[go: up one dir, main page]

JPS63289925A - Plasma treatment method and device - Google Patents

Plasma treatment method and device

Info

Publication number
JPS63289925A
JPS63289925A JP12384787A JP12384787A JPS63289925A JP S63289925 A JPS63289925 A JP S63289925A JP 12384787 A JP12384787 A JP 12384787A JP 12384787 A JP12384787 A JP 12384787A JP S63289925 A JPS63289925 A JP S63289925A
Authority
JP
Japan
Prior art keywords
plasma processing
processed
cyclotron resonance
electron cyclotron
substrates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12384787A
Other languages
Japanese (ja)
Inventor
Takuya Fukuda
福田 琢也
Yasuhiro Mochizuki
康弘 望月
Naohiro Monma
直弘 門馬
Tadashi Sonobe
園部 正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12384787A priority Critical patent/JPS63289925A/en
Publication of JPS63289925A publication Critical patent/JPS63289925A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、プラズマ処理方法及び装置に係り、特に電子
サイクロトロン共鳴(ECR)を利用したプラズマ処理
の高効率化を図る上に好適なマイクロ波プラズマ処理方
法及び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a plasma processing method and apparatus, and in particular to a microwave method suitable for increasing the efficiency of plasma processing using electron cyclotron resonance (ECR). The present invention relates to a plasma processing method and apparatus.

〔従来の技術〕[Conventional technology]

従来の有磁場マイクロ波プラズマ処理方法は、特開昭5
6−155535号、 57−133636号に記載の
ように、プラズマ生成室内においてプラズマ活性種を生
じさせ、活性種を発散磁界等で、活性種生成率最大領域
から充分前れた位置に設置された被処理基板にプラズマ
流をあてて処理するものであった。
The conventional magnetic field microwave plasma processing method is
As described in No. 6-155535 and No. 57-133636, plasma active species are generated in the plasma generation chamber, and the active species are placed at a position sufficiently in front of the maximum active species production rate region using a divergent magnetic field, etc. The process was performed by applying a plasma stream to the substrate to be processed.

この方式において、特開昭57−82955号記載のよ
うに被処理基板を複数枚同時処理する方法としては、基
板を同一平面上に複数枚ならべて、プラズマ流を同時に
あてる方法があった。
In this method, as described in Japanese Patent Application Laid-Open No. 57-82955, a method for simultaneously processing a plurality of substrates to be processed includes arranging a plurality of substrates on the same plane and simultaneously applying a plasma stream to the substrates.

〔発明が解決しようとした問題点〕[Problem that the invention sought to solve]

上記従来技術は、プラズマ処理として、被処理面にプラ
ズマ流をあてる方法がとられており、プラズマ活性種の
最大生成領域である電子サイクロトロン共鳴(以下EC
Rと略す)位置とプラズマ処理特性の点について配慮が
されておらず、複数枚の基板を処理するためには、大口
径のプラズマ発生源が必要となる問題と、結果的に処理
装置の大型化が必要となる問題があった。
The above-mentioned conventional technology uses a method of applying a plasma flow to the surface to be processed as plasma processing, and uses electron cyclotron resonance (hereinafter referred to as EC), which is the region where plasma active species are maximum generated.
R) position and plasma processing characteristics are not considered, and in order to process multiple substrates, a large-diameter plasma source is required, resulting in the large size of the processing equipment. There was a problem that required compatibility.

本発明の目的は上記不都合を改善することにある。An object of the present invention is to improve the above-mentioned disadvantages.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、複数の被処理基板を、たがいに平−行にマ
イクロ波の伝播方向に向けて、多段にならべて、各々の
基板間にECRを位置させることにより達成される。
The above object is achieved by arranging a plurality of substrates to be processed in multiple stages parallel to each other in the direction of microwave propagation, and positioning the ECR between each substrate.

〔作用〕[Effect]

有磁場マイクロ波プラズマ処理において、成膜やエツチ
ング等の処理特性は、プラズマ活性種の種別、濃度、寿
命でほぼ決定される。プラズマ活性種の最大生成位置は
ECR位置であり、ここで活性種の種別、濃度が決定さ
れ、寿命内で被処理物に達するか否かはECR位置と処
理物の距離で決定される。マイクロ波は自由電子濃度の
低い材料、例えば、Si等の半導体、絶縁材は通過する
ので、被処理物である半導体基板をマイクロ波の伝播方
向に向けて垂直に各々平行に多段設置し、これら基板間
にECRを位置させることにより、例えば、成膜あるい
はエツチング速度、膜質あるいはエツチング選択比等の
処理特性を枚集処理と同じくして複数枚のバッチ処理が
可能となる。処理基板を平行に多段でバレル型に並べる
ため、プラズマ源の大口径や装置の大型化は特に必要と
せずにプラズマ処理効率の増大化が図れる。
In magnetic field microwave plasma processing, processing characteristics such as film formation and etching are almost determined by the type, concentration, and lifetime of plasma active species. The maximum generation position of plasma active species is the ECR position, the type and concentration of the active species are determined here, and whether or not they reach the object to be processed within their lifetime is determined by the distance between the ECR position and the object to be processed. Microwaves pass through materials with low free electron concentration, such as semiconductors such as Si, and insulating materials, so the semiconductor substrates to be processed are placed in multiple stages perpendicularly and parallel to each other in the direction of propagation of the microwaves. By positioning the ECR between the substrates, it is possible to perform batch processing of a plurality of substrates with the same processing characteristics as film forming or etching rate, film quality, etching selection ratio, etc., as in batch processing. Since the substrates to be processed are arranged in parallel in multiple stages in a barrel shape, it is possible to increase plasma processing efficiency without particularly requiring a large diameter plasma source or an enlarged apparatus.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を用いて詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明のプラズマ処理装置の主要部の模式図で
ある。本装置は真空容器1.マイクロ波導入管2(マイ
クロ波3の発振器は図省略)、ECR発生コイル4,5
.排気口6(排気系は図省略)9反応ガス供給管7.プ
ラズマガス供給管8.基板ホルダ9.基板収納室10.
よりなる、真空容器1は最小直径120[n’a]φ、
最大直径450(no)φ、長さ850[mm)で、円
錐形の頂部は石英製でマイクロ波導入窓11となってい
る。基板ホルダは容器中心軸方向の移動及び中心軸回り
の回転は可能である。第2図は、真空容器中心軸上の磁
束密度分布を示したものである。
FIG. 1 is a schematic diagram of the main parts of the plasma processing apparatus of the present invention. This device consists of a vacuum container 1. Microwave introduction tube 2 (microwave 3 oscillator is omitted from illustration), ECR generation coils 4, 5
.. Exhaust port 6 (exhaust system not shown) 9 Reaction gas supply pipe 7. Plasma gas supply pipe 8. Substrate holder9. Board storage room 10.
The vacuum container 1 has a minimum diameter of 120 [n'a]φ,
It has a maximum diameter of 450 (no) φ and a length of 850 mm, and the top of the conical shape is made of quartz and serves as a microwave introduction window 11. The substrate holder can move in the direction of the center axis of the container and rotate around the center axis. FIG. 2 shows the magnetic flux density distribution on the central axis of the vacuum vessel.

破線は2.45 (GHzl  のマイクロ波に対し、
ECR条件を満たす磁束密度値を示す。磁束密度分布の
制御は、磁界発生コイル4及び5の6個のコイルの電流
値を調整すること1こより行なった。
The dashed line is 2.45 (for GHzl microwave,
Shows the magnetic flux density value that satisfies the ECR conditions. The magnetic flux density distribution was controlled by adjusting the current values of the six magnetic field generating coils 4 and 5.

被処理基板12として直径100(n油)のシリコンウ
ェハを用い、被処理面をマイクロ波導入管に向けて股画
し、アモルファスシリコン(以下a−5iと酩す)膜を
形成した。マイクロ波導入管から2.45(GHz) 
 のマイクロ波を導入しプラズマガス供給管からヘリウ
ム(He)を40(mQ/min〕、反応ガス供給管か
らモノシラン(Silla)を40 Cm n 7m1
n)  導入し、かつ、磁界発生コイル4,5により8
75 (Gauss)  の磁束密度を第2図のように
、基板膜首領域に連続的に発生させて、10板の基板に
同時にa−3iを成膜した。反応圧力はI X 10−
’ (Torr)である。成膜速度は10ット内平均0
.2〔μm〕 で膜質は光導電率σpは3 x 10−
6Cs /an) 、暗導電率σ、は2 X 10−1
8(s /a++3  であった。
A silicon wafer with a diameter of 100 (n oil) was used as the substrate 12 to be processed, the surface to be processed was oriented toward a microwave introduction tube, and an amorphous silicon (hereinafter referred to as a-5i) film was formed. 2.45 (GHz) from the microwave introduction pipe
Microwave was introduced, and helium (He) was introduced at 40 (mQ/min) from the plasma gas supply pipe, and monosilane (Silla) was introduced at 40 Cm n 7 m1 from the reaction gas supply pipe.
n) Introduced and 8 by the magnetic field generating coils 4 and 5
As shown in FIG. 2, a magnetic flux density of 75 (Gauss) was continuously generated in the film neck region of the substrate, and a-3i was simultaneously formed on 10 substrates. The reaction pressure is I x 10-
' (Torr). The average film formation rate is 0 within 10 tons.
.. 2 [μm] and the film quality has a photoconductivity σp of 3 x 10-
6Cs/an), dark conductivity σ is 2 X 10-1
8(s/a++3).

この時のロット内での差異が最も大きな基板伝送はマイ
クロ波の導入位置に最も近い第1番目の基板と最も遠い
第10番目の基板位置であり、成膜速度の差異は±5〔
%〕、σ、とσ4の差異はどちらも±3〔%〕であった
。基板内の差異については、第1番目の基板位置で最も
大きく、その差異は、成膜速度で±7〔%〕、σP、σ
dで±3〔%〕と±4〔%〕であった。また基板ホルダ
9により基板を毎分60回転させ、かつ、容器中心軸方
向に、40(mm)の距離を毎分6往復させた所、第1
番目と第10番目の成膜速度の差異は±5〔%〕から±
2〔%〕に、σPとσdの差異はそれぞれ±3〔%〕か
ら±2〔%〕減少した。また、基板位置による差異はほ
とんどなくなり、かつ、第1番目の基板を例にとれば、
成膜速度の差異は±7〔%〕から±4〔%〕に、σ、と
σdも±3〔%〕とキ4〔%〕がそれぞれ±2〔%〕に
減少した。
At this time, the substrate transmission with the largest intra-lot difference is the 1st substrate closest to the microwave introduction position and the 10th substrate farthest, and the difference in deposition rate is ±5 [
%], σ, and σ4 were both ±3 [%]. The difference within the substrate is greatest at the first substrate position, and the difference is ±7% in the deposition rate, σP, σ
d was ±3 [%] and ±4 [%]. In addition, when the substrate was rotated 60 times per minute by the substrate holder 9 and reciprocated 6 times per minute at a distance of 40 (mm), the first
The difference in deposition rate between the 1st and 10th films is from ±5% to ±
2 [%], the difference between σP and σd decreased from ±3 [%] to ±2 [%], respectively. Also, there is almost no difference depending on the board position, and if we take the first board as an example,
The difference in film formation rate decreased from ±7 [%] to ±4 [%], and σ and σd decreased to ±3 [%] and Ki4 [%] to ±2 [%], respectively.

このように本実施例によれば、被処理基板をそれぞれ平
行に多段にならべてバレル型としてプラズマ処理しても
、各基板位置におけるプラズマ特性を同じくすることが
可能なことがわかった。このことから、本発明によりマ
イクロ波プラズマ処理装置において、プラズマ源の大口
径及び装置の大型化を特にしなくとも、プラズマ処理効
率の増大化を図れる効果がある。また、処理基板を真空
容器軸方向への往復運動及び中心軸回りの回転等の移動
は、プラズマ処理特性の均一化を図れる効果がある。
As described above, according to this example, it was found that even if the substrates to be processed were arranged in parallel in multiple stages and subjected to plasma processing in a barrel shape, it was possible to make the plasma characteristics at each substrate position the same. Therefore, in the microwave plasma processing apparatus according to the present invention, it is possible to increase the plasma processing efficiency without particularly increasing the diameter of the plasma source or increasing the size of the apparatus. Furthermore, reciprocating the processing substrate in the axial direction of the vacuum chamber and rotating it around the central axis has the effect of making the plasma processing characteristics uniform.

尚、本実施例においては、磁界発生にコイルを用いてい
るが、もちろん永久磁石を用いても良い。
In this embodiment, a coil is used to generate the magnetic field, but of course a permanent magnet may also be used.

真空容器の動径方向における等磁束密度或いはなるべく
基板面に平行な方が望ましい。また、異なったガス種を
異なった位置が導入しているが、同一場所あるいは近傍
場から導入しても良い。また、5iOz膜等の絶縁膜形
成や、エツチング等地のプラズマ処理に本発明を用いて
効果がある。
Equal magnetic flux density in the radial direction of the vacuum container or preferably parallel to the substrate surface is desirable. Furthermore, although different gas species are introduced at different positions, they may be introduced from the same location or from nearby fields. Further, the present invention is effective in forming an insulating film such as a 5iOz film, and in plasma processing such as etching.

〔発明の効果〕〔Effect of the invention〕

本実施例によれば、マイクロ波プラズマ処理において、
プラズマ発生源の大口径化や装置の大型化を特に必要と
せずに処理特性の差異なく、複数枚の基板を同等処理出
来るので、プラズマ処理効率の増大化が図れ、結果的に
スループット向上の効果がある。
According to this embodiment, in microwave plasma treatment,
Since multiple substrates can be processed equally without any differences in processing characteristics without the need for a larger diameter plasma source or larger equipment, plasma processing efficiency can be increased, resulting in improved throughput. There is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例におけるプラズマ処理装置の
断面図、第2図は真空容器中心軸上の磁束密度分布図で
ある。 1・・・真空容器、3・・・マイクロ波、4,5・・・
磁界発生コイル、7・・・反応ガス供給管、8・・・基
板ホルダ、11・・・マイクロ波導入窓、12・・・被
処理基板。
FIG. 1 is a sectional view of a plasma processing apparatus according to an embodiment of the present invention, and FIG. 2 is a magnetic flux density distribution diagram on the central axis of a vacuum container. 1...Vacuum container, 3...Microwave, 4,5...
Magnetic field generating coil, 7... Reaction gas supply pipe, 8... Substrate holder, 11... Microwave introduction window, 12... Substrate to be processed.

Claims (1)

【特許請求の範囲】 1、マイクロ波導入管、反応ガス供給管、排気ガス系、
磁界発生部、及び真空容器を有し、電子サイクロトロン
共鳴を利用したプラズマ処理装置において、マイクロ波
の伝播方向にほぼ垂直に被処理基板を複数板ならべて真
空容器内に設置し、これらを同時処理することを特徴と
したプラズマ処理方法。 2、上記電子サイクロトロン共鳴を被処理基板間に発生
させることを特徴とした特許請求の範囲第1項記載のプ
ラズマ処理方法。 3、上記電子サイクロトロン共鳴を真空容器中心軸方向
に、被処理基板設置領域内に連続に発生させることを特
徴とした特許請求の範囲第1項及び第2項記載のプラズ
マ処理方法。 4、被プラズマ処理基板を上下左右及び回転等、移動さ
せる事によるプラズマ処理の均一化を図ることを特徴と
した特許請求の範囲第1項記載のプラズマ処理方法。 5、マイクロ波導入管、反応ガス供給管、排気ガス系、
磁界発生部、及び真空容器を有し、電子サイクロトロン
共鳴を利用したプラズマ処理装置において、マイクロ波
の伝播方向にほぼ垂直に被処理基板をならべて真空容器
内に設置可能としたことを特徴としたプラズマ処理装置
。 6、上記電子サイクロトロン共鳴を被処理基板間に起こ
させる磁界強度発生手段を有することを特徴とした特許
請求の範囲第5項記載のプラズマ処理装置。 7、上記電子サイクロトロン共鳴を真空容器中心軸方向
に、被処理基板設置領域内に連続に起こされる磁界強度
発生手段を有することを特徴とした特許請求の範囲第5
項及び第6項記載のプラズマ処理装置。 8、被プラズマ処理基板を上下左右及び回転等、移動さ
せる治具を有することを特徴とした特許請求の範囲第5
項乃至第7項記載のプラズマ処理装置。
[Claims] 1. Microwave introduction pipe, reaction gas supply pipe, exhaust gas system,
In a plasma processing apparatus that uses electron cyclotron resonance and has a magnetic field generation section and a vacuum container, multiple substrates to be processed are arranged in a vacuum container in a row almost perpendicular to the direction of microwave propagation, and these are processed simultaneously. A plasma processing method characterized by: 2. The plasma processing method according to claim 1, wherein the electron cyclotron resonance is generated between the substrates to be processed. 3. The plasma processing method according to claims 1 and 2, characterized in that the electron cyclotron resonance is continuously generated in the direction of the central axis of the vacuum vessel within the area where the substrate to be processed is installed. 4. The plasma processing method according to claim 1, wherein the plasma processing target substrate is moved vertically, horizontally, and rotationally to make the plasma processing uniform. 5. Microwave introduction pipe, reaction gas supply pipe, exhaust gas system,
A plasma processing apparatus that uses electron cyclotron resonance and has a magnetic field generating section and a vacuum chamber, and is characterized in that substrates to be processed can be lined up almost perpendicular to the direction of propagation of microwaves and installed in the vacuum chamber. Plasma processing equipment. 6. The plasma processing apparatus according to claim 5, further comprising magnetic field strength generating means for causing the electron cyclotron resonance between the substrates to be processed. 7. Claim 5, characterized by comprising a magnetic field strength generating means that causes the electron cyclotron resonance to occur continuously in the direction of the central axis of the vacuum vessel within the area where the substrate to be processed is installed.
6. The plasma processing apparatus according to item 6. 8. Claim 5, characterized by having a jig for moving the plasma-treated substrate vertically, horizontally, and rotationally.
8. The plasma processing apparatus according to items 7 to 7.
JP12384787A 1987-05-22 1987-05-22 Plasma treatment method and device Pending JPS63289925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12384787A JPS63289925A (en) 1987-05-22 1987-05-22 Plasma treatment method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12384787A JPS63289925A (en) 1987-05-22 1987-05-22 Plasma treatment method and device

Publications (1)

Publication Number Publication Date
JPS63289925A true JPS63289925A (en) 1988-11-28

Family

ID=14870868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12384787A Pending JPS63289925A (en) 1987-05-22 1987-05-22 Plasma treatment method and device

Country Status (1)

Country Link
JP (1) JPS63289925A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0653170A (en) * 1992-03-18 1994-02-25 Nec Corp Ecr plasma etcher

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0653170A (en) * 1992-03-18 1994-02-25 Nec Corp Ecr plasma etcher

Similar Documents

Publication Publication Date Title
US5505780A (en) High-density plasma-processing tool with toroidal magnetic field
US7059268B2 (en) Method, apparatus and magnet assembly for enhancing and localizing a capacitively coupled plasma
US6335268B1 (en) Plasma immersion ion processor for fabricating semiconductor integrated circuits
JPH0775226B2 (en) Plasma processing method and apparatus
US5354443A (en) Method and apparatus for physical-vapor deposition of material layers
US6096176A (en) Sputtering method and a sputtering apparatus thereof
JPH0718433A (en) Icp sputtering device
JPS63289925A (en) Plasma treatment method and device
JPS61189642A (en) Plasma reactor
JP2524461B2 (en) High density plasma processing equipment
WO2001083852A1 (en) Method and apparatus for distributing gas within high density plasma process chamber to ensure uniform plasma
JPH04343420A (en) Plasma reaction device
JPH09186141A (en) Plasma processing system
JPS63279599A (en) Microwave plasma generating method
JP2953222B2 (en) Microwave plasma processing equipment
JP4223143B2 (en) Plasma processing equipment
JP2725203B2 (en) Microwave plasma processing equipment
JPS61181534A (en) plasma processing equipment
JPH09167698A (en) Manufacturing device of semiconductor and tft-lcd
JPH113799A (en) Plasma processing equipment
JPH04107919A (en) Plasma processor provided with magnetic field and absorbing microwave
JPH01205519A (en) Plasma treatment apparatus
JP3099801B2 (en) Film forming method and apparatus
JPS63216345A (en) plasma generator
JPH09115880A (en) Dry etching equipment