[go: up one dir, main page]

JPS63292109A - Optical scanning device - Google Patents

Optical scanning device

Info

Publication number
JPS63292109A
JPS63292109A JP12777187A JP12777187A JPS63292109A JP S63292109 A JPS63292109 A JP S63292109A JP 12777187 A JP12777187 A JP 12777187A JP 12777187 A JP12777187 A JP 12777187A JP S63292109 A JPS63292109 A JP S63292109A
Authority
JP
Japan
Prior art keywords
polygon mirror
rotating polygon
light beam
light
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12777187A
Other languages
Japanese (ja)
Inventor
Nobutada Fukuzawa
延正 福澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP12777187A priority Critical patent/JPS63292109A/en
Publication of JPS63292109A publication Critical patent/JPS63292109A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

PURPOSE:To execute a good and stable optical scanning by constituting a rotary polygon mirror of even pieces of plane-like reflecting surfaces so that an incident light beam is reflected even times, and also, placing a light source and a collimator lens so that the light beam is made incident toward the rotary polygon mirror. CONSTITUTION:Each reflecting surface 1b, 1c which is arranged in the peripheral direction of a rotary polygon mirror 5 is constituted of even pieces of plane-like reflecting surfaces Ib, Ic so as to reflect an incident light beam even times. Also, in a plane where a light beam I from a light source 2 contains a revolving axis 6 of the rotary polygon mirror 5 and orthogonal to the surface to be scanned, the light source 2 and a collimator lens 3 are placed so that the light beam is made incident toward the rotary polygon mirror 5. In such a way, the displacement of a scanning line in the direction vertical to the scanning line can be eliminated essentially.

Description

【発明の詳細な説明】 〔発明の目的〕 「産業上の利用分野」 本発明はレーザ光源等の光源とコリメータレンズと回転
多面鏡とfθレンズを有する走査光学装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] "Industrial Application Field" The present invention relates to a scanning optical device having a light source such as a laser light source, a collimator lens, a rotating polygon mirror, and an fθ lens.

「従来の技術とその問題点」 一般に、各側面に単一の平面状反射面を有する多角柱状
の回転多面鏡を回転することによって、レーザビーム等
の光線を走査し、もってテレビ画偉、電子計算機の出力
、文字等のディスプレイを行い、あるいは被検物体の表
面形状を測定すること等が可能である。第5図(a)、
(b) 、第6図はそれぞれ従来の単一の平面状反射面
を持った回転多面鏡10を用いた走査光学装置の平面図
と断蘭図であり、レーザ光源2カ)らの光線はコリメー
タレンズδにより平行な光束とされ、回転多面鏡10で
反射した光線はfθレンズ4を透過して被走査面AのX
Yの範囲に収束するようになっている。回転多面鏡1o
は例えば正六角柱の周囲を単一の平面状反射面として詔
り、レーザ光源2、コリメータレンズ3、回転多面鏡1
0、fθレンズ4は同一の高さにあった。
"Prior Art and its Problems" In general, by rotating a rotating polygonal mirror having a single planar reflective surface on each side, light beams such as laser beams are scanned, and the beams of light such as a laser beam are scanned. It is possible to display computer output, characters, etc., or measure the surface shape of a test object. Figure 5(a),
(b) and FIG. 6 are a plan view and a diagram, respectively, of a scanning optical device using a conventional rotating polygon mirror 10 having a single planar reflecting surface, and the light beams from the two laser light sources are The collimator lens δ converts the light beam into a parallel beam, and the light beam reflected by the rotating polygon mirror 10 passes through the fθ lens 4 to
It is designed to converge within the Y range. Rotating polygon mirror 1o
For example, a regular hexagonal prism is surrounded by a single planar reflective surface, and a laser light source 2, a collimator lens 3, and a rotating polygon mirror 1 are used.
0, fθ lenses 4 were at the same height.

しかしこういった走査系には次の欠点があった。However, these scanning systems had the following drawbacks.

(1)回転多面鏡10を固定した回転軸11の倒れや単
一の平面状反射面で構成される各反射面の回転多蘭鏡本
体(回転部材)への配設角度の誤差によって走査線が乱
れる。
(1) The scanning line may be affected by the inclination of the rotating shaft 11 to which the rotating polygon mirror 10 is fixed and the error in the arrangement angle of each reflecting surface composed of a single planar reflecting surface with respect to the rotating polygon mirror body (rotating member). is disturbed.

(2)第5図(a)、(b)の様にレーザ光源2、コリ
メータレンズ3は、回転多面鏡10で反射して被走査面
Aの有効幅X、Y間を走査する光束をさまたげない位置
に配置される必要がある。そのためコリメータレンズ3
からの光束の回転多面鏡10の反射面に対する入射角ψ
の分布が非対称になり、最大入射角が大きくなっている
。コリメータレンズδ後の光束の径をDとすると回転多
面鏡10の反射面の幅はD1008ψ必要であるが、ψ
が大きいため、該反射面の幅が大きくなってしまってい
た。また回転多面鏡10を回転して走査する際、入射角
ψが大きいため使用反射面の周方向の長さEも大きくな
っている。
(2) As shown in FIGS. 5(a) and 5(b), the laser light source 2 and collimator lens 3 block the light beam reflected by the rotating polygon mirror 10 and scanning between the effective widths X and Y of the scanned surface A. It needs to be placed in a position that does not exist. Therefore, collimator lens 3
The angle of incidence ψ of the light beam from the rotating polygon mirror 10 on the reflecting surface
distribution becomes asymmetric, and the maximum angle of incidence becomes large. If the diameter of the light beam after the collimator lens δ is D, the width of the reflecting surface of the rotating polygon mirror 10 is required to be D1008ψ, but ψ
Since the reflection surface has a large width, the width of the reflecting surface becomes large. Furthermore, when the rotating polygon mirror 10 is rotated for scanning, the incident angle ψ is large, so the circumferential length E of the reflective surface used is also large.

上述の欠点(1)のため回転軸の精度(回転精度)を極
めて高精度とする必要があり、又回転多面鏡の反射面を
幾何学的にきわめて正確に作る必要があった。欠点(2
)のため、回転多面鏡が大きくなり、又、コリメータレ
ンズ等の配置のため全体の配列の範囲が大きくなり、そ
の結果高価で重いという欠点を持っていた。
Because of the above-mentioned drawback (1), it was necessary to make the rotational axis (rotational accuracy) extremely precise, and it was also necessary to make the reflecting surface of the rotating polygon mirror very precisely geometrically. Disadvantages (2)
), the rotating polygon mirror becomes large, and the arrangement of collimator lenses and the like increases the overall arrangement range, resulting in the drawbacks of being expensive and heavy.

上述の(1)の如き欠点の内回転精度に関しては回転軸
を正確に一定の回転状態に保つために、例えば回転軸を
空気軸受でもって支持することが行われている。かくす
ることによって回転軸が回転中に倒れるという問題はほ
ぼ解決され、従って前述の如き回転軸の倒れに起因する
走査線の乱れは排除される。しかしながら空気軸受は反
射面の回転部材への配設角度の誤差に起因する走査線の
乱れを何ら除去するものではない。
Regarding the above-mentioned drawback (1) in terms of rotation accuracy, in order to maintain the rotating shaft in an accurate and constant rotational state, the rotating shaft is supported by, for example, an air bearing. By doing so, the problem of the rotating shaft falling during rotation is almost solved, and therefore, the above-mentioned disturbance of the scanning line due to the rotating shaft falling is eliminated. However, the air bearing does not eliminate any disturbance in the scanning line caused by an error in the angle at which the reflecting surface is disposed on the rotating member.

しかも空気軸受を正常に作動させるには繁雑な手順が必
要であり、高価な装置になることを免れない。
Moreover, complicated procedures are required to properly operate the air bearing, which inevitably results in an expensive device.

他の方法は米国特許第3,995.1 I o 号明細
書に提案されているように原理的に二枚のシリンドリカ
ルレンズと一枚の結像レンズを使用することによって前
述の如き回転多面鏡の回転軸の倒れ及び反射面の配設角
度の誤差に起因する走査線の乱れを排除するものである
。しかしこの米国特許の方法に於いては一般に良質のシ
リンドリカルレンズを製作することは非常に困難であり
、更に、シリンドリカルレンズの光学装置への組み込み
に際して、その位置決めは容易でないこと等の難点があ
った。
Another method, as proposed in U.S. Pat. This eliminates disturbances in the scanning line caused by inclination of the rotation axis and errors in the arrangement angle of the reflective surface. However, using the method disclosed in this US patent, it is generally very difficult to manufacture high-quality cylindrical lenses, and furthermore, when incorporating the cylindrical lens into an optical device, it is difficult to position it easily. .

その為、特開昭50−109757号公報に、反射部の
各々に入射した光線を偶数回反射するように反射部の各
々が偶数個の平面状反射面で構成されていることを特徴
とする回転多面鏡が提案されている。この回転多面鏡を
用いることによって走査線の走査線に直角方向への変位
を本質的に排除することが出来る。しかし、上述(2)
の欠点は、回転ミラ一体の反射面の各々が単一の平置状
反射面で構成されている限り、さけようがなかった。
For this reason, Japanese Patent Application Laid-Open No. 50-109757 discloses a method in which each of the reflecting sections is composed of an even number of planar reflecting surfaces so that the light rays incident on each of the reflecting sections are reflected an even number of times. A rotating polygon mirror has been proposed. By using this rotating polygon mirror, displacement of the scanning line in a direction perpendicular to the scanning line can be essentially eliminated. However, as mentioned above (2)
This drawback could not be avoided as long as each of the reflecting surfaces of the rotary mirror was composed of a single flat reflecting surface.

本発明は上記従来例のような欠点のない走査光学装置を
提供することを目的とするものである。
It is an object of the present invention to provide a scanning optical device that does not have the drawbacks of the above-mentioned conventional examples.

〔発明の構成〕[Structure of the invention]

「問題点を解決するための手段」 本発明は細線状の光を発する光源と、該光源の光を平行
光とするコリメータレンズと、該平行光を受けて反射さ
せる回転多面鏡と、回転多面鏡からの反射光を透過して
被走査面に収束させるfθレンズを有する走査光学装置
において、前記回転多面鏡の周方向に配列した各々の反
射面は入射した光線を偶数回反射するように偶数個の平
面状反射面で構成されており、かつ、光源からの光線が
回転多面鏡の回転軸を含み被走査面に直交する平面にお
いて、回転多面鏡に向かって入射するように、光源およ
びコリメータレンズを配置したことを特徴とする走査光
学装置である。
"Means for Solving the Problems" The present invention includes a light source that emits thin line light, a collimator lens that converts the light from the light source into parallel light, a rotating polygon mirror that receives and reflects the parallel light, and a rotating polygon mirror that receives and reflects the parallel light. In a scanning optical device having an fθ lens that transmits reflected light from a mirror and converges it on a surface to be scanned, each reflective surface arranged in the circumferential direction of the rotating polygon mirror has an even number of reflecting surfaces so that the incident light beam is reflected an even number of times. A light source and a collimator are arranged so that the light rays from the light source enter the rotating polygon mirror in a plane that includes the rotation axis of the rotating polygon mirror and is orthogonal to the surface to be scanned. This is a scanning optical device characterized in that a lens is arranged.

「実施例」 以下、本発明の実施例を図面に従って説明する。第1図
は側面図、第4図は第1図の平面図である。細線状の光
を発するレーザ等の光源2の光線はこれを平行光とする
コリメータレンズ3を通じて入射光線光となり、回転軸
6により回転している回転多面鏡5の反射面1a、1b
で偶数回反射する。この反射光線Rはfθレンズ4を透
過してミラー7で屈折させ被走査面ムのXYの範囲に収
束する。回転多面鏡5が回転軸6を中心に回転すると被
走査面A上に走査線が描かれるものである。
"Embodiments" Examples of the present invention will be described below with reference to the drawings. FIG. 1 is a side view, and FIG. 4 is a plan view of FIG. 1. A light beam from a light source 2 such as a laser that emits thin line light becomes an incident light beam through a collimator lens 3 that converts it into parallel light, and the reflection surface 1a, 1b of a rotating polygon mirror 5 rotated by a rotation axis 6.
Reflect an even number of times. This reflected light beam R passes through the fθ lens 4, is refracted by the mirror 7, and converges in the XY range of the scanned surface. When the rotating polygon mirror 5 rotates around the rotation axis 6, a scanning line is drawn on the scanned surface A.

第6図は回転多面鏡5の斜視図である。回転多面鏡5は
例えば二個の合同な正六角錐台を両上底で対応する辺を
一致させて一体としてあへ正六角錐台の中心において回
転軸6に固定されており、偶数回入射光線光を反射する
ように反射面ta、1kを備え、反射面la、jbを局
方向に配列している。第1図では光源2からの光線が回
転多面鏡5の回転軸6を含み被走査面ムに直交する平面
において、回転多面鏡5に向って入射するように光源2
、コリメータレンズ3を配列しである。
FIG. 6 is a perspective view of the rotating polygon mirror 5. The rotating polygon mirror 5 is made of, for example, two congruent regular hexagonal truncated pyramids with corresponding sides on both top bases coincident and fixed to a rotating shaft 6 at the center of the regular hexagonal truncated pyramid, so that even number of incident rays of light are reflected. It is provided with reflective surfaces ta and 1k so as to reflect the same, and reflective surfaces la and jb are arranged in the central direction. In FIG. 1, the light source 2 is arranged so that the light beam from the light source 2 enters the rotating polygon mirror 5 in a plane that includes the rotation axis 6 of the rotating polygon mirror 5 and is perpendicular to the surface to be scanned.
, collimator lenses 3 are arranged.

このような光学装置では回転軸6の倒れによっても走査
光の収束位置が如何ようになるかを次に説明する。
In the following, in such an optical device, how the convergence position of the scanning light changes depending on the inclination of the rotating shaft 6 will be explained.

第1図及び第2図(&)J□□□においては反射面IJ
1b、入射光線入射光線光線Rは反射面1 a、及び反
射面1)の両者に直交する平面上への正射影として図示
されている。第2図(L)に於いて、今反射面1&と反
射面1j)の夾角を0とすれば反射面1a及び反射面1
bの両者に直交する平面上への入射光線光と反射光線只
の各々の正射影のなす角即ち本図に示すαは α==tao’−2θ   ■ と表わすことが出来る。従って回転多面鏡5が回転軸6
を中心に回転すると仮りに入射光線光が細線状であり、
しかもその方向が一定に保たれているとすれば、反射光
線Rは一線状であへ該回転多面鏡5の回転に従って反射
面1aにおける反射点より反射面1f1−と反射面1b
との交線に平行である定まった一つの平面内の各方向に
向うことが出来るだけである0第2図(b)において、
回転軸6が実線で示す正規の位置方向より例えば点線で
示すように紙面上で角度r倒れると、反射面1a及び反
射面1bは各々角度rだけ傾き、図の如く、反射面1a
′、及び1b’のようになる。
In Figures 1 and 2 (&) J□□□, the reflective surface IJ
1b, Incident Ray The incident ray R is shown as an orthogonal projection onto a plane perpendicular to both the reflecting surface 1a and the reflecting surface 1). In Fig. 2 (L), if the included angle of reflective surface 1& and reflective surface 1j) is 0, then reflective surface 1a and reflective surface 1
The angle formed by the respective orthogonal projections of the incident light beam and the reflected light beam onto a plane orthogonal to both of b, that is, α shown in this figure can be expressed as α==tao'-2θ. Therefore, the rotating polygon mirror 5 is
When rotating around , the incident light beam becomes thin line-like,
Moreover, assuming that the direction is kept constant, the reflected light ray R is linear and moves from the reflection point on the reflection surface 1a to the reflection surface 1f1- and the reflection surface 1b according to the rotation of the rotating polygon mirror 5.
In Fig. 2(b),
When the rotating shaft 6 is tilted at an angle r on the paper as shown by the dotted line, for example, from the normal position direction shown by the solid line, the reflecting surface 1a and the reflecting surface 1b are each tilted by the angle r, and as shown in the figure, the reflecting surface 1a
', and 1b'.

回転軸6が正規の位置方向にある場合の反射面1aに対
する入射光線Iの反射面1aに対する入射角を1、当該
光線がその光路に於いて反射面1bにより反射される反
射角をj1反射部に於ける最終的な反射光線をRとする
。次に回転軸6が例えば紙面上で角度r倒れた場合の回
転軸を61、入射光線光の反射ffi I &’に対す
る入射角を11.当該光線がその光路に於いて反射面t
 b’により反射される反射角をj11反射部に於ける
最終的な反射光線をR1とする。前記i、i’ 。
The angle of incidence of the incident ray I on the reflecting surface 1a when the rotation axis 6 is in the normal position direction is 1, and the reflection angle at which the ray is reflected by the reflecting surface 1b on its optical path is j1 reflecting section. Let R be the final reflected ray at . Next, the axis of rotation when the axis of rotation 6 is tilted at an angle r on the paper surface is 61, and the angle of incidence with respect to the reflection ffi I &' of the incident light beam is 11. When the light ray reaches the reflective surface t in its optical path
The angle of reflection reflected by b' is j11, and the final reflected light beam at the reflection section is R1. Said i, i'.

j、j’  の各角度の間には次の関係がある。The following relationship exists between each angle of j and j'.

11=1+γ     ■ j’=j−γ     ■ ところで反射面1blは反射面1bに対し図に示す如く
角度rだけ傾いても、上式■[有]より1’+j’=i
+jであるから、反射光線Rと反射光線R1は平行とな
る。従って該両反射光線R,R’はf0レンズ4を通過
後被走査面ム上の同一の位置に収束する。つまり回転多
面鏡5を用いた光学的走査に於いては形成される走査線
は回転軸6の倒れ等の如何にかかわらず常に予め設定さ
れた正規の位置方向を維持し、従って良質な安定した光
学的走査が可能となる。
11=1+γ ■ j'=j−γ ■ By the way, even if the reflective surface 1bl is tilted by the angle r with respect to the reflective surface 1b as shown in the figure, 1'+j'=i from the above formula
+j, the reflected ray R and the reflected ray R1 become parallel. Therefore, both reflected light beams R and R' converge at the same position on the scanned surface after passing through the f0 lens 4. In other words, in optical scanning using the rotating polygon mirror 5, the scanning line formed always maintains a preset regular position direction regardless of the tilting of the rotating shaft 6, and therefore provides a stable and high-quality image. Optical scanning becomes possible.

第1図をみてわかるように、回転多面鏡55九反射部の
各々が偶数個の平面状反射面ja、jbで構成されてい
るため、レーザ光源2やコリメータレンズ3が回転多面
鏡5で反射され被走査面Aを走査する光線をさえぎるこ
とけない。そのため、入射光線光が有る回転軸6を含み
被走査面Aに直交する平面は被走査範囲XMの中央0を
とおるから、被走査面ムの最大幅XYまで走査する場合
でも正射影の平面図の第4図でみて回転多面鏡6の反射
面1a又は1bの法線と入射光線I又は反射光線只のな
す角ψは単一の平面状反射面の回転多面鏡10を使用し
ている従来の走査系にて比較して小さくすることができ
る。従って走査光線を回転軸6、中央0を含む平直に対
称にふりわけられるので回転多面鏡5への最大入射角ψ
□8が小さくなる。
As can be seen from FIG. 1, each of the nine reflecting parts of the rotating polygon mirror 55 is composed of an even number of planar reflecting surfaces ja, jb, so that the laser light source 2 and collimator lens 3 are reflected by the rotating polygon mirror 5. Therefore, the light beam scanning the scanned surface A cannot be blocked. Therefore, since the plane that includes the rotation axis 6 on which the incident light beam is located and is orthogonal to the scanned surface A passes through the center 0 of the scanned range XM, the orthogonal projection plan view As shown in FIG. 4, the angle ψ between the normal to the reflecting surface 1a or 1b of the rotating polygon mirror 6 and the incident ray I or the reflected ray is different from that in the conventional case where a rotating polygon mirror 10 with a single planar reflecting surface is used. The scanning system can be made smaller in comparison. Therefore, since the scanning light beam is distributed symmetrically to the rotation axis 6 and the center 0, the maximum incident angle ψ to the rotating polygon mirror 5 is
□8 becomes smaller.

〔発明の効果〕〔Effect of the invention〕

本発明は以上のような構成としたため、(1)  空気
軸受あるいはシリンドリカルレンズ等のいわば補助的な
手段を用いることなく回転多面鏡の回転軸に倒れが生じ
る等しても反射光線の空間的な方向成分の一つを常に一
定に保ち、而して走査線の走査線に直角方向への変位を
本質的に排除することが出来る。
Since the present invention has the above-described configuration, (1) even if the rotation axis of the rotating polygon mirror is tilted, it is possible to maintain the spatial stability of the reflected light beam without using any auxiliary means such as air bearings or cylindrical lenses. One of the directional components can always be kept constant, thus essentially eliminating displacements of the scan line in a direction perpendicular to the scan line.

(2)  回転多面鏡の反射面に入射する光線と反射さ
れた光線が段差を持つことができるため、回転多面鏡の
反射面の法線と入射する光線のなす角を小さくできるた
め、回転多面鏡を小屋化でき、それにより回転多面鏡を
安価にでき、また回転多面鏡が小屋になるため、慣性モ
ーメントが小さくなり、回転多面鏡を回転させるモータ
が静止状態から定常回転状態になるまでの立上がり時間
をも早めることが出来る。
(2) Since the light rays incident on the reflective surface of the rotating polygon mirror and the reflected rays can have a step difference, the angle between the normal to the reflective surface of the rotating polygon mirror and the incident ray can be made small. The mirror can be made into a shed, which makes the rotating polygon mirror cheaper. Also, since the rotating polygon mirror is made into a shed, the moment of inertia is reduced, and the motor that rotates the polygon mirror can take a long time to change from a stationary state to a steady rotation state. It is also possible to speed up the rise time.

の効果がある。There is an effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の側面図、第2図(a)。 (1))は回転多面鏡の側面図、第6図は回転多面鏡の
斜視図、第4図は第1図の平面図、第5図(a)。 (b)は従来例の平面図、第6図は第5図(a)、(1
))の側面図である。 ja、1b・・反射面 2・・光源 2・・コリメータ
レンズ 4・・fθレンズ 5・・回転多面鏡。
FIG. 1 is a side view of an embodiment of the present invention, and FIG. 2(a). (1)) is a side view of the rotating polygon mirror, FIG. 6 is a perspective view of the rotating polygon mirror, FIG. 4 is a plan view of FIG. 1, and FIG. 5(a). (b) is a plan view of the conventional example, and FIG. 6 is a plan view of the conventional example.
)) is a side view. ja, 1b...Reflecting surface 2...Light source 2...Collimator lens 4...Fθ lens 5...Rotating polygon mirror.

Claims (1)

【特許請求の範囲】[Claims] 1、レーザ光源等と、該光源の光を平行光とするコリメ
ータレンズと、該平行光を受けて反射させる回転多面鏡
と、回転多面鏡からの反射光を透過して被走査面に収束
させるfθレンズを有する走査光学装置において、前記
回転多面鏡の周方向に配列した各々の反射面は入射した
光線を偶数回反射するように偶数個の平面状反射面で構
成されており、かつ、光源からの光線が回転多面鏡の回
転軸を含み被走査面に直交する平面において、回転多面
鏡に向かつて入射するように、光源およびコリメータレ
ンズを配置したことを特徴とする走査光学装置。
1. A laser light source, etc., a collimator lens that converts the light from the light source into parallel light, a rotating polygon mirror that receives and reflects the parallel light, and the reflected light from the rotating polygon mirror is transmitted and focused on the scanned surface. In a scanning optical device having an fθ lens, each of the reflective surfaces arranged in the circumferential direction of the rotating polygon mirror is composed of an even number of planar reflective surfaces so as to reflect an incident light ray an even number of times, and the light source A scanning optical device characterized in that a light source and a collimator lens are arranged so that the light beam from the rotating polygon mirror is directed toward and incident on the rotating polygon mirror in a plane that includes the rotation axis of the rotating polygon mirror and is perpendicular to the surface to be scanned.
JP12777187A 1987-05-25 1987-05-25 Optical scanning device Pending JPS63292109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12777187A JPS63292109A (en) 1987-05-25 1987-05-25 Optical scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12777187A JPS63292109A (en) 1987-05-25 1987-05-25 Optical scanning device

Publications (1)

Publication Number Publication Date
JPS63292109A true JPS63292109A (en) 1988-11-29

Family

ID=14968287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12777187A Pending JPS63292109A (en) 1987-05-25 1987-05-25 Optical scanning device

Country Status (1)

Country Link
JP (1) JPS63292109A (en)

Similar Documents

Publication Publication Date Title
KR920001122B1 (en) Optical scanning device and asymmetric aspherical scanning lens
US4274703A (en) High-efficiency symmetrical scanning optics
JPS63136017A (en) Light beam scanning device
US5114217A (en) Double-reflection light scanner
US4915465A (en) Laser beam printer using only one side surface of a rotational mirror to scanningly deflect a substantially perpendicular laser beam
JPH0221565B2 (en)
JPH07104208A (en) Light beam scanning device
JPS63292109A (en) Optical scanning device
US5196956A (en) Beam deflector and laser beam printer using only two inclined reflecting surfaces
JPS63292108A (en) Optical scanning device
EP0336743B1 (en) Scanning optical system
JPS5815768B2 (en) Sousakou Gakkei
EP0278332B1 (en) Beam deflector and laser beam printer using same
JPH09288245A (en) Optical scanner
JPH0670688B2 (en) Scanning optics
JP3381333B2 (en) Optical scanning device
JP2626708B2 (en) Scanning optical system
JP2772556B2 (en) Scanning optical device
US5056882A (en) Laser beam deflecting device including a surface with a groove which receives a laser beam without reflecting the beam to a scanned portion
JP3680891B2 (en) Optical scanning device
JPH0618335Y2 (en) Beam scanning device
JP2749850B2 (en) Optical deflection device
JPH0284611A (en) Optical deflector
JPS63240514A (en) Rotary polygon mirror type scanner
JPH0943522A (en) Optical scanning device