[go: up one dir, main page]

JPS63287084A - Semiconductor laser module - Google Patents

Semiconductor laser module

Info

Publication number
JPS63287084A
JPS63287084A JP62121946A JP12194687A JPS63287084A JP S63287084 A JPS63287084 A JP S63287084A JP 62121946 A JP62121946 A JP 62121946A JP 12194687 A JP12194687 A JP 12194687A JP S63287084 A JPS63287084 A JP S63287084A
Authority
JP
Japan
Prior art keywords
laser
optical fiber
light
fiber
monitor diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62121946A
Other languages
Japanese (ja)
Inventor
Masaaki Oshima
大島 正晃
Noriyuki Hirayama
平山 則行
Takeshi Idota
健 井戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62121946A priority Critical patent/JPS63287084A/en
Publication of JPS63287084A publication Critical patent/JPS63287084A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/185Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only horizontal cavities, e.g. horizontal cavity surface-emitting lasers [HCSEL]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48464Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area also being a ball bond, i.e. ball-to-ball
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0207Substrates having a special shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02212Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0262Photo-diodes, e.g. transceiver devices, bidirectional devices
    • H01S5/0264Photo-diodes, e.g. transceiver devices, bidirectional devices for monitoring the laser-output
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • H01S5/2018Optical confinement, e.g. absorbing-, reflecting- or waveguide-layers
    • H01S5/2027Reflecting region or layer, parallel to the active layer, e.g. to modify propagation of the mode in the laser or to influence transverse modes

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To improve reliability and coupling efficiency, by burying an optical fiber in a light taking-out part of a surface emitting type laser for directly coupling laser beam with the optical fiber. CONSTITUTION:A surface emitting type laser 2 is die-boneded on a stem 1 followed by die-bonding of the light-receiving surface of a monitor diode 3 and an outgoing window 4 of laser light together. Next, a core 5 of an optical fiber is put in the other outgoing window 6 of the laser 2 and a housing is soldered on the electrode surface 7 of a chip. Further, the electrode surface 7 is wire-bonded with a cathode lead 8, and the electrode surface of the monitor diode 3 is wire-bonded with a lead 9. Thereon a cap 11 is put to form a laser module. With this constitution, the coupling efficiency of laser beam and an optical fiber is as high as 40% on the average, having no tempera-ture fluctuation of light output of fiber and a monitor diode output, while improving reliability.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光フアイバ通信用の光源の改良に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention This invention relates to improvements in light sources for fiber optic communications.

従来の技術 これまで長距離、かつ大容量の光フアイバ通信を行うた
めにはシングルモードファイバラ用い、発振波長が1.
3μmから1.5μmの半導体レーザと高効率に結合し
たレーザモジュールが用いられてきた。一般に半導体レ
ーザ(以下レーザと略)は、ビーム出射角が接合に垂直
方向θ土で約35°水平方向θ〃テ約25°の楕円形の
パターンをしておシ、コア系約8μmのシングルモード
ファイバとの結合は極めて困難であシ、複雑なレンズ系
を介してようやく40%程度の結合効率が得られる。−
例として第3図にレーザとシングルモードファイバの結
合系を示す。レーザ41からの楕円状の出射光は、球レ
ンズ42によって平行光線となったあと、ロッドレンズ
43によって集光されファイバ44へと9込まれる。こ
のような結合系では、ロッドレンズ43、及びファイバ
44の軸ずれが結合効率を著るしく悪化させる。すなわ
ち温度や振動等の耐環境に対する信頼性に影響を与える
ものである。また従来のレーザモジュールにおいては、
レーザの一主面よりの出射光をファイバへ、また他の面
からの出射光を、モニタ用ホトダイオードへ入射するよ
うな構造となっている。すなわちレーザ光出力の温度依
存性が太きいため光出力を常にホトダイオードで電気出
力としてモニタし、一定出力となるようレーザ動作電流
にフィードバックするようになっている。
Conventional Technology Up until now, single mode fiber optics have been used to perform long distance and large capacity optical fiber communications, with an oscillation wavelength of 1.
Laser modules that are highly efficiently coupled with semiconductor lasers of 3 μm to 1.5 μm have been used. In general, semiconductor lasers (hereinafter abbreviated as lasers) have an elliptical pattern with a beam output angle of about 35 degrees in the vertical direction θ and about 25 degrees in the horizontal direction, and a single core system of about 8 μm. Coupling with a mode fiber is extremely difficult, and a coupling efficiency of about 40% can only be obtained through a complicated lens system. −
As an example, FIG. 3 shows a coupling system between a laser and a single mode fiber. The elliptical emitted light from the laser 41 is turned into parallel light by a ball lens 42, and then condensed by a rod lens 43 and input into a fiber 44. In such a coupling system, the axis misalignment of the rod lens 43 and the fiber 44 significantly deteriorates the coupling efficiency. In other words, it affects the reliability with respect to environments such as temperature and vibration. In addition, in conventional laser modules,
The structure is such that the light emitted from one principal surface of the laser enters the fiber, and the light emitted from the other surface enters the monitoring photodiode. That is, since the laser light output has a strong temperature dependence, the light output is constantly monitored as an electrical output by a photodiode, and fed back to the laser operating current to maintain a constant output.

このモニタ用ホトダイオードは一般的には、レーザと同
一ステム上にとシつけられるが、両者をダイボンドする
際、オーミック電極の材質が同じであるとどちらかが必
ず位置ずれをおこしてしまう。そこでどちらかのチップ
に低融点のハンダ材を使用する等の手段がとられていた
This monitoring photodiode is generally mounted on the same stem as the laser, but when both are die-bonded, if the ohmic electrodes are made of the same material, one of them will inevitably be misaligned. Therefore, measures such as using a low melting point solder material for one of the chips have been taken.

発明が解決しようとする問題点 以上のような従来のレーザモジュールでは、球レンズ。The problem that the invention aims to solve In conventional laser modules such as the above, a ball lens is used.

ロッドレンズ等を使用したことにより耐環境特性に対す
る脆弱さ、及びモニタ用ホトダイオードの電極とレーザ
の電極を異なる融点の材質を使用することによる熱膨張
係数の違いによる信頼性の低下を生じる。
The use of a rod lens or the like causes fragility in environmental resistance characteristics, and the use of materials with different melting points for the monitor photodiode electrode and the laser electrode causes a decrease in reliability due to a difference in thermal expansion coefficient.

そこで本発明は上記問題点を解消した極めて単純な結合
系の半導体レーザモジュールを提供するものである。
Therefore, the present invention provides a semiconductor laser module with an extremely simple coupling system that solves the above-mentioned problems.

問題点を解決するだめの手段 本発明は、半導体基板上に平行に設けられた活性導波路
、及び活性導波路内で発光した光ビームを基板側の2ケ
所よりとり出す機構を有する半導体レーザの該基板上の
光取出部に設けられた溝状の円形窓中に光ファイバを埋
めこみレーザ光を光ファイバに結合させるものである。
Means for Solving the Problems The present invention provides a semiconductor laser having an active waveguide provided in parallel on a semiconductor substrate and a mechanism for extracting the light beam emitted within the active waveguide from two locations on the substrate side. An optical fiber is embedded in a groove-shaped circular window provided in a light extraction section on the substrate, and a laser beam is coupled to the optical fiber.

作用 面発光型のレーザは、通常のレーザより狭い幅のレーザ
光を得られ、それを単に光ファイバと直結する構成であ
るので、高信頼性および高結合効率が得られる。
A surface-emitting type laser can obtain laser light with a narrower width than a normal laser, and because it is simply connected directly to an optical fiber, high reliability and high coupling efficiency can be obtained.

実施例 以下、本発明の一実施例を図面をもって説明する。第1
図は、本発明の半導体レーザモジュールの断面図である
。半導体レーザは特願61−92725に記載されてい
る面発光型のものを用いた。このレーザの断面図を第2
図に示す。n−InP基板21上にn −1nGaムs
P工ツチングストツプ層22゜n −InPクラッド層
23 、 n −InGaAsP活性層24、p−In
Pクラッド層25 、 p −InG4A!IPキャッ
プ層26が成長されている。発光部である活性層24の
両端は45°にカットされ発光した光は基板に設けられ
た円型窓30の方向に導びかれる。27.28はオーミ
ック電極である。円型窓3oの中には5i5N4/5i
02多層膜31がとりつけられ、そしてカットされた面
にはSiO2/ Si / Au反射膜が設けられてい
るので光の一部は外部に一部は活性層に戻され、全体と
して共振器を構成しておりレーザ発振をする。この構造
のレーザでは従来の端面をへき開によって鏡面化するレ
ーザと異なシビームの広がシ角は極めて小さくすること
ができる。すなわち、従来のレーザでは活性層から空気
中への出射角は上記したように広いが、このレーザでは
約9°と狭くすることができる。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings. 1st
The figure is a sectional view of a semiconductor laser module of the present invention. The semiconductor laser used was a surface emitting type semiconductor laser described in Japanese Patent Application No. 61-92725. A cross-sectional view of this laser is shown in the second
As shown in the figure. n −1 nGa s on the n-InP substrate 21
P processing stop layer 22゜n-InP cladding layer 23, n-InGaAsP active layer 24, p-In
P cladding layer 25, p-InG4A! An IP cap layer 26 has been grown. Both ends of the active layer 24, which is a light emitting part, are cut at 45 degrees, and the emitted light is guided in the direction of a circular window 30 provided in the substrate. 27 and 28 are ohmic electrodes. 5i5N4/5i inside the circular window 3o
02 multilayer film 31 is attached, and a SiO2/Si/Au reflective film is provided on the cut surface, so that part of the light is returned to the outside and part of it is returned to the active layer, forming a resonator as a whole. It emits laser oscillation. In a laser with this structure, unlike a conventional laser in which the end face is made into a mirror surface by cleavage, the beam spread angle can be made extremely small. That is, in the conventional laser, the emission angle from the active layer into the air is wide as described above, but in this laser, it can be narrowed to about 9 degrees.

このようなレーザ2を第1図に示すようにステム1上に
基板面を上にしてダイボンドする。連続してモニタダイ
オード3、受光面とレーザ光出射窓4とを合わせてダイ
ボンドする。次に光フフイバの芯線6をレーザ2の他の
出射窓6中に入れる。
As shown in FIG. 1, such a laser 2 is die-bonded onto the stem 1 with the substrate surface facing upward. The monitor diode 3, the light-receiving surface, and the laser beam output window 4 are successively die-bonded together. Next, the optical fiber core wire 6 is inserted into the other exit window 6 of the laser 2.

ファイバ5の直径は126μ、出射窓4,6の直径は約
120μである。ファイバの外被はメタライズしてチッ
プの電極面7にハンダ固定される。
The diameter of the fiber 5 is 126μ, and the diameter of the exit windows 4, 6 is about 120μ. The outer sheath of the fiber is metallized and soldered to the electrode surface 7 of the chip.

次に、電極面7をカンードリード8へ、モニタダイオー
ドの電極面をリード9へそれぞれワイアボンドする。尚
アノード電極1oはレーザ2のダイボンド面と導通して
いる。これにキャップ11をかぶせてレーザモジュール
が完成する。
Next, the electrode surface 7 is wire-bonded to the canned lead 8, and the electrode surface of the monitor diode is wire-bonded to the lead 9. Note that the anode electrode 1o is electrically connected to the die bonding surface of the laser 2. This is covered with a cap 11 to complete the laser module.

このような構成においては、レーザと光ファイバとの結
合効率は前記したような複雑なレンズ系なしに平均40
%程度の高い結合効率が得られると共に、0°C〜50
″Cの温度サイクル試験を行ってもファイバ光出力及び
モニタダイオードの出力共に変動はない。
In such a configuration, the coupling efficiency between the laser and the optical fiber can be increased to an average of 40
It is possible to obtain a high coupling efficiency of about 10%, and at the same time
There is no change in the fiber optical output or the output of the monitor diode even if a temperature cycle test of "C" is performed.

またモニタダイオードは、レーザチップのダイボンドと
同一プロセスでとりつけられるため極めて生産性もよく
かつ低融点のハンダを使用せずともボンディングできう
るため、上記したような安定な特性が得られる。
Furthermore, since the monitor diode can be attached in the same process as the die bonding of the laser chip, productivity is extremely high and bonding can be performed without using low melting point solder, so the stable characteristics described above can be obtained.

発明の効果 以上のべたように本発明によれば、面発光レーザとファ
イバとの直結により極めて単純な結合系によシ高い結合
効率と、信頼性のあるレーザモジュールが可能となる。
Effects of the Invention As described above, according to the present invention, it is possible to provide a laser module with high coupling efficiency and reliability using an extremely simple coupling system by directly coupling a surface emitting laser to a fiber.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のレーザモジュールの断面図
、第2図は第1図に示すモジュールに用いられたレーザ
チップの断面図、第3図は従来例のレーザと光ファイバ
との結合系の説明図である。 1・・・・・・ステム、2・・・・・・レーザチップ、
3・・甲・モニタダイオード、4.6・・・・・・出射
窓、5・・・・・・光ファイバ、7・・・・・・電極、
8,9.10・・・・・・リード、11・・・・・・キ
ャップ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 21 −  n−1nP蟇枝 22 −  n−1nGaASP工ツチングストツプ層
2’ll −n−1nPクヲツド眉 % −n−1nGaAsP活性層 As−P−InPクヲツド層 26 −  P−InGaASPキvyプ眉?1d−オ
ーミック置屋 29 = 5i0215i/AU反射膜刀−・−円型類 31−5r3Nt/5j(h多層膜 第2図  ゛ 4I−レーデ 乾−球レンズ q−ロッドレンズ 4−ファイバー 6− モニタダイオード 第3図
Fig. 1 is a cross-sectional view of a laser module according to an embodiment of the present invention, Fig. 2 is a cross-sectional view of a laser chip used in the module shown in Fig. 1, and Fig. 3 is a cross-sectional view of a conventional laser and optical fiber. FIG. 2 is an explanatory diagram of a coupling system. 1... Stem, 2... Laser chip,
3...Monitor diode, 4.6...Output window, 5...Optical fiber, 7...Electrode,
8,9.10...Lead, 11...Cap. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 21 - n-1nP ridge 22 - n-1nGaASP processing stop layer 2'll - n-1nP quadruple layer % - n-1nGaAsP active layer As-P-InP quad layer 26 - P-InGaASP capping layer 2' 1d-Ohmic holder 29 = 5i0215i/AU reflective film sword--Circular type 31-5r3Nt/5j (h Multilayer film Fig. 2 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板上に平行に設けられた活性導波路およ
び前記活性導波路内で発光した光ビームを基板側の2箇
所よりとり出す機構を有し、前記半導体基板上の光取出
部に設けられた溝状の円形窓中に光ファイバを埋めこみ
面発光型レーザ光を前記光ファイバに結合させたことを
特徴とする半導体レーザモジュール。
(1) It has an active waveguide provided in parallel on the semiconductor substrate and a mechanism for extracting the light beam emitted within the active waveguide from two locations on the substrate side, and is provided in the light extraction section on the semiconductor substrate. 1. A semiconductor laser module characterized in that an optical fiber is embedded in a groove-shaped circular window, and a surface emitting laser beam is coupled to the optical fiber.
(2)基板側の溝状円形窓上にホトダイオードをとりつ
けたことを特徴とする特許請求の範囲第1項記載の半導
体レーザモジュール。
(2) The semiconductor laser module according to claim 1, characterized in that a photodiode is mounted on the groove-shaped circular window on the substrate side.
JP62121946A 1987-05-19 1987-05-19 Semiconductor laser module Pending JPS63287084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62121946A JPS63287084A (en) 1987-05-19 1987-05-19 Semiconductor laser module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62121946A JPS63287084A (en) 1987-05-19 1987-05-19 Semiconductor laser module

Publications (1)

Publication Number Publication Date
JPS63287084A true JPS63287084A (en) 1988-11-24

Family

ID=14823833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62121946A Pending JPS63287084A (en) 1987-05-19 1987-05-19 Semiconductor laser module

Country Status (1)

Country Link
JP (1) JPS63287084A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010251649A (en) * 2009-04-20 2010-11-04 Hitachi Ltd Surface emitting laser module and surface light receiving module
EP2043210A3 (en) * 2007-09-28 2010-12-22 OSRAM Opto Semiconductors GmbH Semiconductor laser and method for producing the semiconductor laser
US8179940B2 (en) 2007-09-28 2012-05-15 Osram Opto Semiconductors Gmbh Semiconductor laser and method for producing the semiconductor laser

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2043210A3 (en) * 2007-09-28 2010-12-22 OSRAM Opto Semiconductors GmbH Semiconductor laser and method for producing the semiconductor laser
US8179940B2 (en) 2007-09-28 2012-05-15 Osram Opto Semiconductors Gmbh Semiconductor laser and method for producing the semiconductor laser
JP2010251649A (en) * 2009-04-20 2010-11-04 Hitachi Ltd Surface emitting laser module and surface light receiving module
US8755423B2 (en) 2009-04-20 2014-06-17 Hitachi, Ltd. Surface emitting laser module and vertical illuminated photodiode module

Similar Documents

Publication Publication Date Title
US7358109B2 (en) Surface emitting laser package having integrated optical element and alignment post
US6678292B2 (en) Top contact VCSEL with monitor
US6659659B1 (en) High-speed optical sub-assembly utilizing ceramic substrate, direct coupling and laser welding
JP2930213B2 (en) Semiconductor laser device
US6973110B2 (en) Monolithic laser configuration
CA2375692A1 (en) Hermetically sealed semiconductor laser device
US20050196112A1 (en) Transmitting optical subassembly capable of monitoring the front beam of the semiconductor laser diode
JPH02254783A (en) Semiconductor laser device
JPS63287084A (en) Semiconductor laser module
JPS5996789A (en) Photosemiconductor device
JPH05183239A (en) Semiconductor laser
JP2000156510A (en) Opto-semiconductor element, method of manufacturing opto-semiconductor element, and optoelectronic device
US20210281039A1 (en) Semiconductor-laser-chip-on-submount, manufacturing method thereof, and semiconductor laser module
JP2001208939A (en) Optical element module, manufacturing method of it and monitor-attached laser chip, and mounting method of laminated chip
JP2002344024A (en) Optical transmission device
JP2005026333A (en) Semiconductor laser equipment
JP3771609B2 (en) Semiconductor laser device and assembly method thereof
JP3443170B2 (en) Semiconductor laser device
JPS60110185A (en) Optical integrated circuit package
JP2000323791A (en) Assembly of vertical resonator type surface light emitting laser and photodetection monitor and assembling method thereof
JP2002232051A (en) Optical transmitter and method of manufacturing the same
EP1079484A2 (en) Semiconductor laser device, semiconductor laser module, and fiber module
JPH0330385A (en) Semiconductor laser device
JPH01120874A (en) Semiconductor photodetector/light emitting device
JP3660305B2 (en) Manufacturing method of semiconductor laser device