[go: up one dir, main page]

JPS63287502A - Gas purifier - Google Patents

Gas purifier

Info

Publication number
JPS63287502A
JPS63287502A JP12243587A JP12243587A JPS63287502A JP S63287502 A JPS63287502 A JP S63287502A JP 12243587 A JP12243587 A JP 12243587A JP 12243587 A JP12243587 A JP 12243587A JP S63287502 A JPS63287502 A JP S63287502A
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
condenser
gas
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12243587A
Other languages
Japanese (ja)
Inventor
Ichiro Yamazaki
一郎 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP12243587A priority Critical patent/JPS63287502A/en
Publication of JPS63287502A publication Critical patent/JPS63287502A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0003Condensation of vapours; Recovering volatile solvents by condensation by using heat-exchange surfaces for indirect contact between gases or vapours and the cooling medium
    • B01D5/0006Coils or serpentines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

PURPOSE:To remove the CF4 impurity in a laser gas by charging a refrigerant in a pressure vessel with the pressure controllable, and providing a condenser through which a gas to be treated is passed in the refrigerant to lower the temp. of the refrigerant to a temp. lower than that under atmospheric pressure. CONSTITUTION:The refrigerant 1 is charged in the pressure vessel 2 coated with a heat insulating material 3, a space is provided at the upper part, and the pressure is regulated by a pressure controller 7. The condenser 4 is furnished in the refrigerant, a laser gas is introduced through an inlet valve 11, and the CF4 impurity is condensed and removed. The laser gas discharged from the condenser 4 is pressurized by a pump 13, and returned to a laser gas oscillator through an outlet valve 12. Since the pressure exerted on the refrigerant for the condenser is controlled, the temp. of the refrigerant can be lowered to a temp. lower than that under atmospheric pressure, the CF4 impurity can be efficiently removed, and the cost of the purifier can be reduced.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、気体′HI製装置、特に、稀ガスーハロゲ
ンガスエキシマレーザ装置に用いられるガスの精製に適
した気体精製装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a gas purification apparatus suitable for purifying a gas used in a gaseous HI production apparatus, particularly a rare gas-halogen gas excimer laser apparatus.

[従来の技術] 従来、気体の精製、すなわち、ガス中の不純物の除去は
、不純物の吸収物質を用いるか、または不純物の選択的
凝縮によって行なわれていた0例えば、アルゴン−弗素
(^rF)系のガスを用いるレーザ装置においては、液
体窒素の一定の低温による効率的な不純物の除去が行な
われ、その装置としては、使用ガスの銅製パイプライン
の1部を液体窒素の中に浸漬するという簡単なものであ
った。
[Prior Art] Conventionally, purification of gases, that is, removal of impurities in gases, has been carried out using impurity absorption substances or by selective condensation of impurities. For example, argon-fluorine (^rF) In laser equipment that uses liquid nitrogen, impurities are efficiently removed by the constant low temperature of liquid nitrogen. It was simple.

最近では、使用される混合ガスの種類も増え、例えば、
稀ガスとして蒸気圧の低いキセノンやクリプトンを使用
した場合には、不純物の除去に微妙な温度調節が必要と
なり、例えば、第3図に示すような装置が提案されてい
る (英国特許出願第2126327−A号公報参照)
、すなわち、冷媒(1)中に、その1部が浸漬される熱
伝導体製の凝縮器(4)に、再生用のガスを熱交換器(
56)で予冷して配管(57)から導入し、凝縮器(4
)内で不純物を凝縮除去する装置において、シーリング
ナツト(55)にて冷媒(1)内へ浸漬する部分の長さ
を調節し、またヒータ(61)にて温度調節することに
より凝縮器(4)の冷却温度を微細に調節できるもので
ある。
Recently, the types of mixed gases used have increased, for example,
When xenon or krypton, which has a low vapor pressure, is used as a rare gas, delicate temperature control is required to remove impurities. For example, a device as shown in Figure 3 has been proposed (UK Patent Application No. 2126327 -Refer to Publication A)
That is, the regeneration gas is passed through a heat exchanger (4) made of a heat conductor, a part of which is immersed in the refrigerant (1).
56) and introduced from the pipe (57), and then the condenser (4
), the length of the part immersed in the refrigerant (1) is adjusted using a sealing nut (55), and the temperature is adjusted using a heater (61). ) can be finely adjusted.

[発明が解決しようとする問題点] 従来の気体精製装置は以上のように構成されているので
、冷媒の温度以下に凝縮器の温度を下げることができな
かった。このため、^rFエキシマレーザにおいて、運
転時間と共に濃度が増加しし、−ザ出力の低下を招く4
弗化メタン(CF4)を、安価で取扱いの容易な液体窒
素冷媒で除去できないという問題があった。したがって
、凝縮器の温度を下げるためには、高価で取扱いにくい
液体水素や液体ヘリウムを使わなければならず、また最
適な温度に調整するために、ヒータ(61)を用いて加
熱すれば、冷媒の消′f!量が大きくなるという問題点
があった。
[Problems to be Solved by the Invention] Since the conventional gas purification apparatus is configured as described above, it has not been possible to lower the temperature of the condenser below the temperature of the refrigerant. For this reason, in the ^rF excimer laser, the concentration increases with operating time, leading to a decrease in laser output.
There has been a problem in that fluorinated methane (CF4) cannot be removed using liquid nitrogen refrigerant, which is inexpensive and easy to handle. Therefore, in order to lower the temperature of the condenser, it is necessary to use liquid hydrogen or liquid helium, which is expensive and difficult to handle.Also, in order to adjust the temperature to the optimum temperature, it is necessary to use a heater (61) to heat the refrigerant. Disappearance'f! There was a problem that the amount was large.

この発明は、上記のような問題点を解消するためになさ
れたもので、簡単に冷媒温度を低くすることができ、か
つ、安価で精度のいい温度制御ができて冷媒の消費量の
少ない気体精製装置を得ることを目的とする。
This invention was made in order to solve the above-mentioned problems, and it is possible to easily lower the refrigerant temperature, and it is also possible to use a gas with low cost, accurate temperature control, and low refrigerant consumption. The purpose is to obtain purification equipment.

[問題点を解決するための手段] この発明に係る気体精製装置は、 冷媒を収容する圧力
容器と、この圧力容器内の圧力を制御することにより上
記冷媒の温度を制御する圧力制御装置と、被処理ガスを
通流し、上記冷媒の冷熱により上記被処理ガス中の凝縮
性ガスを凝縮除去する凝縮器とから成るものである。
[Means for Solving the Problems] A gas purification device according to the present invention includes: a pressure vessel that accommodates a refrigerant; a pressure control device that controls the temperature of the refrigerant by controlling the pressure within the pressure vessel; and a condenser through which the gas to be treated passes through and condenses and removes condensable gas in the gas to be treated by the cold heat of the refrigerant.

[作用] この発明の装置においては、冷媒を入れた圧力容器内の
圧力を高くすると冷媒温度(沸点)が上昇し、圧力容器
内の圧力を低くすると冷媒温度(沸点)が低下すること
になり、冷媒温度を大気圧下における沸点より大巾に変
えることができ、その冷媒温度によって凝縮器の温度が
制御されるので、凝縮器に対するヒータなどの外部加熱
装置が不用となる。
[Function] In the device of the present invention, increasing the pressure in the pressure vessel containing refrigerant will increase the refrigerant temperature (boiling point), and lowering the pressure in the pressure vessel will decrease the refrigerant temperature (boiling point). Since the temperature of the refrigerant can be changed to a wider range than the boiling point under atmospheric pressure, and the temperature of the condenser is controlled by the temperature of the refrigerant, an external heating device such as a heater for the condenser is not required.

[実施例] 以下、この発明の一実施例を図について説明する。第1
図および第2図において、(1)は冷媒、(2)は冷媒
を収納する圧力容器、(3)は外部からの入熱を防止す
る断熱材、(4)は′a縮器、(5)は冷媒温度を測る
温度計、(6)は液面計、(ア)は圧力制御装置、(9
)は空間(8)の圧力を計る圧力計、(10)は冷媒注
入装置である。第1図に示される例においては、凝縮器
(4)は、再生用レーザガスの配管(57)の1部をコ
イルして形成され、圧力容器(2)内の冷媒中に浸漬さ
れている。大口弁(11)を有する再生用ガスの配管(
5))は、圧力容器(2)を貫通して、圧力容器(2)
内で凝縮器(4)を形成するコイルをなし、再び圧力容
器室を貫通して、ポンプ(13)、出口弁(12)を介
してレーザ装置に至るものである。第2図に示される他
の実施例においては、凝縮器(4)は、熱伝導体で作ら
れ、圧力容器(2)の底部に熱的に一体に設けられてい
る。凝縮器(4)の内部には中空部があり、この中空部
には熱伝導体の粒子状物又は線状物が充填材(15)と
して詰められ、止め栓(16)により密封されている。
[Example] Hereinafter, an example of the present invention will be described with reference to the drawings. 1st
In the figure and Figure 2, (1) is the refrigerant, (2) is the pressure vessel that stores the refrigerant, (3) is the heat insulating material that prevents heat input from the outside, (4) is the 'a condenser, and (5) is the refrigerant. ) is a thermometer that measures the refrigerant temperature, (6) is a liquid level gauge, (a) is a pressure control device, (9
) is a pressure gauge that measures the pressure in space (8), and (10) is a refrigerant injection device. In the example shown in FIG. 1, the condenser (4) is formed by coiling a part of the regeneration laser gas piping (57), and is immersed in the refrigerant in the pressure vessel (2). Regeneration gas piping with large mouth valve (11) (
5)) penetrates the pressure vessel (2) and the pressure vessel (2)
The coil forms a condenser (4) within the chamber, passes through the pressure vessel chamber again, and reaches the laser device via a pump (13) and an outlet valve (12). In another embodiment shown in FIG. 2, the condenser (4) is made of a thermally conductive material and is thermally integrated at the bottom of the pressure vessel (2). There is a hollow part inside the condenser (4), and this hollow part is filled with particles or wires of a thermal conductor as a filler (15) and sealed with a stopper (16). .

入口弁(11)を有する配管(57)および出口弁(1
2)とポンプ(13)を有する配管(57)は、この凝
縮器゛(4)の中空室に連通している。なお、次に、装
置の動作について説明する。液面計(6)を見ながら空
間(8)を残すように、冷媒注入装置(10)によって
断熱材(3)で囲包した圧力容器(2)に冷媒(1)を
注入する。凝縮器(4)の目的とする温度が温度計(5
)で測定された値より低い場合は、圧力制御装置(7)
で空間(8)を減圧にして冷媒(1)を冷却し、また、
逆に高い場合は、圧力制卿装v、(7)で空間(8)を
加圧して冷媒(1)の温度を高くし、圧力制御装置(7
)によって一定の圧力即ち一定温度になる様に調整する
。このようにして、冷媒又は圧力容器と熱的に一体化さ
れている凝縮器(4)を目的とする温度に制御する。不
純物、特にCF4を含むレーザガスが入口弁(11)よ
り配管(57)を通って凝縮器(4)に入り冷却される
と、ガス中の不純物は凝縮されてガス中から除去され、
ガスはポンプ(13)によって出口弁(12)からレー
ザ発fi器へ戻される。冷媒(1)に液体窒素を用いて
空間(8)の圧力を200izf1g(abs)に保持
すると、冷媒温度は一68Xとなり、ガス中のCF4濃
度を200pp−以下にできた。なお、圧力制御装W1
())としては、ポンプに連なるi整置からなる通常の
装置を使用した。
Piping (57) with inlet valve (11) and outlet valve (1
A pipe (57) with a pump (13) and a pump (13) communicates with the hollow chamber of this condenser (4). Note that the operation of the device will be explained next. While watching the liquid level gauge (6), the refrigerant (1) is injected into the pressure vessel (2) surrounded by the heat insulating material (3) using the refrigerant injection device (10) so as to leave a space (8). The target temperature of the condenser (4) is measured by the thermometer (5).
), then the pressure control device (7)
The space (8) is depressurized to cool the refrigerant (1), and
On the other hand, if it is high, the pressure control device (7) pressurizes the space (8) to increase the temperature of the refrigerant (1), and the pressure control device (7)
) to maintain a constant pressure or constant temperature. In this way, the condenser (4), which is thermally integrated with the refrigerant or the pressure vessel, is controlled to the desired temperature. When the laser gas containing impurities, especially CF4, enters the condenser (4) from the inlet valve (11) through the pipe (57) and is cooled, the impurities in the gas are condensed and removed from the gas.
Gas is returned to the laser generator from the outlet valve (12) by a pump (13). When liquid nitrogen was used as the refrigerant (1) and the pressure in the space (8) was maintained at 200 izf1 g (abs), the refrigerant temperature became -68X and the CF4 concentration in the gas could be reduced to 200 pp- or less. In addition, the pressure control device W1
()) A conventional device consisting of an i-arrangement connected to a pump was used.

[発明の効果] 以上のように、この発明によれば、冷媒温度を圧力によ
って調節するように構成したので、装置が安価にでき、
また、凝縮器の冷却温度が大気圧下における冷媒温度よ
りも低くすることができ、気体中の不純物、特にCF4
の濃度の低いガスが得られる効果がある。
[Effects of the Invention] As described above, according to the present invention, since the refrigerant temperature is adjusted by pressure, the device can be made inexpensive.
In addition, the cooling temperature of the condenser can be lower than the refrigerant temperature under atmospheric pressure, and impurities in the gas, especially CF4, can be
This has the effect of obtaining gas with a low concentration of .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による気体精製装置を示す
断面図、第2図はこの発明の他の実施例を示す断面図、
第3図は従来の気体精製装置を示す断面図である。 (1)は冷媒、(2)は圧力容器、(3)は断熱材、(
4)は凝縮器、(7)は圧力制御装置、(13)はポン
プ。 なお、図中同一符号は同一、又は相当部分を示す。 4:ン硝転tJトnらAシ5、
FIG. 1 is a sectional view showing a gas purification device according to one embodiment of the present invention, and FIG. 2 is a sectional view showing another embodiment of the present invention.
FIG. 3 is a sectional view showing a conventional gas purification device. (1) is a refrigerant, (2) is a pressure vessel, (3) is a heat insulator, (
4) is a condenser, (7) is a pressure control device, and (13) is a pump. Note that the same reference numerals in the figures indicate the same or equivalent parts. 4: N Nitten tJ Ton et al A 5,

Claims (2)

【特許請求の範囲】[Claims] (1)冷媒を収容する圧力容器、この圧力容器内の圧力
を制御することにより上記冷媒の温度を制御する圧力制
御装置、被処理ガスを通流し、上記冷媒の冷熱により上
記被処理ガス中の凝縮性ガスを凝縮除去する凝縮器を備
えた気体精製装置。
(1) A pressure vessel that accommodates a refrigerant, a pressure control device that controls the temperature of the refrigerant by controlling the pressure inside the pressure vessel, and a gas to be treated that flows through it to reduce the temperature in the gas to be treated using the cold heat of the refrigerant. A gas purification device equipped with a condenser that condenses and removes condensable gas.
(2)冷媒として液体窒素を用いる特許請求の範囲第1
項記載の気体精製装置。
(2) Claim 1 using liquid nitrogen as a refrigerant
The gas purification device described in Section 1.
JP12243587A 1987-05-21 1987-05-21 Gas purifier Pending JPS63287502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12243587A JPS63287502A (en) 1987-05-21 1987-05-21 Gas purifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12243587A JPS63287502A (en) 1987-05-21 1987-05-21 Gas purifier

Publications (1)

Publication Number Publication Date
JPS63287502A true JPS63287502A (en) 1988-11-24

Family

ID=14835776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12243587A Pending JPS63287502A (en) 1987-05-21 1987-05-21 Gas purifier

Country Status (1)

Country Link
JP (1) JPS63287502A (en)

Similar Documents

Publication Publication Date Title
US5430752A (en) Apparatus for purifying laser gas
US5100495A (en) Dry etching apparatus with diluted anhydrous hydrogen fluoride gas generator
US4591409A (en) Control of nitrogen and/or oxygen in silicon via nitride oxide pressure during crystal growth
US3921002A (en) Ozone generator
US5332555A (en) Ozone beam generation apparatus and method for generating an ozone beam
JP2875480B2 (en) High-purity hydrogen bromide purification method and apparatus
EP1101732B1 (en) Method and apparatus for continuously generating highly concentrated ozone gas
US6508915B1 (en) Apparatus and method for distilling waste liquids
JPH0847629A (en) Method for feeding liquid and raw gas and device therefor
US4601040A (en) Condensers
JPS63287502A (en) Gas purifier
JP4514267B2 (en) Impurity extraction method and impurity extraction apparatus for semiconductor substrate
JP2001261320A (en) Method and device for supplying purified liquefied carbon dioxide and method and device for cleaning with dry ice snow
JP3338482B2 (en) Ozone beam generator
JP2843307B2 (en) Ozone concentration apparatus and ozone concentration method
JPH07204402A (en) Vacuum purification apparatus and method of the same
US6228175B1 (en) Apparatus for generating a wet oxygen stream for a semiconductor processing furnace
US3006734A (en) Process for preparing pure silicon
JP2000077387A (en) Method and system for removing resist
JPS61107919A (en) Gas refining device
JPH11199207A (en) Ozone beam generation and device therefor
SU1430076A1 (en) Apparatus for fine cleaning of gases
JP5453844B2 (en) High concentration ozone supply method and liquid ozone storage vessel
US4410357A (en) Method of purifying indium
JPS63287501A (en) Gas purifier