JPS63288962A - Production of (pb, sr) (zr, ti)o3 - Google Patents
Production of (pb, sr) (zr, ti)o3Info
- Publication number
- JPS63288962A JPS63288962A JP62122573A JP12257387A JPS63288962A JP S63288962 A JPS63288962 A JP S63288962A JP 62122573 A JP62122573 A JP 62122573A JP 12257387 A JP12257387 A JP 12257387A JP S63288962 A JPS63288962 A JP S63288962A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- pszt
- zirconium
- coprecipitate
- particle size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 3
- 239000000843 powder Substances 0.000 claims description 60
- 229910052726 zirconium Inorganic materials 0.000 claims description 13
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 12
- 150000001875 compounds Chemical class 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 10
- 238000001354 calcination Methods 0.000 claims description 8
- 238000005245 sintering Methods 0.000 claims description 8
- 238000001035 drying Methods 0.000 claims description 6
- 239000000470 constituent Substances 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 5
- 239000000047 product Substances 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 229910052745 lead Inorganic materials 0.000 claims description 4
- 229910052712 strontium Inorganic materials 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 238000000465 moulding Methods 0.000 claims description 3
- 239000002244 precipitate Substances 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 17
- 239000002245 particle Substances 0.000 description 17
- 238000000034 method Methods 0.000 description 11
- 239000002994 raw material Substances 0.000 description 11
- 239000007864 aqueous solution Substances 0.000 description 10
- 239000010936 titanium Substances 0.000 description 7
- 230000002776 aggregation Effects 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- UJVRJBAUJYZFIX-UHFFFAOYSA-N nitric acid;oxozirconium Chemical compound [Zr]=O.O[N+]([O-])=O.O[N+]([O-])=O UJVRJBAUJYZFIX-UHFFFAOYSA-N 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 238000005054 agglomeration Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000007731 hot pressing Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- DHEQXMRUPNDRPG-UHFFFAOYSA-N strontium nitrate Chemical compound [Sr+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O DHEQXMRUPNDRPG-UHFFFAOYSA-N 0.000 description 4
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 235000011114 ammonium hydroxide Nutrition 0.000 description 3
- 229910001882 dioxygen Inorganic materials 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- DUNKXUFBGCUVQW-UHFFFAOYSA-J zirconium tetrachloride Chemical compound Cl[Zr](Cl)(Cl)Cl DUNKXUFBGCUVQW-UHFFFAOYSA-J 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- HTUMBQDCCIXGCV-UHFFFAOYSA-N lead oxide Chemical compound [O-2].[Pb+2] HTUMBQDCCIXGCV-UHFFFAOYSA-N 0.000 description 2
- CMOAHYOGLLEOGO-UHFFFAOYSA-N oxozirconium;dihydrochloride Chemical compound Cl.Cl.[Zr]=O CMOAHYOGLLEOGO-UHFFFAOYSA-N 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 239000011163 secondary particle Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- OERNJTNJEZOPIA-UHFFFAOYSA-N zirconium nitrate Chemical compound [Zr+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O OERNJTNJEZOPIA-UHFFFAOYSA-N 0.000 description 2
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- VBIXEXWLHSRNKB-UHFFFAOYSA-N ammonium oxalate Chemical compound [NH4+].[NH4+].[O-]C(=O)C([O-])=O VBIXEXWLHSRNKB-UHFFFAOYSA-N 0.000 description 1
- QZPSXPBJTPJTSZ-UHFFFAOYSA-N aqua regia Chemical compound Cl.O[N+]([O-])=O QZPSXPBJTPJTSZ-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 229910000464 lead oxide Inorganic materials 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- MCJGNVYPOGVAJF-UHFFFAOYSA-N quinolin-8-ol Chemical compound C1=CN=C2C(O)=CC=CC2=C1 MCJGNVYPOGVAJF-UHFFFAOYSA-N 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は一般式が(Pbl−X 5ry) (Zr、−
y Tjy)O+(0<X<0.3 0≦y<1.0)
で示される(Pb 、 Sr) (Zr 、 Ti)O
+ (以下PSZTと記す)の製造方法に関するもので
ある。[Detailed Description of the Invention] [Industrial Application Field] The present invention has a general formula (Pbl-X 5ry) (Zr, -
y Tjy)O+(0<X<0.3 0≦y<1.0)
(Pb, Sr) (Zr, Ti)O
+ (hereinafter referred to as PSZT).
PSZTはPLZTと同様な電気光学効果を有し、同様
に透光性を有するため、偏光素子、光シャッタ、画像記
憶素子などのオプトセラミックスとして広範な応用が期
待されうる。Since PSZT has an electro-optic effect similar to that of PLZT and also has translucency, it can be expected to find a wide range of applications as opto-ceramics such as polarizing elements, optical shutters, and image storage elements.
PSZTの構成成分の中で、ジルコニヤ原料粉末は極め
て凝集し易く、比較的大きな2次粒子を形成する。この
様なジルコニヤ原料粉末を使用し混合して乾式法でPS
ZT原料粉末を作成しても、平均粒径は1〜2μm以上
のものとなる。この程度の粒度のPSZT原料粉末を使
用しても、焼成時の気孔率の低減は不十分となり、従っ
て、高密度且つ透光性が高く光学的に均一なPSZT焼
成体を得ることは難しい。Among the constituent components of PSZT, zirconia raw powder is extremely likely to agglomerate and form relatively large secondary particles. Using this kind of zirconia raw material powder, mixing it and performing PS using a dry method.
Even if the ZT raw material powder is created, the average particle size will be 1 to 2 μm or more. Even if a PSZT raw material powder with a particle size of this size is used, the reduction in porosity during firing is insufficient, and therefore it is difficult to obtain a PSZT fired body with high density, high translucency, and optical uniformity.
また高密度の焼結体を製作するためにホットプレスある
いはHIPなどの成形法が採用されるが上記原料粉末に
ホットプレス等を適用しても高密度のPSZTを得るこ
とは難しい。Further, in order to produce a high-density sintered body, a molding method such as hot pressing or HIP is employed, but it is difficult to obtain high-density PSZT even if hot pressing or the like is applied to the raw material powder.
本発明は前記PSZTの乾式法による合成における欠点
を解消すべくなされたもので、その目的は、分散性の良
いサブミクロン級の変成ジルコニヤ原料粉末を作成し、
該粉末を用いて単なる乾式法によって易焼結性且つ高嵩
密度のPSZT粉末を合成し、更にこの粉末を焼結して
高密度且つ透光性が高く光学的に均一なPSZTを製造
する方法を提供することにある。The present invention was made in order to eliminate the drawbacks in the dry synthesis of PSZT, and its purpose is to create a submicron grade modified zirconia raw material powder with good dispersibility,
A method of synthesizing easily sinterable and high bulk density PSZT powder by a simple dry method using the powder, and further sintering this powder to produce optically uniform PSZT with high density and high transparency. Our goal is to provide the following.
本発明者らは前記目的を達成すべく鋭意研究の結果、
一般式(Pb+−x 5ry)(Zr+−y Tiy)
Oz 、0 < x 10、3.0<yく1.0.で示
されるPSZTの乾式法による製造過程において、ジル
コニウム以外の少なくとも一金属成分の適量とジルコニ
ウムとを含有する溶液及び沈殿形成液とを反応させて共
沈体を形成すると系の不均一のためZr含有粒子の凝集
が起こりにくくなり、その後乾燥を行ない700〜13
00℃で仮焼すると、凝集の極めて少ないサブミクロン
級の粉末(変成ジルコニヤ粉末)と成し得ることを明ら
かにした。該粉末を原料とし、目的とするPSZT組成
の残りの構成成分の化合物を乾式法によって混合すれば
、サブミクロン級の粉末特性の優れた原料粉末が容易に
得られ、該原料粉末を成型して焼結すると、ホットプレ
スやHTP(熱間ガス圧焼結)などの操作を省略しても
、極めて高密度且つ透光性が高く光学的に均一なPSZ
Tが容易に得られることを究明し得た。この知見に基い
て本発明を完成した。As a result of intensive research in order to achieve the above object, the present inventors found that the general formula (Pb+-x 5ry) (Zr+-y Tiy)
Oz, 0 < x 10, 3.0 < y 1.0. In the process of producing PSZT by the dry method shown in Agglomeration of the contained particles becomes less likely to occur, and then drying is performed to obtain a
It was revealed that when calcined at 00°C, it is possible to form submicron-sized powder (modified zirconia powder) with extremely little agglomeration. If this powder is used as a raw material and the remaining constituent compounds of the desired PSZT composition are mixed by a dry method, a raw material powder with excellent submicron powder properties can be easily obtained, and the raw material powder can be molded. When sintered, PSZ can be produced with extremely high density, high translucency, and optical uniformity even if operations such as hot pressing and HTP (hot gas pressure sintering) are omitted.
It was found that T can be easily obtained. The present invention was completed based on this knowledge.
本発明の要旨は次の三つの工程の組み合わせにある。The gist of the present invention lies in the combination of the following three steps.
(1) PSZTを構成するジルコニウム以外の少なく
とも一金属成分を共沈体の凝集を抑制するに足る適量を
選び、ジルコニウムを含有する溶液及び沈殿形成液とを
反応させて共沈体を形成し、乾燥後700〜1300℃
で仮焼する工程、この工程ではその凝集が避けられPZ
T 、 ZT等にも使用することができる変成ジルコニ
ヤが製造される。(1) At least one metal component other than zirconium constituting PSZT is selected in an appropriate amount sufficient to suppress agglomeration of the coprecipitate, and is reacted with a solution containing zirconium and a precipitate forming liquid to form a coprecipitate, 700-1300℃ after drying
This process avoids the agglomeration of PZ.
Modified zirconia is produced which can also be used for T, ZT, etc.
(2)(1)の工程で得られた仮焼物と、目的とするP
SZT組成の残りの構成成分の化合物を混合して500
〜1300℃で仮焼する工程;この工程では残りの構成
成分の添加によって所望の化合物組成が得られる。(2) The calcined product obtained in the step (1) and the desired P
500 by mixing the remaining constituent compounds of the SZT composition.
Step of calcination at ~1300°C; in this step, the desired compound composition is obtained by adding the remaining components.
(3)得られた仮焼粉末を成型して1000〜1300
℃で焼結する工程、
とから成ることを特徴とするPSZTの製造方法にある
。(3) The obtained calcined powder is molded to a size of 1000 to 1300
A method for producing PSZT, characterized by comprising the steps of sintering at ℃.
ジルコニウム溶液を作成するための化合物としては、オ
キシ塩化ジルコニウム、オキシ硝酸ジルコニウム、塩化
ジルコニウム、オキシ硝酸ジルコニウム、塩化ジルコニ
ウム、及び硝酸ジルコニウム等が挙げられる。Examples of compounds for creating the zirconium solution include zirconium oxychloride, zirconium oxynitrate, zirconium chloride, zirconium oxynitrate, zirconium chloride, and zirconium nitrate.
ジルコニウム溶液の溶媒としては上記化合物を溶解させ
ろ水またはアルコールを用いる。上記化合物はすべて水
に可溶であり、オキシ塩化ジルコニウム、塩化ジルコニ
ウムおよび四塩化チタンはエタノールに可溶である。さ
らに、ジルコニウム溶液を作製するために、金属ジルコ
ニウムを王水、HFで溶解して用いることもできる。As a solvent for the zirconium solution, filtered water or alcohol is used in which the above compound is dissolved. All of the above compounds are soluble in water; zirconium oxychloride, zirconium chloride and titanium tetrachloride are soluble in ethanol. Furthermore, in order to prepare a zirconium solution, metal zirconium can be dissolved in aqua regia or HF.
ジルコニウム以外の少なくとも一成分の溶液を作製する
ための化合物としては、鉛はPb(NO:+)z、スト
ロンチウムは5r(NOs)z、チタンはTi (NO
3) a 。Examples of compounds for preparing a solution containing at least one component other than zirconium include Pb(NO:+)z for lead, 5r(NOs)z for strontium, and Ti(NOs) for titanium.
3) a.
Ti(J、及びTi(SO4)z等が挙げられる。この
溶液の溶媒としては水またはアルコールを用いる。ジル
コニウム溶液とジルコニウム以外の溶液は別々に調製し
てもよく、また同一の溶媒に各化合物を溶解させて調整
してもよい。Examples include Ti(J and Ti(SO4)z.Water or alcohol is used as the solvent for this solution.The zirconium solution and the solutions other than zirconium may be prepared separately, or each compound may be prepared in the same solvent. It may also be adjusted by dissolving.
沈殿形成液作成のための試薬としては、例えばアンモニ
ヤ、炭酸アンモニウム、苛性アルカリ、しゅう酸、シゅ
う酸アンモニウムやアミン、オキシン等の有機試薬が挙
げられる。沈殿形成反応は常温で行なうことができる。Examples of reagents for preparing the precipitate-forming solution include organic reagents such as ammonia, ammonium carbonate, caustic alkali, oxalic acid, ammonium oxalate, amines, and oxine. The precipitate formation reaction can be carried out at room temperature.
共沈体の状態はゾル状ないしスラリー状である。共沈体
はろ過及び洗浄により回収する。The coprecipitate is in a sol or slurry state. The coprecipitate is recovered by filtration and washing.
ジルコニウム含有溶液に溶解されるPSZTの構成成分
の種類とその量は、構成成分の添加によって最終的に得
られるジルコニヤ粉末の凝集を存効に抑制し得られるも
のが望ましい。得られた共沈体の仮焼温度は、700〜
1300℃である。700℃より低いと凝集が顕著に起
こり、1300℃を超える粒子が粗大化する傾向がある
。この様にして得られたものに、ジルコニウム以外の構
成成分の不足分を加えて混合する。勿論、ジルコニヤに
添加した成分の不足分も補充する必要がある。この場合
、いずれの化合物粉末(主として酸化物)の粒度もサブ
ミクロン級のものを使用する。ただし、酸化鉛粉末は粗
大粒径のものを使用しても、得られるPSZT粉末の特
性に殆んど影響を与えない。The types and amounts of the PSZT components to be dissolved in the zirconium-containing solution are preferably such that the addition of the components can effectively suppress aggregation of the zirconia powder finally obtained. The calcination temperature of the obtained coprecipitate was 700~
The temperature is 1300°C. If the temperature is lower than 700°C, significant aggregation will occur, and if the temperature exceeds 1300°C, particles will tend to become coarse. To the thus obtained mixture, the remaining components other than zirconium are added and mixed. Of course, it is also necessary to replenish the missing components added to zirconia. In this case, the particle size of any compound powder (mainly oxide) used is submicron class. However, even if lead oxide powder with a coarse particle size is used, it will hardly affect the properties of the resulting PSZT powder.
これら混合物の仮焼温度は、Tiを含む場合、Srを含
む場合、TiとSrを含む場合とで、500〜1300
℃の範囲で大幅に変化する。要は固相反応がほぼ、また
は、完全に完了する最低温度以上で、−顕著な粒成長が
生じない最高温度範囲内であることが必要である。The calcination temperature of these mixtures is 500 to 1300 when containing Ti, when containing Sr, and when containing Ti and Sr.
Varies significantly over the °C range. In short, the temperature must be above the minimum temperature at which the solid phase reaction is almost or completely completed, and within the maximum temperature range at which significant grain growth does not occur.
この様にして得られた粉末を成型する。焼結温度は前記
の混合物の仮焼温度と同様に、その構成成分の種類によ
って異なるが、一般に1000〜1300℃の範囲であ
る。1000℃より低いと焼結が不十分で高密度が得ら
れず、1300℃を超えると、粒子が粗大化したり、あ
るいはpbの揮発が促進される。The powder thus obtained is molded. The sintering temperature, like the calcination temperature of the mixture described above, varies depending on the types of constituent components, but is generally in the range of 1000 to 1300°C. If it is lower than 1000°C, sintering is insufficient and high density cannot be obtained, and if it exceeds 1300°C, the particles become coarse or the volatilization of PB is promoted.
・実施例1
四塩化チタン水溶液(0,8mol/l濃度)40.0
ccとオキシ硝酸ジルコニウム水溶液(0,8mot/
1f1度)160.0ccを混合した。該混合水溶液を
、攪拌している6規定アンモニヤ水11中に徐々に添加
して、TB4+とZr”の水酸化物共沈体を得た。該共
沈体を洗浄、乾燥した後1100℃で仮焼して(Zro
、 s Tia、 z)Oz粉末を作成した。・Example 1 Titanium tetrachloride aqueous solution (0.8 mol/l concentration) 40.0
cc and zirconium oxynitrate aqueous solution (0.8mot/
1f1 degree) 160.0cc was mixed. The mixed aqueous solution was gradually added to stirring 6N ammonia water 11 to obtain a hydroxide coprecipitate of TB4+ and Zr''. After washing and drying the coprecipitate, it was heated at 1100°C. Calculate (Zro)
, s Tia, z) Oz powder was created.
該粉末の平均粒径は0.32μmであった。The average particle size of the powder was 0.32 μm.
該粉末1B、329grと市販のT+otm粉末1.4
14gr、pbo粉末(平均粒径151! m) 31
.74gr 、 SrO微粉末3.678grとをボー
ルミルで一昼夜混合した後、850℃で2時間仮焼して
(Pbo、s Sro、z)(Zr2.?! Tio、
zs)Os粉末を得た。該粒末の平均粒径は0.33μ
mであった。該粉末をl ton / cdで成型した
タブレットを、鉛蒸気、酸素ガス共存雰囲気下1150
℃で10時間焼結した。得られた焼結体の密度は7.6
9に達し、透光率は波長600 nmを用い、サンプル
厚み2.5鶴の場合約44%であった。The powder 1B, 329gr and commercially available T+otm powder 1.4
14gr, pbo powder (average particle size 151! m) 31
.. 74gr and 3.678gr of SrO fine powder were mixed in a ball mill for a day and night, and then calcined at 850°C for 2 hours (Pbo, s Sro, z) (Zr2.?!Tio,
zs) Os powder was obtained. The average particle size of the powder is 0.33μ
It was m. A tablet formed by molding the powder at 1 ton/cd was heated at 1150 liters in an atmosphere coexisting with lead vapor and oxygen gas.
It was sintered at ℃ for 10 hours. The density of the obtained sintered body is 7.6
9, and the light transmittance was about 44% using a wavelength of 600 nm and a sample thickness of 2.5 nm.
・実施例2
四塩化チタン水溶液(0,8mol/l濃度)40.0
0cc、硝酸ストロンチウム水溶液(0,8mol/
I!濃度) 44.444ccとオキシ硝酸ジルコニウ
ム水溶液(0,8mol/ 1濃度) 160.0Oc
cを混合した。該混合水溶液を、攪拌している6規定ア
ンモニヤ水1β中に徐々に添加して、Sr”“とTi4
ゝとZr”の水酸化物共沈体を得た。該共沈体を洗浄、
乾燥した後1100℃で仮焼してSro、 z(Zr+
、 II Tio、 z)o、 90z粉末を作成した
。・Example 2 Titanium tetrachloride aqueous solution (0.8 mol/l concentration) 40.0
0cc, strontium nitrate aqueous solution (0.8mol/
I! concentration) 44.444cc and zirconium oxynitrate aqueous solution (0.8mol/1 concentration) 160.0Oc
c was mixed. The mixed aqueous solution was gradually added to 6N ammonia water 1β being stirred, and Sr"" and Ti4
A hydroxide coprecipitate of Zr and Zr was obtained. The coprecipitate was washed,
After drying, it is calcined at 1100℃ to form Sro, z(Zr+
, II Tio, z)o, 90z powder was created.
該粉末の平均粒径は0.22μmであった。The average particle size of the powder was 0.22 μm.
該粉末22.013grと市販のTi1t微粉末1.4
14grとpbo粉末(平均粒径15 p rr、)
31.74grとをボールミルで一昼夜混合した後、8
50℃で2時間仮焼して(Pbo、 s Sro、 2
) (Zro、 ff! Tio、 zs)Oz粉末を
得た。22.013 gr of said powder and 1.4 g of commercially available Ti1t fine powder
14 gr and pbo powder (average particle size 15 p rr,)
After mixing with 31.74 gr in a ball mill for a day and night, 8
Calcinate at 50℃ for 2 hours (Pbo, s Sro, 2
) (Zro, ff! Tio, zs) Oz powder was obtained.
該粉末の平均粒径は0.39μmであった。該粉末をl
ton / ctAで成型したタブレットを、鉛蒸気
、酸素ガス共存雰囲気下、1150℃で10時間焼結し
た。The average particle size of the powder was 0.39 μm. l of the powder
The tablet molded with ton/ctA was sintered at 1150° C. for 10 hours in an atmosphere coexisting with lead vapor and oxygen gas.
得られたものの密度は7.68に達し、透光率は波長6
00nmを用い、サンプル厚み2.5鶴の場合37%で
あった。The density of the obtained product reaches 7.68, and the transmittance is at wavelength 6
00 nm was used, and the sample thickness was 37% when the sample thickness was 2.5 mm.
・実施例3
硝酸ストロンチウム水溶液(0,8mol/ltM度)
44.444ccとオキシ硝酸ジルコニウム水溶液(0
,8mol/j!濃度)160.00を混合した。該混
合水溶液を、撹拌している6規定アンモニヤ水B中に徐
々に添加して、Sr”とz r 4 +の水酸化物共沈
体を得た。該共沈体を洗浄、乾燥した後、1100’C
で仮焼してSro、z Zro、tz Ol、ha粉末
を得た。・Example 3 Strontium nitrate aqueous solution (0.8 mol/ltM degrees)
44.444cc and zirconium oxynitrate aqueous solution (0
,8mol/j! Concentration) 160.00 was mixed. The mixed aqueous solution was gradually added to stirring 6N ammonia water B to obtain a hydroxide coprecipitate of Sr" and z r 4 +. After washing and drying the coprecipitate, , 1100'C
The powder was calcined to obtain Sro, z Zro, tz Ol, and ha powders.
該粉末の平均粒径は0.26μmであった。The average particle size of the powder was 0.26 μm.
該粉末19.456grと市販のTi0z微粉末3.9
71grとpbo粉末(平均粒径15 p m) 31
.74grとをボールミルで一昼夜混合した後、850
℃で2時間仮焼して(Pbo、 s Sro、 z)
(Zro、 qt Tie、 za)Oz粉末を得た。This powder 19.456gr and commercially available Ti0z fine powder 3.9gr
71gr and pbo powder (average particle size 15 pm) 31
.. After mixing with 74gr in a ball mill for a day and night, 850gr.
Calcined at ℃ for 2 hours (Pbo, s Sro, z)
(Zro, qt Tie, za) Oz powder was obtained.
該粉末の平均粒径は0.38μmであった。該粉末を1
ton/cdで成型したタブレットを、鉛蒸気、酸素ガ
ス共存雰囲気下、1150℃で10時間焼結した。The average particle size of the powder was 0.38 μm. 1 of the powder
The tablets molded at ton/cd were sintered at 1150° C. for 10 hours in an atmosphere containing lead vapor and oxygen gas.
得られたものの密度は7.69に達し、透光率は波長6
00nmを用い、サンプル厚み2.5龍の場合約36%
であった。The density of the obtained product reaches 7.69, and the transmittance is at wavelength 6
Approximately 36% when using 00nm and sample thickness of 2.5mm
Met.
・比較例
市販PbO+ TtOz 、Zr0z 、SrO粉末を
(Pbo、 s Sra、 z) (Zro、 tz
Ti0−ze)O+の組成になるように配合し、ボール
ミルで一昼夜混合した後900℃で2時間仮焼した。該
粉末を1 ton /−で成型し、実施例1,2.3と
同じ条件下で焼結した。・Comparative example Commercially available PbO+ TtOz, Zr0z, SrO powder (Pbo, s Sra, z) (Zro, tz
The composition was blended to have a composition of Ti0-ze)O+, mixed all day and night in a ball mill, and then calcined at 900°C for 2 hours. The powder was molded at 1 ton/- and sintered under the same conditions as in Examples 1 and 2.3.
得られたPSZTの密度は7.6程度であったが、透明
な焼結体にならなかった。なお仮焼時の粉末の平均粒径
は4.5μmであった。Although the density of the obtained PSZT was about 7.6, it did not become a transparent sintered body. The average particle size of the powder during calcination was 4.5 μm.
本発明の方法によると、第1工程によりPSZTの構成
成分の一種類以上を含むジルコニヤ粉末(変成ジルコニ
ヤ粉末)は、二次粒子の極めて少ないサブミクロン粒子
となし得、これを使用することによって、以後単なる乾
式法によって、容易にサブミクロン級のPSZT原料粉
末が得られ、更にこれを原料として透光性が良く高密度
のPSZTが得られる、という優れた効果を奏し得られ
る。そのほか次の効果も奏し得られる。According to the method of the present invention, the zirconia powder (modified zirconia powder) containing one or more types of PSZT components in the first step can be made into submicron particles with extremely few secondary particles, and by using this, Thereafter, by a simple dry method, submicron grade PSZT raw material powder can be easily obtained, and furthermore, PSZT with good translucency and high density can be obtained using this as a raw material, which is an excellent effect. In addition, the following effects can also be achieved.
1)仮焼によって得られる変成ジルコニヤ粉末が十分分
散されたものが得られるため、仮焼物の粉砕工程を特に
必要としないで、原料粉末として供給し得られる。1) Since the modified zirconia powder obtained by calcining is sufficiently dispersed, it can be supplied as a raw material powder without the need for a particular pulverization step of the calcined product.
2)該仮焼変成ジルコニヤ粉末から乾式法で得られるP
SZT粉末も単分散状態で得られ、従って粉砕工程を除
いても十分易焼結性且つ高密度の特性を有する。2) P obtained from the calcined modified zirconia powder by a dry method
SZT powder is also obtained in a monodisperse state, and therefore has sufficient sinterability and high density even without the pulverization step.
3)極めて高密度且つ光学的均一性を要求されるオプト
エレクトロニクス用としてのPSZTをホットプレスや
HIP (熱間ガス圧焼結)などの操作を省略して単な
る固相焼結によって、理論密度に極めて近い高密度で得
ることができる。3) PSZT for optoelectronics, which requires extremely high density and optical uniformity, can be reduced to theoretical density by simple solid phase sintering, omitting operations such as hot pressing and HIP (hot gas pressure sintering). can be obtained at extremely high densities.
4)優れた粉末特性を有する変成ジルコニヤ粉末を大量
に生産することによって、任意の組成のPSZTを極め
て安価に供給し得る。4) PSZT of any composition can be supplied at extremely low cost by producing modified zirconia powder with excellent powder properties in large quantities.
Claims (1)
_1_−_yTi_y)O_3(0<x≦0.3 0≦
y≦1.0)で示される(Pb、Br)(Zr、Ti)
O_3の少なくとも一金属成分の適量と、ジルコニウム
とを含有する溶液及び沈殿形成液とを反応させて共沈体
を形成し、該共沈体を乾燥後700〜1300℃で仮焼
する工程、 (2)前記仮焼物と、目的とする(Pb、Sr)(Zr
、Ti)O_3組成の残りの構成成分の化合物を混合し
て500〜1300℃で仮焼する工程、 (3)得られた仮焼粉末を成型して1000〜1300
℃で焼結する工程からなることを特徴とする(Pb、S
r)(Zr、Ti)O_3の製造方法。[Claims] 1. (1) General formula (Pb_1_-_xSr_y) (Zr
_1_-_yTi_y)O_3(0<x≦0.3 0≦
y≦1.0) (Pb, Br) (Zr, Ti)
A step of reacting an appropriate amount of at least one metal component of O_3 with a solution containing zirconium and a precipitate forming liquid to form a coprecipitate, and calcining the coprecipitate at 700 to 1300 ° C. after drying. 2) The calcined product and the target (Pb, Sr) (Zr
, a step of mixing the remaining constituent compounds of the Ti)O_3 composition and calcining at 500 to 1300°C, (3) molding the obtained calcined powder to a temperature of 1000 to 1300°C.
It is characterized by a step of sintering at ℃ (Pb, S
r) Method for producing (Zr, Ti)O_3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62122573A JPS63288962A (en) | 1987-05-21 | 1987-05-21 | Production of (pb, sr) (zr, ti)o3 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62122573A JPS63288962A (en) | 1987-05-21 | 1987-05-21 | Production of (pb, sr) (zr, ti)o3 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63288962A true JPS63288962A (en) | 1988-11-25 |
Family
ID=14839248
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62122573A Pending JPS63288962A (en) | 1987-05-21 | 1987-05-21 | Production of (pb, sr) (zr, ti)o3 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63288962A (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50151910A (en) * | 1974-05-31 | 1975-12-06 | ||
JPS6051664A (en) * | 1983-08-30 | 1985-03-23 | 日本特殊陶業株式会社 | Manufacture of lead zirconate titanate ceramic |
JPS6153114A (en) * | 1984-08-18 | 1986-03-17 | Natl Inst For Res In Inorg Mater | Method for producing raw material powder for easily sinterable perovskite solid solution |
JPS61247607A (en) * | 1985-04-22 | 1986-11-04 | Natl Inst For Res In Inorg Mater | Method for preparing raw material powder of compound with perovskite structure |
JPS62191465A (en) * | 1985-09-24 | 1987-08-21 | 科学技術庁無機材質研究所長 | Manufacture of perovskite ceramics containing zirconium |
JPS63156057A (en) * | 1986-12-19 | 1988-06-29 | 科学技術庁無機材質研究所長 | Manufacturing method for high-density perovskite ceramics |
JPS63218514A (en) * | 1987-03-06 | 1988-09-12 | Seitetsu Kagaku Co Ltd | Method for producing perovskite ceramic powder containing zirconium |
-
1987
- 1987-05-21 JP JP62122573A patent/JPS63288962A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50151910A (en) * | 1974-05-31 | 1975-12-06 | ||
JPS6051664A (en) * | 1983-08-30 | 1985-03-23 | 日本特殊陶業株式会社 | Manufacture of lead zirconate titanate ceramic |
JPS6153114A (en) * | 1984-08-18 | 1986-03-17 | Natl Inst For Res In Inorg Mater | Method for producing raw material powder for easily sinterable perovskite solid solution |
JPS61247607A (en) * | 1985-04-22 | 1986-11-04 | Natl Inst For Res In Inorg Mater | Method for preparing raw material powder of compound with perovskite structure |
JPS62191465A (en) * | 1985-09-24 | 1987-08-21 | 科学技術庁無機材質研究所長 | Manufacture of perovskite ceramics containing zirconium |
JPS63156057A (en) * | 1986-12-19 | 1988-06-29 | 科学技術庁無機材質研究所長 | Manufacturing method for high-density perovskite ceramics |
JPS63218514A (en) * | 1987-03-06 | 1988-09-12 | Seitetsu Kagaku Co Ltd | Method for producing perovskite ceramic powder containing zirconium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS63156057A (en) | Manufacturing method for high-density perovskite ceramics | |
JPS63288962A (en) | Production of (pb, sr) (zr, ti)o3 | |
JPS63288960A (en) | (Pb, Bi) (Zr, Ti) 0↓3 manufacturing method | |
JP2607519B2 (en) | Manufacturing method of optical ceramics | |
JPS63151674A (en) | Manufacture of plzt | |
JPS63151672A (en) | Manufacturing method of lead zirconate titanate piezoelectric ceramic | |
JP2608558B2 (en) | Method for producing optical ceramics | |
JP2607518B2 (en) | Manufacturing method of optical ceramics | |
JPS63288963A (en) | Production of (pb, ba) (zr, ti)o3 | |
JPS61251516A (en) | Production method of perovskite type oxide | |
US4832893A (en) | Method for producing a PLZT compound | |
JPH0678190B2 (en) | Method for producing zirconium titanate-based ceramics | |
JP2607520B2 (en) | Manufacturing method of optical ceramics | |
JP2607517B2 (en) | Method for producing zirconia ceramics | |
JPS63151673A (en) | Manufacturing method of lead zirconate titanate piezoelectric ceramic | |
JPH0712922B2 (en) | Method of forming inorganic hydroxide precipitate | |
JPH0159205B2 (en) | ||
JPH0784345B2 (en) | Manufacturing method of perovskite ceramics | |
JPS63151675A (en) | Manufacturing method of PLZT | |
JPH01298064A (en) | Manufacturing method of PLZT | |
JPS6363512B2 (en) | ||
JPS63288961A (en) | (Pb, La) (Hf, Ti) 0↓3 manufacturing method | |
JPS6287460A (en) | Manufacturing method of PLZT translucent ceramics | |
JPH0784350B2 (en) | Manufacturing method of perovskite ceramics | |
JPS63239119A (en) | Manufacturing method of PLZT powder |