PETを射出し、上記と同一の形状、肉厚内容積及び
重量を有するPET単層のがトルを成形した。以下、こ
のPET単層?トルを″B−C”と記す。Furthermore, for comparison, the molten PET was injected using only the outer layer injection machine among the above-mentioned co-injection/biaxial stretch blow molding machines, and the same shape, wall thickness, internal volume, and weight as above were obtained. A single layer of PET was molded. Is this PET single layer below? Tor is written as "B-C".
これら3種類のPET系多層及びPET単層ざトルのう
ち、B−Aボトルについて、実施例1に記載した方法に
従って、該がトル各部分のPET内層及び外層(但し、
中間層が欠如されている場合にはPET全層)の面内配
向度係数(l+m )を測定した。結果を第5表に記す
。また、該が)ルの口部を除く肩部、胴部及び底部の全
表面積は約770crn2であり、そのうち高配向度(
面内配向度係数が0.50以上)部分の面積、SHは全
体の約82チ(当該部分の全体の平均厚さ、tHは0.
35 m)、中間配向度(面内配向度係数が0.35と
0.50との間)部分の面積、SMが同じく約11%(
当該部分の全体の平均厚さ、tMは0.69 ms )
であり、低配向度(面内配向度係数が0.35以下)部
分の面積、SLが約7%(当該部分の全体の平均厚さ。Among these three types of PET multi-layer and PET single-layer bottles, the B-A bottle was prepared according to the method described in Example 1, and the PET inner and outer layers of each part of the bottle (however,
The in-plane orientation coefficient (l+m) of the entire PET layer (in the case where the intermediate layer was omitted) was measured. The results are shown in Table 5. In addition, the total surface area of the shoulder, body, and bottom excluding the mouth of the glass is approximately 770 crn2, of which the highly oriented (
The area of the portion (with an in-plane orientation coefficient of 0.50 or more), SH is approximately 82 cm (the average thickness of the entire portion, tH) is 0.
35 m), the area of the intermediate degree of orientation (in-plane orientation coefficient between 0.35 and 0.50), and the SM are also approximately 11% (
The overall average thickness of the part, tM, is 0.69 ms)
The area of the low-orientation (in-plane orientation coefficient is 0.35 or less) portion, SL, is approximately 7% (the average thickness of the entire portion).
tLは1.61 m )であった。tL was 1.61 m).
次に、実施例1にそれぞれ記載した各測定方法に従って
、”B−A”、“B−B″及び“B−C”の3種類のy
l?)ルについて「酸素ガス透過度」の+1111定1
−!り、’B−A’及び−B−B’の2s類のボトルに
対して「容器の外観」及び「容器底部の剥離状態」の各
試験を施行した。Next, according to each measurement method described in Example 1, three types of y, "B-A", "B-B", and "B-C" were measured.
l? ) for "Oxygen gas permeability" +1111 constant 1
-! 2s type bottles of 'B-A' and -B-B' were subjected to tests on the appearance of the container and the state of peeling at the bottom of the container.
(1) 酸素ガス透過度:
上記3徨類のボトルについて、得られた酸素ガス透過度
の相加平均値及び標準偏差値を、第6表にそれぞれ示す
。(1) Oxygen gas permeability: Table 6 shows the arithmetic mean and standard deviation values of the oxygen gas permeability obtained for the three types of bottles mentioned above.
第5表及び第6表から、中間層(EVOH層)が約18
%欠如された多層ボトル[B−A]と、中間層(EVO
H層)がボトルの全域に亘って存在している多層ボトル
[B−B〕とでは、酸素ガス透過度の相加平均値と標準
偏差値から酸素バリヤー性に有意差がなく、これらのボ
トルはPET単層のボトル(B−C)よりも、明らかに
酸素パリャ−性に優れていることが知られる。From Tables 5 and 6, the middle layer (EVOH layer) is approximately 18
% missing multilayer bottle [B-A] and middle layer (EVO
There is no significant difference in oxygen barrier properties from the arithmetic mean value and standard deviation value of oxygen gas permeability between the multilayer bottle [B-B] in which the H layer) exists over the entire area of the bottle. is known to have clearly superior oxygen barrier properties than the PET single-layer bottle (B-C).
(2) 容器の外観:
11名のパネル全員が、中間層かがトルの全域に亘って
存在する“B−B″ボトル比較例)のほうが、本発明に
よる”B−A’ yjrトルよりも「縦すじが明らかに
多い(即ち、不良)。」と回答した。(2) Appearance of the container: All 11 panel members agreed that the "B-B" bottle (comparative example) in which the middle layer exists over the entire area was better than the "B-A" bottle according to the present invention. "There are clearly many vertical streaks (that is, defective)," was the answer.
(3)容器底部の剥離状態:
本発明による”B−A”&)ルについては、35日間に
わたる観察では、全数(5本)が底部にデラミネーショ
ン(剥離)が発生しなかったのに対し、″B−B”&ト
ル(比較例)では、2日後に最初の1本に底部剥離が発
生し、35日後には全数に底部剥離が発生していた。(3) Peeling condition at the bottom of the container: Regarding the "B-A" bottles according to the present invention, during observation for 35 days, no delamination (peeling) occurred at the bottom of all the containers (5 bottles). , "B-B"& Tor (comparative example), bottom peeling occurred in the first one after 2 days, and bottom peeling occurred in all the samples after 35 days.
実施例 3゜
実施例2に記載した共射出/二軸延伸ブロー成形機を使
用して、同様の内層用及び外層用射出機に、実施例1に
記載したポリエチレンテレフタレー)(PET)をそれ
ぞれ供給し、また中間61田用射出機に重合体鎖中にテ
レフタル酸成分とインフタル酸成分とを70:30のモ
ル比で含有しており、且つエチレングリコール成分とビ
ス(2−ヒドロキシエトキシ)ベンゼン成分トラ95
: 5のモル比で含有し、固有粘度(工yが0.69d
l/gの熱可塑性ポリエステル(I3PR,各酸素透過
係数は第2表に記載)を供給した。そして、
■内ノー用及び外層用射出機の設定温度:後部;280
℃、中間部;280℃、ノズル部;285℃■中間層用
射出機の設定温度:後部;130℃。Example 3 Using the co-injection/biaxial stretch blow molding machine described in Example 2, the polyethylene terephthalate (PET) described in Example 1 was injected into the same inner layer and outer layer injection machines, respectively. The polymer chain contains a terephthalic acid component and an inphthalic acid component in a molar ratio of 70:30, and an ethylene glycol component and bis(2-hydroxyethoxy)benzene. Ingredient Tora 95
: Contained at a molar ratio of 5, with an intrinsic viscosity (Equation y of 0.69d
1/g of thermoplastic polyester (I3PR, oxygen permeability coefficients listed in Table 2) was supplied. And, ■Setting temperature of injection machine for inner layer and outer layer: Rear; 280
°C, middle part: 280 °C, nozzle part: 285 °C ■ Setting temperature of the injection machine for the middle layer: rear part: 130 °C.
中間部;200℃、ノズル部;225℃■ホットランナ
ーのノズル部温度:285℃の各温度条件下で、射出初
期に内層用射出機からキャピテイ内に溶融PETの一部
を射出し、引き続いて内層用射出機及び外層用射出機か
ら前記溶融PET、中間層用射出機から溶融BPRを同
時に射出し、射出終期に内層用射出機及び中間層用射出
機を止め、外層用射出機のみから前記溶融PETを射出
して、重量が58.8gで、全体の平均肉厚が4.20
mの2種3層構成の多層プリフォームを成形し、次いで
ブローゾーンに於いて、
■前記多層プリフォームの加熱温度:130℃の条件下
で、縦(軸)方向延伸倍率が1.9倍、横(周)方向延
伸倍率が4,0倍の二軸延伸ブロー成形をおこなって、
口部内径が36m、滴注内容積が1526M(重量は5
8.89)であって、且つ口部を除くテトル全体の総平
均肉厚が約0.549肩、内層:中間層:外層の厚さ比
は2:l:3の2種3層構成の円筒状多層ボトルを成形
した。以下、この多層&トルを“C−A′と記す。Middle part: 200°C, nozzle part: 225°C ■Hot runner nozzle temperature: 285°C Under each temperature condition, a part of molten PET was injected from the inner layer injection machine into the cavity at the initial stage of injection, and then The molten PET is simultaneously injected from the inner layer injection machine and the outer layer injection machine, and the molten BPR is simultaneously injected from the middle layer injection machine, and at the end of the injection, the inner layer injection machine and the middle layer injection machine are stopped, and the above molten PET is injected only from the outer layer injection machine. Molten PET is injected, the weight is 58.8g, and the overall average wall thickness is 4.20g.
A multilayer preform with two types and three layers of M is molded, and then in a blow zone, the longitudinal (axial) direction stretching ratio is 1.9 times under the conditions of (1) Heating temperature of the multilayer preform: 130°C. , by performing biaxial stretch blow molding with a lateral (circumferential) direction stretch ratio of 4.0 times,
The inner diameter of the mouth is 36 m, the internal volume of the dripper is 1526 m (the weight is 5 m)
8.89), and the total average wall thickness of the entire tettle excluding the mouth part is approximately 0.549 shoulders, and the thickness ratio of the inner layer: intermediate layer: outer layer is 2:1:3, which is a two-layer, three-layer structure. A cylindrical multilayer bottle was molded. Hereinafter, this multilayer &tor will be referred to as "C-A'."
比較のため、上述した共射出/二軸延伸ブロー成形機を
使用し、特開昭51−2773号公報に記載されている
ような従来の共射出成形法により、上記と同一の形状、
肉厚、内容積及び重量を有し、且つ中間層(BPR)が
ボトルの口部、肩部、胴部及び底部の全域に亘って存在
する2種3層の多層yl?)ルを成形した。以下、この
多層yN)ルを”C−B”と記す。For comparison, using the above-mentioned co-injection/biaxial stretch blow molding machine, the same shape as above,
A multi-layer bottle of two types and three layers that has wall thickness, internal volume, and weight, and the middle layer (BPR) is present throughout the mouth, shoulder, body, and bottom of the bottle. ) was molded. Hereinafter, this multilayer structure will be referred to as "C-B".
さらに、比較のために、上述した共射出/二軸延伸ブロ
ー成形機のうち、内層用射出機のみを使用して、前記溶
融PETを射出し、上記と同一の形状、肉厚内容積及び
重量を有するPET単)fIのボトルを成形した。以下
、このPET単層?トルを″C−C”と記す。Furthermore, for comparison, the molten PET was injected using only the inner layer injection machine among the co-injection/biaxial stretch blow molding machines described above, and the same shape, wall thickness internal volume, and weight as above were obtained. A PET single) fI bottle was molded. Is this PET single layer below? Tor is written as "C-C".
これら3N類のPET系多層及びPET単層ボトルのう
ち、C−A−jlルについて、実施例1に記載した方法
に従って、該&)ル各部分のPET内層及び外層(但し
、中間層が欠如されている場合にはPET全層)の面内
配向度係数(を十m )を測定した。結果を第7表に記
す。また、該ボトルの口部を除く肩部、胴部及び底部の
全表面積は約865crR2であわ、そのうち高配向度
(面内配向度係数が0,50以上)部分の面積、 Sf
iは全体の約80%(当該部分の全体の平均厚さ、t8
は0.41m+)、中間配向度(面内配向度係数が0.
35と0.50との間)部分の面積、SMが同じく約1
3%(当該部分の全体の平均厚さ、tMは0.80■)
であシ・低配向度(面内配向度係数が0.35以下)部
分の面積、SLが約7%(当該部分の全体の平均厚さ。Among these 3N type PET multi-layer and PET single-layer bottles, C-A-JL was prepared using the PET inner and outer layers of each part of the &)L (however, the middle layer was missing) according to the method described in Example 1. In the case where PET was used, the in-plane orientation coefficient (10 m2) of the entire PET layer was measured. The results are shown in Table 7. In addition, the total surface area of the shoulder, body, and bottom of the bottle excluding the mouth is approximately 865 crR2, of which the area of the high degree of orientation (in-plane orientation coefficient of 0.50 or more) is Sf
i is about 80% of the whole (the average thickness of the whole part, t8
is 0.41m+), intermediate degree of orientation (in-plane orientation degree coefficient is 0.41m+),
35 and 0.50), the area of the part, SM is also about 1
3% (average thickness of the entire part, tM is 0.80■)
The area of the hard and low orientation (in-plane orientation coefficient is 0.35 or less) portion, SL is approximately 7% (the average thickness of the entire portion).
tLは1.74闘)であった。tL was 1.74 fights).
次に、実施例1にそれぞれ記載した各測定方法に従って
、“C−A”、”C−B’及び“C−C″の3種類のy
j?)ルについて「酸素ガス透過度」の測定を、また、
″C−A”及び”C−B”の2種類のボトルに対して「
容器の外観」及び「容器底部の剥離状態」の各試験を施
行した。Next, according to each measurement method described in Example 1, three types of y, "C-A", "C-B', and "C-C", were measured.
j? ) measurement of oxygen gas permeability,
For two types of bottles "C-A" and "C-B"
Tests were conducted on the appearance of the container and the state of peeling at the bottom of the container.
(1)酸素ガス透過度:
上記3種類のがトルについて、得られた酸素ガス透過度
の相加平均値及び標準偏差値を、第8表にそれぞれ示す
。(1) Oxygen gas permeability: Table 8 shows the arithmetic mean value and standard deviation value of the oxygen gas permeability obtained for the three types of gases mentioned above.
第7表及び第8表から、中間層(BPR層)が約20チ
欠如された多層がトル(C−A〕と、中間層(BPR層
)がボトルの全域に亘って存在している多層ボトル(C
−B)とでは、酸素ガス透過度の相加平均値と標準偏差
値から酸素バリヤー性に有意差がなく、これらのボトル
はPET単層のボトル[:C−C)よりも、明らかに酸
素バリヤー性に優れていることが知られる。From Tables 7 and 8, the bottle (C-A) is a multilayer in which the middle layer (BPR layer) is missing by about 20 inches, and the multilayer in which the middle layer (BPR layer) is present over the entire area of the bottle. Bottle (C
-B), there is no significant difference in oxygen barrier properties from the arithmetic mean value and standard deviation value of oxygen gas permeability, and these bottles clearly have a higher oxygen barrier property than the PET single-layer bottle [:C-C). It is known to have excellent barrier properties.
(2)容器の外観:
11名の・母ネル全員が、中間層がテトルの全域に亘っ
て存在する”C−B”&)ル(比較例)のほうが、本発
明によるC−A”ボトルよりも「黄変の度合が明らかに
大きい(即ち、不良)。」と回答した。(2) Appearance of the container: All 11 mothers agreed that the "C-B" bottle (comparative example) in which the middle layer exists over the entire area was better than the "C-A" bottle according to the present invention. ``The degree of yellowing is clearly large (that is, defective).''
(3)容器底部の剥離状態:
本発明による″C−,A’&)ル、及び比較例の″C−
B”ボトルについては、35日間にわたる観察では、い
ずれも全数(5本)が底部にデラミネーション(剥1I
I)は発生しなかった。しかし、@C−B’ボトル(比
較例)は、本発明のC−A”がトルよりもクリープ現象
によるボトルの変形(膨張)が大きかった。(3) Peeling condition at the bottom of the container: "C-, A'&)le according to the present invention and "C-" of the comparative example
Regarding B" bottles, during observation over 35 days, all (5 bottles) had delamination (peeled 1I) on the bottom.
I) did not occur. However, in the @C-B' bottle (comparative example), the deformation (expansion) of the bottle due to the creep phenomenon was greater than in the C-A'' bottle of the present invention.
実施例 4゜
実施例1に記載した共射出装置を使用して、内層用及び
外層用射出機に、実施例1に記載したポリエチレンテレ
フタレー) (PET )を、まり中間層用射出機に、
同じ〈実施例1に記載のf !J −m−キシリレンア
ジパミド(ぬ■6)をそれぞれ供給した。そして、
■内層用及び外層用射出機の設定温度:後部;280℃
、中間部;280℃、ノズル部;285℃■中間層用射
出機の設定温度:後部;250℃。Example 4 Using the co-injection apparatus described in Example 1, the polyethylene terephthalate (PET) described in Example 1 was injected into the inner layer and outer layer injection machines, and the polyethylene terephthalate (PET) described in Example 1 was injected into the intermediate layer injection machine.
Same <f described in Example 1! J-m-xylylene adipamide (Nu 6) was supplied respectively. And, ■Setting temperature of injection machine for inner layer and outer layer: Rear; 280℃
, Middle part: 280°C, Nozzle part: 285°C ■ Setting temperature of the injection machine for the middle layer: Rear part: 250°C.
中間部:250℃、ノズル部;260℃■ホットランナ
−のノズル部温度=285℃の各温度条件下で、射出初
期に内層用射出機からキャビティ内に溶融PETの一部
を射出し、引き続いて内ノー用射出機及び外層用射出機
から前記溶融PETを、また中間層用射出機から溶融M
XD 6を同時に射出し、射出終期に内層用射出機及び
中間層用射出機を止め、外層用射出機のみから前記溶融
PETを射出して、重量が60.39で、全体の平均肉
厚が3.855w+の2種3層構成の多層シリフオーム
を成形した。Middle part: 250℃, nozzle part: 260℃■ Hot runner nozzle part temperature = 285℃ Under each temperature condition, a part of molten PET is injected into the cavity from the inner layer injection machine at the initial stage of injection, and then The molten PET is injected from the injection machine for the inner layer and the injection machine for the outer layer, and the molten M is injected from the injection machine for the middle layer.
XD 6 was simultaneously injected, the inner layer injection machine and the intermediate layer injection machine were stopped at the end of the injection, and the molten PET was injected only from the outer layer injection machine, so that the weight was 60.39 and the overall average wall thickness was A 3.855w+ multilayer silicone foam with two types and three layers was molded.
得られた多層プリフォームを、実施例1に記載した二軸
延伸ブロー成形機を使用して、結晶化させた口部の内径
が22m+、満注内容滴注1547M(重量は60.3
.9)の多層ボトルを成形した。The obtained multilayer preform was crystallized using the biaxial stretch blow molding machine described in Example 1.
.. 9) A multilayer bottle was molded.
該がトルの形状は、特願昭62−23491号公報中の
婬1図乃至第3図に示されているような力量部にピラー
状凸部とノfネル状凹部を備え、且つ底部には星形の凹
み部を有する形状のものであった。The shape of the tor includes a pillar-shaped convex part and a groove-shaped concave part in the strength part, as shown in Figures 1 to 3 of Japanese Patent Application No. 62-23491, and a grooved part in the bottom part. had a star-shaped concavity.
ボトルの成形条件は、グリフオーム温度が100℃で2
0秒間加熱した後、キャビティ内表面が160℃に加熱
されたブロー用の金型内で二軸延伸すると同時に9秒間
ヒートセットしたのち、!ロー用流体を内部冷却用流体
(+5℃に調節された空気)に切換えて、再度10秒間
流体圧を加えた後、直ちに取出し、放冷することによっ
て成形し友。該メトルの延伸倍率は、縦(軸)方向が2
.2倍、横(周)方向が3.3倍であり、口部を除くボ
トル全体の総平均肉厚は、約0.528m、内層:中間
層:外層の厚さ比は5:1:5であった。The bottle molding conditions are: glyphome temperature is 100℃ and
After heating for 0 seconds, the inner surface of the cavity was biaxially stretched in a blow mold heated to 160°C and heat set for 9 seconds. After switching the raw fluid to an internal cooling fluid (air adjusted to +5°C) and applying fluid pressure again for 10 seconds, the molding material was immediately taken out and left to cool. The stretching ratio of the meter is 2 in the longitudinal (axial) direction.
.. 2 times, and 3.3 times in the lateral (circumferential) direction, the total average wall thickness of the entire bottle excluding the mouth is approximately 0.528 m, and the thickness ratio of inner layer: middle layer: outer layer is 5:1:5 Met.
以下、この多層がトルを°D−A”と記す。Hereinafter, this multilayer will be referred to as "D-A".
比較のため、上述した共射出装置及び二軸延伸ブロー成
形機を使用し、特開昭!51−2773号公報に記載さ
れているような従来の共射出成形法により、上記と同一
の形状、肉厚、内容積及び重量を有し、且つ中間層(ぬ
06層)がボトルの口部、肩部、胴部及び底部の全域に
亘って存在する2種3層の多層yk”)ルを成形した。For comparison, the above-mentioned co-injection device and biaxial stretch blow molding machine were used, and JP-A-Sho! By using the conventional co-injection molding method as described in Japanese Patent No. 51-2773, a material having the same shape, wall thickness, internal volume and weight as above, and an intermediate layer (N06 layer) formed at the mouth of the bottle. , a multi-layer structure consisting of two types and three layers existing over the entire area of the shoulder, body and bottom was molded.
以下、この多層ボトルを”D−B’と記す。Hereinafter, this multilayer bottle will be referred to as "D-B".
さらに、比較のために、上述した共射出装置のうちの内
層用射出機のみを使用して前記溶融PETと射出し、上
記の二軸延伸ブロー成形機を使用して、上記と同一の形
状、肉厚、内容積及び重量をMするPET単層のyN)
ルを成形した。以下、とのPET単層&)ルを“D−C
’と記す。Furthermore, for comparison, the molten PET was injected using only the inner layer injection machine of the above-mentioned co-injection apparatus, and the same shape as above was formed using the above-mentioned biaxial stretch blow molding machine. yN of PET single layer with wall thickness, internal volume and weight M)
molded. Below, the PET single layer &)le with “D-C
'
これら3種類のPET系多層及びPET単層&)ルのう
ち、D−A、ISトルについて、実施例IK記載した方
法に従って、該ボトル各部分のPET内層及び外ノー(
但し、中間層が欠如されている場合にはPET全層)の
面内配向度係数(L X m )を測定した。結果を第
9表に示す。また、該ボトルの口部を除く肩部、胴部及
び底部の全表面積は約85012であり、そのうち高配
向度(面内配向度係数が0.50以上)部分の面積、S
8は全体の約80%(当該部分の全体の平均厚さ、tH
は0.37m)、中間配向度(面内配向度係数が0.3
5と0.50との間)部分の面積、SMが同じく約13
%(当該部分の全体の平均厚さ、tMは0.85 m
)であり、低配向度(面内配向度係数が0.35以下)
部分の面積、SLが約7チ(当該部分の全体の平均厚さ
。Among these three types of PET multi-layer and PET single-layer &) bottles, the PET inner layer and outer no.
However, when the intermediate layer was omitted, the in-plane orientation coefficient (L x m ) of the entire PET layer was measured. The results are shown in Table 9. The total surface area of the shoulder, body, and bottom of the bottle excluding the mouth is approximately 85012, of which the area of the highly oriented portion (in-plane orientation coefficient of 0.50 or more) is S
8 is about 80% of the whole (the average thickness of the whole part, tH
is 0.37 m), intermediate degree of orientation (in-plane orientation coefficient is 0.3
5 and 0.50) area, SM is also about 13
% (total average thickness of the part, tM is 0.85 m
), and has a low degree of orientation (in-plane orientation coefficient is 0.35 or less)
The area of the part, SL, is approximately 7 inches (the overall average thickness of the part).
1Lは1.79−)であった。1L was 1.79-).
次に、実施例1にそれぞれ記載した各測定方法に従ッテ
、″D−A”、@D−B’及び@D−C”の3種類のボ
トルについて「酸素ガス透過度」の測定を、また、’D
−A ”及び@D−B’の2種類のボトルに対して「容
器の外観」の試験を施行した。さらに、後述する方法に
従って、「容器底部の剥離状態」の試験をおこなった。Next, the "oxygen gas permeability" was measured for three types of bottles: "D-A", @D-B', and @D-C" according to each measurement method described in Example 1. , also 'D
A "container appearance" test was conducted on two types of bottles: -A'' and @D-B'. Furthermore, a test for the "peeling state of the bottom of the container" was conducted according to the method described below.
(1) 酸素ガス透過度:
上記3f!jl類の&)ルについて、得られた酸素ガス
透過度の相加平均値及び標準偏差値を、第10表にそれ
ぞれ示す。(1) Oxygen gas permeability: 3f above! Table 10 shows the arithmetic mean value and standard deviation value of the oxygen gas permeability obtained for &)l of class jl.
第9表及び第10表から、中間層(MXD 6 f脅)
が約20%欠如された多層&)ル[D−A〕と、中間層
(■■6層)がボトルの全域に亘って存在している多層
yf=”トル[:D−B]とでは、酸素ガス透過度の相
加平均値と標準偏差値から酸素バリヤー性に有意差がな
く、これらのボトルはPET単層のyN)ル[D−C]
よりも、明らかにmAバリヤー性に優れていることが知
られる。From Tables 9 and 10, middle class (MXD 6 f threat)
The multilayer &)ru [D-A], in which approximately 20% of the , there was no significant difference in oxygen barrier properties from the arithmetic mean value and standard deviation value of oxygen gas permeability, and these bottles were
It is known that it has clearly superior mA barrier properties.
(2)容器の外観:
11名のパネル全員が、中間層が&トルの全域に亘って
存在する′″D−B″D−B″ボトルのほうが、本発明
による”D−A″&&トルも「白化の度合が明らかに大
きい(即ち、不良)。」と回答した。(2) Appearance of the container: All 11 panelists agreed that the ``D-B'' D-B bottle, in which the middle layer exists over the entire area, was better than the ``D-A'' bottle according to the present invention. also answered, ``The degree of whitening is clearly large (i.e., defective).''
(3)容器底部の剥離状態:
@D−A”及び”D−B”のがトル65本ずつに、85
℃の熱水を滴注量充填し、キャッピングして5分間ホー
ルドしたのち、中味の水道水が室温(20℃)に戻るま
で水冷した。そして、それらのサンプル・ボトルを、3
0℃。(3) Peeling condition at the bottom of the container: @D-A" and "D-B" are 65 bottles each, 85
℃ hot water was added dropwise, capped and held for 5 minutes, and then cooled with water until the tap water inside returned to room temperature (20 ℃). And those sample bottles, 3
0℃.
80%RHに設定した恒温恒湿槽内に静置して、毎日一
定の時間に、目視によって各供試yfトル(各種がトル
につき5本ずつ)を観察し、ボトル底部のデート部付近
にデラミネーション(剥離)が発生した日数を調べた。Leave it standing in a constant temperature and humidity chamber set at 80% RH, visually observe each sample yf bottle (5 bottles of each type) at a certain time every day, and place it near the date part at the bottom of the bottle. The number of days during which delamination (peeling) occurred was investigated.
本発明による@D−A’ボトルでは、前記恒温恒湿槽内
に静置してから、35日間にわたる観察では、全数(5
本)が底部にデラミネーション(剥離)が発生しなかっ
たのに対し、“D−B″がトル(比較例)では、5日後
に最初の1本に底部剥離が発生し、35日後には、残り
の4本中3本に底部剥離が発生していた。In the @D-A' bottles according to the present invention, when observed for 35 days after being left in the constant temperature and humidity chamber, it was found that all the bottles (5
In contrast to the case of "D-B" (comparative example), delamination occurred on the bottom of the first one after 5 days, and after 35 days. , bottom peeling occurred in three out of the remaining four.
第1図は、本発明の多層容器の一例を示す断面図であり
、
第2図は多層ダイの断面図であり、
第3図は共射出装置の要部断面図であり、第4図及び第
5図は射出初期及び射出の途中を示す説明図であり、
第6図及び第7図は延伸ブロー成形の操作を示す説明図
である。FIG. 1 is a sectional view showing an example of a multilayer container of the present invention, FIG. 2 is a sectional view of a multilayer die, FIG. 3 is a sectional view of main parts of a co-injection device, and FIGS. FIG. 5 is an explanatory view showing the initial stage of injection and the middle of injection, and FIGS. 6 and 7 are explanatory views showing the operation of stretch blow molding.
Claims (1)
層プリフォームを延伸ブロー成形して製造された多層容
器であって、 口部、肩部及び底部の肉厚は胴部の肉厚よりも大きく、 少なくとも胴部は、熱可塑性ポリエステルから成る円及
び外表面層と、両表面層間に位置するガスバリヤー性熱
可塑性樹脂中間層との多層構造であり、該ガスバリヤー
性熱可塑性樹脂中間層は、内及び外表面層の面内配向度
係数(l+m)が0.50以上の容器部分には必らず存
在するが、内及び外表面層の面内配向度係数(l+m)
が0.35以下の容器部分では欠如されていることを特
徴とする外観特性の改善された二軸分子配向射出−ブロ
ー成形多層容器。(1) A multilayer container manufactured by stretch-blow molding a multilayer plastic preform manufactured by an injection molding method, in which the wall thickness of the mouth, shoulders, and bottom is greater than the wall thickness of the body; At least the body has a multilayer structure consisting of a circular outer surface layer made of thermoplastic polyester and a gas barrier thermoplastic resin intermediate layer located between both surface layers, and the gas barrier thermoplastic resin intermediate layer is an inner layer. The in-plane orientation coefficient (l+m) of the inner and outer surface layers is always present in the container part where the in-plane orientation coefficient (l+m) of the outer surface layer is 0.50 or more.
1. A biaxially oriented injection-blow molded multilayer container with improved appearance characteristics, characterized in that 0.35 or less is absent in the container portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62121186A JPS63294342A (en) | 1987-05-20 | 1987-05-20 | Injection-blow molding multilayer container |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62121186A JPS63294342A (en) | 1987-05-20 | 1987-05-20 | Injection-blow molding multilayer container |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63294342A true JPS63294342A (en) | 1988-12-01 |
Family
ID=14804985
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62121186A Pending JPS63294342A (en) | 1987-05-20 | 1987-05-20 | Injection-blow molding multilayer container |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63294342A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003064268A1 (en) * | 2002-01-29 | 2003-08-07 | Yoshino Kogyosho Co.,Ltd. | Biaxially oriented blow-molded bottles and preform thereof |
JP2005239275A (en) * | 2004-02-27 | 2005-09-08 | Yoshino Kogyosho Co Ltd | Biaxial stretching blow mold bottle body |
JP2008094454A (en) * | 2006-10-13 | 2008-04-24 | Dainippon Printing Co Ltd | Plastic container with gas barrier layer |
WO2010101102A1 (en) * | 2009-03-03 | 2010-09-10 | 東洋製罐株式会社 | Multilayered plastic container having superior drop impact resistance |
KR102047106B1 (en) * | 2019-04-05 | 2019-11-20 | (주)케이아이비 | Pre-form structure for manufacturing container |
WO2022153844A1 (en) * | 2021-01-15 | 2022-07-21 | 三菱瓦斯化学株式会社 | Multi-layer hollow container, method for manufacturing same, and method for manufacturing regenerated polyester |
-
1987
- 1987-05-20 JP JP62121186A patent/JPS63294342A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003064268A1 (en) * | 2002-01-29 | 2003-08-07 | Yoshino Kogyosho Co.,Ltd. | Biaxially oriented blow-molded bottles and preform thereof |
US7976918B2 (en) | 2002-01-29 | 2011-07-12 | Yoshino Kogyosho Co., Ltd. | Biaxially drawn, blow-molded bottle and its preform |
US8800794B2 (en) | 2002-01-29 | 2014-08-12 | Yoshino Kogyosho Co., Ltd. | Biaxially drawn, blow-molded bottle and its preform |
JP2005239275A (en) * | 2004-02-27 | 2005-09-08 | Yoshino Kogyosho Co Ltd | Biaxial stretching blow mold bottle body |
JP2008094454A (en) * | 2006-10-13 | 2008-04-24 | Dainippon Printing Co Ltd | Plastic container with gas barrier layer |
WO2010101102A1 (en) * | 2009-03-03 | 2010-09-10 | 東洋製罐株式会社 | Multilayered plastic container having superior drop impact resistance |
JP2010202249A (en) * | 2009-03-03 | 2010-09-16 | Toyo Seikan Kaisha Ltd | Multilayer plastic container with excellent falling shock resistance |
CN102341310A (en) * | 2009-03-03 | 2012-02-01 | 东洋制罐株式会社 | Multilayered plastic container having excellent drop impact resistance |
KR102047106B1 (en) * | 2019-04-05 | 2019-11-20 | (주)케이아이비 | Pre-form structure for manufacturing container |
WO2022153844A1 (en) * | 2021-01-15 | 2022-07-21 | 三菱瓦斯化学株式会社 | Multi-layer hollow container, method for manufacturing same, and method for manufacturing regenerated polyester |
JP7136384B1 (en) * | 2021-01-15 | 2022-09-13 | 三菱瓦斯化学株式会社 | Multilayer hollow container, method for producing same, and method for producing recycled polyester |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR920005541B1 (en) | Parison and blow molding container and manufacturing method | |
EP0354255B1 (en) | Multilayer container and process for production thereof | |
JPH0579494B2 (en) | ||
KR910008698B1 (en) | Multi-layer Gas Barrier Stretched Polyester Container | |
JPH0227124B2 (en) | ||
AU761877B2 (en) | Transparent multilayer polypropylene container with barrier protection | |
JPH05309648A (en) | Multi-layer vessel and its manufacture | |
JPS63294342A (en) | Injection-blow molding multilayer container | |
JPH02229023A (en) | Manufacture of multilayer stretch-molded vessel with intermediate layer arranged offset to inside surface side | |
JPH01254539A (en) | Heat and pressure resistant multiple layer container and its manufacture method | |
JPS6049431B2 (en) | Multilayer container precursor molded body | |
JPS6279258A (en) | Polyester bottle and production thereof | |
JPH02229022A (en) | Manufacture of multilayer stretch-molded vessel with intermediate layer arranged offset to inside surface side | |
JPH0579575B2 (en) | ||
JPS61197205A (en) | Preform for stretch blow molding | |
JPS61259943A (en) | Gas barriering multilayer polyester vessel and manufacture thereof | |
JPH0427097B2 (en) | ||
US12115760B2 (en) | Resin layered body | |
JPH0349812B2 (en) | ||
JPS6344436A (en) | Oriented multilayer plastic vessel and manufacture thereof | |
JPS6228333A (en) | Multilayer gas barrier polyester vessel and manufacture thereof | |
JPH01153444A (en) | Hollow container | |
JPS6367469B2 (en) | ||
JPS61268434A (en) | Multilayer plastic container and its manufacturing method | |
JPH0482100B2 (en) |