[go: up one dir, main page]

JPS63286858A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPS63286858A
JPS63286858A JP12021487A JP12021487A JPS63286858A JP S63286858 A JPS63286858 A JP S63286858A JP 12021487 A JP12021487 A JP 12021487A JP 12021487 A JP12021487 A JP 12021487A JP S63286858 A JPS63286858 A JP S63286858A
Authority
JP
Japan
Prior art keywords
amorphous silicon
substrate
photosensitive layer
boric acid
photoreceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12021487A
Other languages
Japanese (ja)
Inventor
Yuzuru Fukuda
福田 讓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP12021487A priority Critical patent/JPS63286858A/en
Publication of JPS63286858A publication Critical patent/JPS63286858A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/10Bases for charge-receiving or other layers
    • G03G5/104Bases for charge-receiving or other layers comprising inorganic material other than metals, e.g. salts, oxides, carbon
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/142Inert intermediate layers
    • G03G5/144Inert intermediate layers comprising inorganic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To reduce dark decay of charged potential and to prevent charging characteristics from being affected by change of an external environmental atmosphere by forming an aluminum substrate having an anodized film prepared by anodic oxidation using a boric acid electrolytic solution and an amorphous silicon photosensitive layer. CONSTITUTION:The anodized film 2 is prepared on the aluminum substrate 1 by cutting and mirror finishing the surface of the aluminum substrate 1, forming it into a desired shape, cleaning it in an organic solvent or a flon type solvent with ultrasonic waves, likewise cleaning it in pure water, immersing in the boric acid electrolytic solution this substrate as the anode and a stainless steel plate or an aluminum plate as a cathode apart from each other by a prescribed distance, and executing the anode oxidation. Then, the amorphous silicon photosensitive layer 3 is formed on the film 2 of the substrate 1 by the vapor deposition method or the like, thus permitting the obtained electrophotographic sensitive body to be small in dark decay, extremely high in chargeability, and not affected on the charging characteristics by change of the external environmental atmosphere.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電子写真用感光体に関し、特に、感光層に非
晶質ケイ素を用いた電子写真用感光体に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an electrophotographic photoreceptor, and particularly to an electrophotographic photoreceptor using amorphous silicon in the photosensitive layer.

従来の技術 電子写真法は、感光体に帯電、像露光により静電潜像を
形成し、この潜像を現像剤で現像後、転写紙にトナー像
を転写し定着して複写物を得る方法として知られている
。この電子写真法に用いられる感光体は、基本構成とし
て導電性基板上に感光層を積層して成る。しかして、従
来より、感光層を構成する材料としては、セレン或いは
セレン合金、硫化カドミウム、酸化亜鉛等の無機感光材
料、或いは、ポリビニルカルバゾール、トリニトロフル
オレノン、ビスアゾ顔料、フタロシアニン、ピラゾリン
、ヒドラゾン等の有機感光材料が知られており、感光層
を単層或いは積層にして用いられている。しかしながら
、従来より用いられているこれらの感光層は、耐久性、
耐熱性、光感度等において未だ解決すべき問題点を有し
ている。
Conventional technology Electrophotography is a method in which an electrostatic latent image is formed by charging a photoreceptor and imagewise exposure, and after this latent image is developed with a developer, the toner image is transferred to transfer paper and fixed to obtain a copy. known as. The photoreceptor used in this electrophotographic method basically has a photosensitive layer laminated on a conductive substrate. Conventionally, materials constituting the photosensitive layer include inorganic photosensitive materials such as selenium or selenium alloys, cadmium sulfide, and zinc oxide, or materials such as polyvinylcarbazole, trinitrofluorenone, bisazo pigments, phthalocyanine, pyrazoline, and hydrazone. Organic photosensitive materials are known, and are used with a single photosensitive layer or a stack of photosensitive layers. However, these conventionally used photosensitive layers have poor durability and
There are still problems to be solved in terms of heat resistance, photosensitivity, etc.

近年、この感光層として非晶質ケイ素(アモルファスシ
リコン、a−3+)を用いた感光体が知られ、種々その
改善が試みられている。この非晶質ケイ素を用いた感光
体は、シラン(S i H4)ガスをグロー放電分解法
等によりケイ素の非晶質膜を導電性基板上に形成したも
のであって、非晶質ケイ素膜中に水素原子が組込まれて
光導電性を呈するものである。この非晶質ケイ素感光体
は、感光層の表面硬度が高く傷つきにくく、磨耗にも強
く、耐熱性も高く、機械的強度においても優れている。
In recent years, photoreceptors using amorphous silicon (a-3+) as the photosensitive layer have been known, and various attempts have been made to improve them. This photoreceptor using amorphous silicon is one in which an amorphous silicon film is formed on a conductive substrate using silane (S i H4) gas using a glow discharge decomposition method or the like. It exhibits photoconductivity due to hydrogen atoms incorporated therein. This amorphous silicon photoreceptor has a photosensitive layer that has a high surface hardness, is resistant to scratches, is resistant to abrasion, has high heat resistance, and is excellent in mechanical strength.

更に、非晶質ケイ素は、分光感度域が広く、高い光感度
を有するごとく感光特性も優れている。
Furthermore, amorphous silicon has a wide spectral sensitivity range and has excellent photosensitivity, such as high photosensitivity.

発明が解決症とする問題点 しかしながら反面、非晶質ケイ素を用いた電子写真感光
体は、暗減衰が大きく、帯電しても十分な帯電電位が得
られないという欠点を有する。即ち、非晶質ケイ素感光
体を帯電し、像露光して静電潜像を形成し、次いで現像
する際、感光体上の表面電荷が像露光工程まで、或いは
現像工程までの間に光照射を受けなかった部分の電荷ま
でも減衰してしまい、現像に必要な帯電電位が得られな
い。このような帯電電位の暗減衰の大きな感光体を用い
て複写物を作成すると、画像濃度が低く、又、中間調の
再現性に乏しい複写物となる。
Problems to be Solved by the Invention However, on the other hand, electrophotographic photoreceptors using amorphous silicon have the disadvantage that dark decay is large and a sufficient charging potential cannot be obtained even when charged. That is, when an amorphous silicon photoreceptor is charged, imagewise exposed to form an electrostatic latent image, and then developed, the surface charge on the photoreceptor is exposed to light during the image exposure process or the development process. Even the charge on the parts that are not affected is attenuated, making it impossible to obtain the charging potential necessary for development. If a copy is made using a photoreceptor with such a large dark attenuation of the charged potential, the copy will have a low image density and poor reproducibility of halftones.

この暗減衰の大きいことによる帯電電位の低下に対する
対策として、一般に、感光層と導電性基板との界面に電
荷注入阻止層(+帯電の場合p型a−3i層、−帯電の
場合n型a−3i層)を設ける方法をとっている。しか
し、この場合、帯電性を向上させるために、電荷注入阻
止層を比較的厚めに設けたり、電荷注入阻止層中の不純
物濃度をあげる等の措置が必要であり、この措置は成膜
時間の増加、或いは使用ガス(ドーピングガス)量の増
加といった製造上の欠点を有するものである。
As a countermeasure against the decrease in charging potential caused by this large dark decay, a charge injection blocking layer (a p-type a-3i layer for positive charging, an n-type a-3i layer for negative charging) is generally provided at the interface between the photosensitive layer and the conductive substrate. -3i layer). However, in this case, in order to improve charging properties, it is necessary to take measures such as making the charge injection blocking layer relatively thick or increasing the impurity concentration in the charge injection blocking layer. However, there are manufacturing disadvantages such as an increase in the amount of gas used (doping gas) or an increase in the amount of gas used (doping gas).

又、別には、非晶質ケイ素を用いた感光体は光感度上の
次の欠点を有する。即ち、非晶質ケイ素を用いた感光体
は、波長的400nm〜700nmの光に対して高い光
感度を有しているものの、波長700nm以上の、より
長波長光に対して、その光感度が急激に低下する。
Additionally, photoreceptors using amorphous silicon have the following drawbacks in terms of photosensitivity. That is, although a photoreceptor using amorphous silicon has high photosensitivity to light with a wavelength of 400 nm to 700 nm, its photosensitivity to longer wavelength light of 700 nm or more is low. Declines rapidly.

最近、半導体レーザーを光源としてレーザービームプリ
ンタ用の感光体としてaoonm付近までの長波長光に
良好な光感度を有する電子写真感光体が要求されている
が、上記非晶質ケイ素感光体はこの要求には満足すべき
ものではなく、半導体レーザープリンター用としては、
実用に供することができない。
Recently, there has been a demand for an electrophotographic photoreceptor that has good photosensitivity to long-wavelength light up to around aoonm as a photoreceptor for laser beam printers using a semiconductor laser as a light source. However, for semiconductor laser printers,
It cannot be put to practical use.

この波長700nm以上の長波長光に対する光感度低下
に対しての対策として、一般に感光体構成の中に非晶質
ケイ素−ゲルマニウム(a−3i:Ge)を主体として
なる層を導入する等の措置がとられている。これはGe
のエネルギーバンドギャップがa−3iに比べて小さい
ため、a−3i中にGeを加えていくことにより、エネ
ルギーバンドギャップを減少させ、長波長側の光感度を
増加させるという考え方に基づいている。しかしながら
、a−3ixGe層は一般的に欠陥密度が高く、又エネ
ルギーバンドギャップが小さいことに起因して熱発生キ
ャリアの数が多い。このためa−8i:Ge層の使用は
、暗減衰速度の増加、帯電性の低下を招く等の欠点を有
するものである。
As a countermeasure against this decrease in photosensitivity to long-wavelength light with a wavelength of 700 nm or more, measures such as introducing a layer mainly composed of amorphous silicon-germanium (a-3i:Ge) into the photoreceptor structure are generally taken. is taken. This is Ge
Since the energy bandgap of a-3i is smaller than that of a-3i, the idea is that by adding Ge to a-3i, the energy bandgap is reduced and the photosensitivity on the long wavelength side is increased. However, the a-3ixGe layer generally has a high defect density and a large number of thermally generated carriers due to its small energy bandgap. Therefore, the use of the a-8i:Ge layer has drawbacks such as an increase in the dark decay rate and a decrease in chargeability.

更に別にはa−3i:(3e層の作成において、一般的
に使用される原料ガスの一つであるGeH4(ゲルマン
)は価格が高く、このためa−3i:(3e層の使用は
、感光体の製造コストを増加させるといった欠点を有し
ている。
Furthermore, in creating the a-3i:(3e layer, GeH4 (germane), which is one of the raw material gases commonly used, is expensive, so the use of the a-3i:(3e layer is It has the disadvantage of increasing the manufacturing cost of the body.

本発明の目的は、従来の技術における上記の欠点を解消
した非晶質ケイ素を用いる電子写真用感光体を提供する
ことにある。
An object of the present invention is to provide an electrophotographic photoreceptor using amorphous silicon that eliminates the above-mentioned drawbacks of the conventional technology.

本発明の目的は、非晶質ケイ素を用い、しかも、帯電電
位の暗減衰が極めて小ざい電子写真用感光体を提供する
ことにある。
An object of the present invention is to provide an electrophotographic photoreceptor that uses amorphous silicon and has extremely small dark decay of the charged potential.

本発明の他の目的は、帯電特性が外部環境の雰囲気の変
化によって影響を受けない電子写真用感光体を提供する
ことにおる。
Another object of the present invention is to provide an electrophotographic photoreceptor whose charging characteristics are not affected by changes in the external atmosphere.

又、本発明の他の目的は、繰返し使用されても画像品質
の優れた電子写真用感光体を提供することにある。
Another object of the present invention is to provide an electrophotographic photoreceptor with excellent image quality even after repeated use.

本発明の他の目的は、半導体レーザービームプリンタ用
感光体として適用可能な800nm付近までの長波長感
度を有する電子写真用感光体を提供することに必る。
Another object of the present invention is to provide an electrophotographic photoreceptor that has long wavelength sensitivity up to around 800 nm and is applicable as a photoreceptor for semiconductor laser beam printers.

本発明の他の目的は、上記長波長域のみ′ならず450
nm〜aoonm付近までの可視光域から赤外域までの
広範囲な波長の光に対して光感度の高められた電子写真
用感光体を提供するものである。
Another object of the present invention is to provide not only the above-mentioned long wavelength range but also 450 wavelength range.
An object of the present invention is to provide an electrophotographic photoreceptor that has enhanced photosensitivity to light in a wide range of wavelengths from the visible light region of around nm to aeonm to the infrared region.

本発明の他の目的は、基板と感光層との密着性に優れた
電子写真用感光体を提供するものである。
Another object of the present invention is to provide an electrophotographic photoreceptor with excellent adhesion between a substrate and a photosensitive layer.

本発明の更に他の目的は、耐熱性、化学安定性が高く、
かつ、機械的強度が高く、耐摩耗性に優れた電子写真用
感光体を提供することにある。
Still another object of the present invention is to have high heat resistance and chemical stability;
Another object of the present invention is to provide an electrophotographic photoreceptor that has high mechanical strength and excellent wear resistance.

問題点を解決するための手段 本発明者は、感光体に使用されるアルミニウム基板の陽
極酸化処理について鋭意検討した結果、実質的に感光層
に手を加えることなく、上記目的が達成されることを見
出だし、本発明を完成するに至った。
Means for Solving the Problems As a result of intensive studies on anodizing treatment of aluminum substrates used in photoreceptors, the inventor has found that the above object can be achieved without substantially modifying the photosensitive layer. They discovered this and completed the present invention.

即ち、本発明の上記目的は、ホウ酸電解質溶液を用いて
陽極酸化することによって形成された陽極酸化皮膜を有
するアルミニウム基板と非晶質ケイ素感光層とを有する
ことを特徴とする電子写真用感光体を提供することによ
って達成することができる。
That is, the above object of the present invention is to provide an electrophotographic photosensitive material comprising an aluminum substrate having an anodic oxide film formed by anodic oxidation using a boric acid electrolyte solution and an amorphous silicon photosensitive layer. This can be achieved by providing the body.

本発明の目的は、ホウ酸電解質溶液がホウ酸及びホウ砂
を含有してなることにより、一層効果的に達成される。
The object of the present invention can be achieved more effectively when the boric acid electrolyte solution contains boric acid and borax.

以下、本発明について詳述する。The present invention will be explained in detail below.

本発明の電子写真用感光体の最も基本的な構成の例を添
付図面の第1図に示す。第1図中、1はアルミニウム基
板であり、2は陽極酸化皮膜であり、3は非晶質ケイ素
感光層である。
An example of the most basic structure of the electrophotographic photoreceptor of the present invention is shown in FIG. 1 of the accompanying drawings. In FIG. 1, 1 is an aluminum substrate, 2 is an anodized film, and 3 is an amorphous silicon photosensitive layer.

本発明において、良好な特性の陽極酸化皮膜を得るため
のアルミニウム基板1としては、純A1系の材料の他に
、AI−MO系、A I −MO−3i系、AI−MO
−Mn系、Al−Mn系、Al−Cu−Mg系、Al−
Cu−N1系、A1−CU系、A I −3i系、A 
l−Cu系、AI−CLI−Zn系、Al−Cu−Ni
系、A I −3i系、Al−Cu−8,を系、Al−
Mg−3i系等のアルミニウム合金材料の中から適宜選
択して形成された基板を挙げることができる。
In the present invention, as the aluminum substrate 1 for obtaining an anodic oxide film with good characteristics, in addition to pure A1-based materials, AI-MO-based, AI-MO-3i-based, and AI-MO
-Mn series, Al-Mn series, Al-Cu-Mg series, Al-
Cu-N1 series, A1-CU series, A I-3i series, A
l-Cu series, AI-CLI-Zn series, Al-Cu-Ni
system, AI-3i system, Al-Cu-8, system, Al-
Examples include substrates formed by appropriately selecting aluminum alloy materials such as Mg-3i-based materials.

本発明において、アルミニウム基板1上に陽極酸化皮膜
2を形成するための陽極酸化処理は次のように行われる
。表面を鏡面切削仕上げし、所望の形状に加工されたア
ルミニウム基板を、有機溶剤、おるいはフロン溶剤中で
超音波洗浄する。続いて、純水中で、超音波洗浄し、こ
れによりアルミニウム基板表面、例えば、アルミニウム
基板が円筒形状である場合は、円筒の内・外面を清浄化
する。この洗浄処理が不十分でおると所望の特性を満た
す良質な陽極酸化皮膜を形成することができない。この
洗浄処理の後、必要に応じて、アルミニウム基板に対し
て純水沸騰水中煮沸処理あるいは加熱水蒸気処理等の前
処理を施してもよい。
In the present invention, anodizing treatment for forming the anodic oxide film 2 on the aluminum substrate 1 is performed as follows. An aluminum substrate whose surface has been mirror-cut and processed into a desired shape is ultrasonically cleaned in an organic solvent or a fluorocarbon solvent. Subsequently, ultrasonic cleaning is performed in pure water to clean the surface of the aluminum substrate, for example, if the aluminum substrate has a cylindrical shape, the inner and outer surfaces of the cylinder. If this cleaning treatment is insufficient, a high-quality anodic oxide film that satisfies the desired characteristics cannot be formed. After this cleaning treatment, the aluminum substrate may be subjected to pretreatment such as boiling treatment in boiling pure water or heated steam treatment, if necessary.

引き続いて、アルミニウム基板上に陽極酸化皮膜を形成
する。ステンレス鋼おるいは硬質ガラス等で作製された
電解槽(陽極酸化槽)中に電解質溶液(陽極酸化溶液)
を所定の液面まで満たす。
Subsequently, an anodic oxide film is formed on the aluminum substrate. Electrolyte solution (anodizing solution) is placed in an electrolytic tank (anodizing tank) made of stainless steel or hard glass.
Fill to the specified level.

本発明においては、電解質溶液としてホウ酸電解質溶液
を用いることが特徴である。ホウ酸電解質溶液の使用に
より、多孔性部分のほとんどない、絶縁性の高いバリヤ
ー型皮膜を得ることができる。
The present invention is characterized in that a boric acid electrolyte solution is used as the electrolyte solution. By using a boric acid electrolyte solution, a highly insulating barrier type film with almost no porous areas can be obtained.

このホウ酸電解質溶液は、通常、純水中にホウ酸(H2
SO4)を0.5〜60重量%を溶かしたものを用いる
。又、より好ましくは純水中に5〜20重四%溶かした
溶液を用いる。特に、上記5〜20重量%I!度に設定
すると良質の陽極酸化皮膜が最も安定して形成されるの
で好ましい。又、その際、陽極酸化時の消費電気量も少
なくてすむ。ここで用いる純水としては、蒸溜水あるい
はイオン交換水等を挙げることが出来るが、特に塩素弁
等の不純物が十分に取り除かれていることが、陽極酸化
皮膜の腐食やピンホール発生防止のために必要である。
This boric acid electrolyte solution is usually prepared using boric acid (H2
A solution containing 0.5 to 60% by weight of SO4) is used. More preferably, a solution of 5 to 20% by weight dissolved in pure water is used. In particular, the above 5 to 20% by weight I! It is preferable to set the temperature at a certain temperature because a high-quality anodic oxide film is most stably formed. Moreover, in this case, the amount of electricity consumed during anodization can also be reduced. The pure water used here can be distilled water or ion-exchanged water, but it is especially important that impurities such as chlorine valves are sufficiently removed to prevent corrosion of the anodic oxide film and pinhole formation. is necessary.

ホウ酸電解質溶液は純水中にホウ酸のみを加えても良い
が、ホウ砂(四ホウ酸ナトリウム、N82 B407−
10820>を合わせて加える゛と、電解質溶液の電気
伝導度の制御が、より容易になるので好ましい。ホウ砂
の含有量は、純水に対して0〜30重最%、より好まし
くは0.1〜15重量%である。
For the boric acid electrolyte solution, only boric acid may be added to pure water, but borax (sodium tetraborate, N82 B407-
It is preferable to add 10820> at the same time, since this makes it easier to control the electrical conductivity of the electrolyte solution. The content of borax is 0 to 30% by weight, more preferably 0.1 to 15% by weight, based on pure water.

次いで、このホウ酸電解質溶液の中に陽極(Anode
)として電子写真感光体用アルミニウム基板を、又、陰
極(Cathode)としてステンレス鋼板おるいはア
ルミニウム板をおる一定の電極間距離を隔てて浸漬する
。この際の電極間距離はo、1cm〜100 cmの間
において適宜に設定される。直流電源装置を用意し、そ
の正(プラス)端子とアルミニウム基板及び負(マイナ
ス)端子と陰極板とをそれぞれ結線し、電解質溶液中の
陽極、陰極両電極間に通電する。この通電により、陽極
アルミニウム基板上に陽極酸化皮膜が形成される。ホウ
酸電解質溶液を用いた陽極酸化中の電流と電圧の関係の
例を添付図面の第2図に示す。第2図における領域Aに
おいて定電流下で電圧を上昇させていくと、その電圧に
対応した厚さの皮膜が形成される。(10〜14人/V
)。次いで、領域Bにおいて定電圧に保持すると、電流
は時間と共に減少する。
Next, an anode (Anode) is placed in this boric acid electrolyte solution.
) An aluminum substrate for an electrophotographic photoreceptor is used as a cathode, and a stainless steel plate or an aluminum plate is used as a cathode. The distance between the electrodes at this time is appropriately set between 1 cm and 100 cm. A DC power supply device is prepared, its positive terminal is connected to the aluminum substrate, its negative terminal is connected to the cathode plate, and electricity is applied between the anode and cathode electrodes in the electrolyte solution. This energization forms an anodic oxide film on the anode aluminum substrate. An example of the relationship between current and voltage during anodization using a boric acid electrolyte solution is shown in FIG. 2 of the accompanying drawings. When the voltage is increased under constant current in region A in FIG. 2, a film having a thickness corresponding to the voltage is formed. (10-14 people/V
). Then, when holding a constant voltage in region B, the current decreases with time.

領域AとBを合わせて、最終的におる厚さを持ったバリ
ヤー型の絶縁性陽極酸化皮膜が形成されることとなる。
By combining regions A and B, a barrier type insulating anodic oxide film having the final thickness is formed.

陽極酸化実施時の電流密度(@域A)は通常0、000
1〜10A / crA 、好ましくは0.0005〜
IA/cnである。また陽極酸化電圧(領域B)は通常
O〜1000V 、好ましくは0〜700Vである。又
、電解質溶液の液温は40〜100℃、好ましくは70
〜95℃に設定される。陽極酸化時間は、必要な皮膜厚
さを得るための時間及び皮膜の所望の絶縁性を得るため
の時間、即ち、添付図面の第2図の領域Bにおける所要
の電流の減少値(漏れ電流)を得るための時間によって
適宜に決定される。
The current density (@ area A) during anodization is usually 0,000
1-10A/crA, preferably 0.0005-
IA/cn. Further, the anodic oxidation voltage (region B) is usually 0 to 1000V, preferably 0 to 700V. Further, the temperature of the electrolyte solution is 40 to 100°C, preferably 70°C.
The temperature is set at ~95°C. The anodizing time is the time required to obtain the required film thickness and the desired insulation properties of the film, i.e. the required current reduction value (leakage current) in region B of Figure 2 of the attached drawings. It is determined as appropriate depending on the time required to obtain.

ホウ酸電解質溶液を用いた陽極酸化法で形成される陽極
酸化皮膜は、一般にアルマイト皮膜等としてよく知られ
ているシュウ酸、硫酸、リン酸等の電解質溶液を用いて
形成される陽極酸化皮膜に比べて多孔質性(孔の密度)
が極めて低いか、あるいはほとんど零に近い。この点も
本発明の効果要因と考えられる。必要であれば、封孔処
理を施してもよい。以上の手順により添付図面の第1図
におけるアルミニウム基板1上に陽極酸化皮膜2が形成
される。このようにして形成されたアルミニウム基板上
の陽極酸化皮膜は必要に応じて純水による洗浄等の措置
が取られた後、乾燥される。
The anodic oxide film formed by the anodizing method using a boric acid electrolyte solution is generally known as an alumite film, etc. Porosity (density of pores) compared to
is extremely low or almost zero. This point is also considered to be an effective factor of the present invention. If necessary, a sealing treatment may be performed. By the above procedure, an anodic oxide film 2 is formed on the aluminum substrate 1 shown in FIG. 1 of the accompanying drawings. The anodic oxide film thus formed on the aluminum substrate is washed with pure water as necessary, and then dried.

陽極酸化皮膜の膜厚は、0.001〜20μm1好まし
くは0.005〜2μmでおる。
The thickness of the anodic oxide film is 0.001 to 20 μm, preferably 0.005 to 2 μm.

次いで、添付図面の第1図に示す非晶質ケイ素(a−3
i:アモルファスシリコン)感光層3について説明する
。非晶質ケイ素感光層3としては、ケイ素を主成分とし
て構成されているのが好ましく用いられる。このような
ケイ素を主成分として構成される非晶質ケイ素感光層は
、グロー放電法、スパッタリング法、イオンブレーティ
ング法、真空蒸着法等によりアルミニウム基板上に形成
することができる。これらの膜形成方法は、目的に応じ
て適宜選択されるがプラズマCVD法によりシラン(S
 f H4)ガスをグロー放電分解する方法(グロー放
電法)が好ましく、この方法によれば、膜中に適量の水
素を含有した比較的暗抵抗が高く、かつ、光感度も高い
電子写真等の感光体として好適な特性を有する非晶質ケ
イ素感光層を得ることができる。以下、プラズマCVD
法を例にめげて説明する。
Next, amorphous silicon (a-3
i: amorphous silicon) The photosensitive layer 3 will be explained. The amorphous silicon photosensitive layer 3 is preferably composed of silicon as a main component. Such an amorphous silicon photosensitive layer mainly composed of silicon can be formed on an aluminum substrate by a glow discharge method, a sputtering method, an ion blasting method, a vacuum evaporation method, or the like. These film forming methods are appropriately selected depending on the purpose, but silane (S) is
f H4) A method of decomposing gas by glow discharge (glow discharge method) is preferable. According to this method, a film containing an appropriate amount of hydrogen, which has a relatively high dark resistance and high photosensitivity, such as electrophotography, is preferable. An amorphous silicon photosensitive layer having properties suitable for use as a photoreceptor can be obtained. Below, plasma CVD
Let me explain using the law as an example.

ケイ素を主成分とする非晶質ケイ素感光層を作成するた
めの原料としては、シラン、ジシランをはじめとするシ
ラン類等がある。又、非晶質ケイ素感光層を形成する際
、必要に応じて各種混合ガス、例えば、水素、ヘリウム
、アルゴン、ネオン等のキャリアガスを用いることも可
能である。又、感光層の暗抵抗の制御、あるいは帯電極
性の制御を目的として、更に上記のガス中にジボラン(
B2H6)ガス、ホスフィン(PH3)ガス等のドーパ
ントガスを混入させ、光導電層膜中へのホウ素(B)あ
るいはリン(P)等の不純物元素の添加(ドーピング)
を行うこともできる。又、更には、暗抵抗の増加、光感
度の増加、あるいは帯電能(単位膜厚光たりの帯電能力
めるいは帯電電位)の増加を目的として、感光層中にハ
ロゲン原子、炭素原子、酸素原子、窒素原子等を含有し
てもよい。更に又、長波長域感度の増加の補助を目的と
して、感光層中にゲルマニウム(Ge)等の元素を添加
することも可能である。特に、感光層は、ケイ素を主成
分とし、少量の元素周期律表第■族元素(好ましくはホ
ウ素)を添加してなるi形半導体層であるのが好ましい
。上記種々の元素を感光層中に添加含有させるためには
、プラズマCVD装置内に、主原料でおるシランガスと
ともに、それらの元素を含む物質のガス化物を導入して
グロー放電分解を行えばよい。
Examples of raw materials for producing an amorphous silicon photosensitive layer containing silicon as a main component include silanes such as silane and disilane. Furthermore, when forming the amorphous silicon photosensitive layer, it is also possible to use various mixed gases, for example, carrier gases such as hydrogen, helium, argon, and neon, as required. In addition, diborane (
B2H6) gas, addition of impurity elements such as boron (B) or phosphorus (P) into the photoconductive layer film by mixing dopant gas such as phosphine (PH3) gas (doping)
You can also do Further, for the purpose of increasing dark resistance, increasing photosensitivity, or increasing charging ability (charging ability or charging potential per unit film thickness of light), halogen atoms, carbon atoms, and oxygen may be added to the photosensitive layer. It may contain atoms, nitrogen atoms, etc. Furthermore, it is also possible to add an element such as germanium (Ge) to the photosensitive layer for the purpose of increasing the sensitivity in the long wavelength region. In particular, the photosensitive layer is preferably an i-type semiconductor layer containing silicon as a main component and adding a small amount of a Group I element of the periodic table of elements (preferably boron). In order to add and contain the above-mentioned various elements in the photosensitive layer, glow discharge decomposition may be performed by introducing a gasified substance containing these elements together with silane gas as the main raw material into a plasma CVD apparatus.

上記ケイ素を主成分とする感光層の膜厚は、任意に設定
できるが、1μTrL〜100μ雇、特に5μTrL〜
50μmの範囲に設定するのが望ましい。
The film thickness of the photosensitive layer containing silicon as a main component can be set arbitrarily, but is 1μTrL to 100μ, particularly 5μTrL to 5μTrL.
It is desirable to set it within a range of 50 μm.

又、本発明の電子写真用感光体は、必要に応じて上記ケ
イ素を主成分とする非晶質ケイ素感光層の上部あるいは
下部に隣接して、他の層を形成してもよい。これらの層
としては、例えば次ぎのちのがめげられる。
Further, in the electrophotographic photoreceptor of the present invention, another layer may be formed adjacent to the top or bottom of the amorphous silicon photosensitive layer containing silicon as a main component, if necessary. These layers include, for example, the following:

電荷注入阻止層として、例えばアモルファスシリコンに
元素周期律表第■族必るいはV族元素を添加してなるn
形半導体層、n形半導体層、あるいは絶縁層が、また長
波長増感補助層として、例えば、アモルファスシリコン
にゲルマニウム、錫を添加してなる層が、更に又、接着
層としてアモルファスシリコンに窒素、炭素、酸素等を
添加してなる層、その他、元素周期律表第1IB族元素
、V族元素を同時に含む層等、感光体の電気的及び画像
的特性を制御できる層がめげられる。これらの各層の膜
厚は任意に決定できるが、通常0.01μTrL〜10
μ雇の範囲に設定して用いられる。
As a charge injection blocking layer, for example, an n layer made of amorphous silicon doped with an element from group Ⅰ or group V of the periodic table of elements.
A type semiconductor layer, an n-type semiconductor layer, or an insulating layer, a long-wavelength sensitizing auxiliary layer, such as a layer made of amorphous silicon with germanium or tin added, and an adhesive layer made of amorphous silicon with nitrogen, nitrogen, etc. Layers that can control the electrical and image characteristics of the photoreceptor, such as layers to which carbon, oxygen, etc. are added, and layers that simultaneously contain elements of Group IB and Group V of the Periodic Table of Elements, etc., can be used. The film thickness of each of these layers can be arbitrarily determined, but is usually 0.01 μTrL to 10
It is used by setting it within the range of μ employment.

本発明においては、非晶質ケイ素感光層とアルミニウム
基板上に形成された陽極酸化皮膜との間にp型非晶質ケ
イ素層を有する場合、帯電特性及び光感度の向上が最も
顕著に発揮されるものである。
In the present invention, when a p-type amorphous silicon layer is provided between the amorphous silicon photosensitive layer and the anodic oxide film formed on the aluminum substrate, the charging characteristics and photosensitivity are most significantly improved. It is something that

上記の非晶質ケイ素感光層及びその他の層は、プラズマ
CVD法により形成することができるが、上記不純物元
素が添加された非晶質ケイ素感光層は、上記不純物元素
を含む物質のガス化物をシランガスと共にプラズマCV
D装置内に導入してグロー放電分解を行って形成する。
The above-mentioned amorphous silicon photosensitive layer and other layers can be formed by a plasma CVD method, but the amorphous silicon photosensitive layer to which the above-mentioned impurity element is added can be formed using a gasified substance containing the above-mentioned impurity element. Plasma CV with silane gas
It is formed by introducing it into D apparatus and performing glow discharge decomposition.

このプラズマCVD法によりシラン(S i 1−14
 >ガスがグロー放電分解される。ケイ素を主成分とす
る非晶質ケイ素感光層及びその上部下部に隣接して設け
られる各層の膜形成においては、交流放電及び直流放電
のいずれにおいても、有効な膜形成手段として採用する
ことができるが、交流放電の場合を例にとると、次の通
りである。即ち、周波数は、通常o、i〜30 )IH
z、好ましくは5〜20HIIz、放電時の真空度は0
.1〜5Torr  (13,3〜6B、7Pa) 、
基板カロ熱温度は100〜400℃でおる。
Silane (S i 1-14
>Gas is decomposed by glow discharge. In the film formation of the amorphous silicon photosensitive layer containing silicon as the main component and each layer provided adjacent to the upper and lower parts thereof, both AC discharge and DC discharge can be employed as an effective film forming means. However, taking the case of AC discharge as an example, it is as follows. That is, the frequency is usually o, i~30) IH
z, preferably 5 to 20 HIIz, the degree of vacuum during discharge is 0
.. 1-5 Torr (13, 3-6B, 7Pa),
The heating temperature of the substrate is 100 to 400°C.

実施例 次に実施例によって本発明の詳細な説明する。Example Next, the present invention will be explained in detail by way of examples.

実施例1 表面を鏡面切削仕上げした外径121mφの円筒形状の
高純度(4N)At−Mg合金基板(以下、All板と
いう)を、アセトンを用いて室温で10分間超音波洗浄
した後、続いて、室温の純水中で10分間超音波洗浄し
た。この基板に対して、純水中にホウ1j110重量%
及びホウ砂1重量%を加えた溶液を用いて陽極酸化処理
を実施した。そのときの陽極酸化条件は、液温85℃、
電流密度2mA/d及び陽極酸化時間40分であった。
Example 1 A cylindrical high-purity (4N) At-Mg alloy substrate (hereinafter referred to as All plate) with a mirror-cut surface and an outer diameter of 121 mφ was ultrasonically cleaned using acetone at room temperature for 10 minutes, and then Then, ultrasonic cleaning was performed in pure water at room temperature for 10 minutes. For this substrate, add 110% by weight of HO in pure water.
Anodizing treatment was performed using a solution containing 1% by weight of borax. The anodizing conditions at that time were a liquid temperature of 85°C,
The current density was 2 mA/d and the anodization time was 40 minutes.

処理されたA1基板を陽極酸化溶液から取り出し、純水
中で10分間超音波洗浄し、その後乾燥させた。このよ
うにして得られたA1基板上の陽極酸化皮膜の厚さは約
0.15μmであった。次に上記の陽極酸化皮膜が形成
されたAI基板を、円筒状基板上へのアモルファスシリ
コン膜の生成が可能な容量結合型プラズマCVD装置内
の所定の位置に配置した。引き続いてシラン(S i 
H4)ガスとジボラン(82H6)ガスの混合ガスをグ
ロー放電分解することにより、上記の陽極酸化皮膜を形
成したA1基板上に、水素と微量のホウ素を含む比較的
高暗抵抗でいわゆるi型の非晶質ケイ素膜を生成した。
The treated A1 substrate was removed from the anodizing solution, ultrasonically cleaned in pure water for 10 minutes, and then dried. The thickness of the anodic oxide film on the A1 substrate thus obtained was about 0.15 μm. Next, the AI substrate on which the anodic oxide film was formed was placed at a predetermined position in a capacitively coupled plasma CVD apparatus capable of forming an amorphous silicon film on a cylindrical substrate. Subsequently, silane (S i
H4) By glow discharge decomposition of a mixed gas of gas and diborane (82H6) gas, a so-called i-type film containing hydrogen and a trace amount of boron with a relatively high dark resistance is formed on the A1 substrate on which the above anodic oxide film is formed. An amorphous silicon film was produced.

このときの非晶質ケイ素膜の生成条件は次のようであっ
た。
The conditions for forming the amorphous silicon film at this time were as follows.

プラズマCVD装置の反応至内の所定の位置に円筒状A
1基板を設置し、基板温度を所定の温度である250℃
に維持し、反応至内に100%シラン(S + H4)
ガスを毎分200CC1水素稀釈の1100ppジボラ
ン(82ト16)ガスを毎分2.5CC,更に、ioo
%水素(H2)ガスを毎分200CCで流入させ、反応
槽内を1.5Torr(200,ON/m>の内圧に維
持した債、13.56M)IZの高周波電力を投入して
、グロー放電を生じせしめ、高周波電源の出力を300
Wに維持した。このようにして陽極酸化皮膜を設けたA
I基板上に厚さ20μmの水素と極微量のホウ素を含む
高暗抵抗でいわゆるi型の非晶質ケイ素感光層を有する
感光体を得た。
A cylindrical shape A is placed at a predetermined position within the reaction chamber of the plasma CVD equipment.
1 board is installed, and the board temperature is set to 250°C, which is the predetermined temperature.
100% silane (S + H4) during the reaction
1100 pp diborane (82 to 16) gas diluted with 1 hydrogen at 2.5 CC per minute, and ioo
% hydrogen (H2) gas was introduced at a rate of 200 CC per minute, and the internal pressure of the reactor was maintained at 1.5 Torr (200, ON/m>).The high frequency power of IZ was applied, and a glow discharge was caused. , and the output of the high frequency power supply is 300
I kept it at W. A with an anodic oxide film provided in this way
A photoreceptor was obtained having a so-called i-type amorphous silicon photosensitive layer having a high dark resistance and containing hydrogen and a very small amount of boron and having a thickness of 20 μm on an I substrate.

得られた電子写真用感光体に対して、正帯電特性を測定
したところ、感光体流入電流10μA / cmの場合
、コントラスト電位(帯電電位−残留電位)は600V
 、又、暗減衰率は35%/ Secであった。
When the positive charging characteristics of the obtained electrophotographic photoreceptor were measured, the contrast potential (charged potential - residual potential) was 600 V when the photoreceptor inflow current was 10 μA / cm.
, and the dark decay rate was 35%/Sec.

引き続いては、波長450. 650及び800nmの
単色光を用いて各々の波長における正帯電時の光感度を
測定したところ、入射光強度10erg・ 5ec−’
・cm’の場合、半減露光量は、上記の波長の順にそれ
ぞれ25.3.2及び14.5erg・cm’でおった
Subsequently, the wavelength is 450. When the photosensitivity during positive charging at each wavelength was measured using monochromatic light of 650 and 800 nm, the incident light intensity was 10 erg・5 ec-'
- cm', the half-decrease exposure amount was 25.3.2 and 14.5 erg·cm', respectively, in the order of the wavelengths mentioned above.

比較のために、陽極酸化処理を行っていない基板上に、
上記と同一方法、同一条件によりi型の非晶質ケイ素感
光層を有する感光体を作成した。
For comparison, on a substrate that has not been anodized,
A photoreceptor having an i-type amorphous silicon photosensitive layer was prepared by the same method and under the same conditions as above.

この電子写真用感光体に対して同様な方法で正帯電特性
を測定したところ、感光体流入電流10μA/αの場合
、コントラスト電位(帯電電位−残留電位)は300V
 、又、暗減衰率は68%/ Secであった。引き続
いて波長450. 650及び800nmの単色光を用
いて各々の波長における正帯電時の光感度を測定したと
ころ、入射光強度10 erg・5ec−1・cIIt
−2の場合、半減露光量は、上記の波長の順にそれぞれ
35.4.0及び25 erg−Cm−2であった。実
施例2 表面を鏡面切削仕上げした外径121mφの円筒形状の
高純度(4N>AI−Mq合金基板を、アセトンを用い
て室温で10分間超音波洗浄した後、続いて、室温の純
水中で10分間超音波洗トした。
When the positive charging characteristics of this electrophotographic photoreceptor were measured using a similar method, the contrast potential (charging potential - residual potential) was 300 V when the photoreceptor inflow current was 10 μA/α.
, and the dark decay rate was 68%/Sec. Subsequently, the wavelength is 450. When the photosensitivity during positive charging at each wavelength was measured using monochromatic light of 650 and 800 nm, the incident light intensity was 10 erg・5ec−1・cIIt
-2, the half-decrease exposure doses were 35.4.0 and 25 erg-Cm-2, respectively, in the order of the wavelengths mentioned above. Example 2 A cylindrical high-purity (4N>AI-Mq alloy substrate with an outer diameter of 121 mφ and a mirror-cut surface was ultrasonically cleaned at room temperature using acetone for 10 minutes, and then washed in pure water at room temperature. Ultrasonic cleaning was performed for 10 minutes.

引き続いて、純水沸騰水中煮沸処理を10分間実施した
。この基板に対して、純水中にホウ110i量%及びホ
ウ01重量%を加えた溶液を用いて陽極酸化処理を実施
した。そのときの陽極酸化条件は、液温85℃、電流密
度3mA/Cri及び陽極酸化処理45分であった。
Subsequently, boiling treatment in pure boiling water was performed for 10 minutes. This substrate was anodized using a solution prepared by adding 110i% by weight of boron and 1% by weight of boron in pure water. The anodizing conditions at that time were a liquid temperature of 85° C., a current density of 3 mA/Cri, and an anodizing treatment for 45 minutes.

処理されたA1基板を陽極酸化溶液から取り出し、純水
中で10分間超音波洗浄し、その後乾燥させた。このよ
うにして得られたAI基板上の陽極酸化皮膜の厚さは約
0.3μmであった。次に上記の陽極酸化皮膜が形成さ
れたA1基板を、円筒状基板上へのアモルファスシリコ
ン膜の生成が可能な容量結合型プラズマCVD装置内の
所定の位置に配置した。引き続いてシラン(S i H
4)ガスとジボラン(B2ト16〉ガスの混合ガスをグ
ロー放電分解することにより、上記の陽極酸化皮膜を形
成したA1基板上に、水素とホウ素を含むいわゆるp型
の非晶質ケイ素膜を生成した。この時の非晶質ケイ素膜
の生成条件は次のようでめった。
The treated A1 substrate was removed from the anodizing solution, ultrasonically cleaned in pure water for 10 minutes, and then dried. The thickness of the anodic oxide film on the AI substrate thus obtained was about 0.3 μm. Next, the A1 substrate on which the anodic oxide film was formed was placed at a predetermined position in a capacitively coupled plasma CVD apparatus capable of forming an amorphous silicon film on a cylindrical substrate. Subsequently, silane (S i H
4) By glow discharge decomposition of a mixed gas of gas and diborane (B2 to 16) gas, a so-called p-type amorphous silicon film containing hydrogen and boron is formed on the A1 substrate on which the above anodic oxide film has been formed. The amorphous silicon film was formed under the following conditions.

プラズマCVD装置の反応至内の所定の位置に円筒状A
I基板を設置し、基板温度を所定の温度でおる250℃
に維持し、反応至内に100%シラン(S i H4)
ガスを毎分200cc、水素稀釈の1100ppジボラ
ン(82H6)ガスを毎分200ccで流入させ、反応
槽内を0.5Torr (66、7N / rd )の
内圧に維持した後、13.568H2の高周波電力を投
入して、グロー放電を生じせしめ、高周波電源の出力を
・100 Wに維持した。このようにして陽!!!酸化
皮膜を設けたAI基板上に厚さ0.5μ雇の水素とホウ
素を含むいわゆるp型の非晶質ケイ素層を形成した。
A cylindrical shape A is placed at a predetermined position within the reaction chamber of the plasma CVD equipment.
Install the I board and keep the board temperature at the specified temperature of 250°C.
100% silane (S i H4) was added during the reaction.
Gas was introduced at 200 cc per minute, and 1100 pp diborane (82H6) gas diluted with hydrogen was introduced at 200 cc per minute, and after maintaining the internal pressure in the reaction tank at 0.5 Torr (66,7 N/rd), a high frequency power of 13.568 H2 was applied. was applied to generate a glow discharge, and the output of the high frequency power source was maintained at 100 W. In this way, Yang! ! ! A so-called p-type amorphous silicon layer containing hydrogen and boron and having a thickness of 0.5 μm was formed on an AI substrate provided with an oxide film.

続いてシラン(S i 84)ガスとジボラン(B、2
 H6)ガスの混合ガスをグロー放電分解することによ
り、上記のp型の非晶質ケイ素層の上に水素と微量のホ
ウ素を含む比較的高暗抵抗でいわゆるi型の非晶質ケイ
素膜を生成した。このときの非晶質ケイ素膜の生成条件
は次のようであった。
Next, silane (S i 84) gas and diborane (B, 2
H6) By glow discharge decomposition of a gas mixture, a so-called i-type amorphous silicon film containing hydrogen and a trace amount of boron and having a relatively high dark resistance is formed on the above p-type amorphous silicon layer. generated. The conditions for forming the amorphous silicon film at this time were as follows.

プラズマCV D装置の反応室内の所定の位置に円筒型
A1基板を設置し、基板温度を所定の温度である250
℃に維持し、反応室内に100%シラン(S + H4
)ガスを毎分250CC,水素稀釈のiooppmジボ
ラン(B2H6)ガ、!−毎分3CC1更ニ、100%
水素(町)ガスを毎分250ccで流入させ、反応槽内
を1.5Torr (200,ON / rd )の内
圧に維持した後、13゜568H7の高周波電力を投入
して、グロー放電を生じせしめ、高周波電源の出力を3
50Wに維持した。このようにして厚さ20μmの水素
と極微量のホウ素を含む高暗抵抗でいわゆるi型の非晶
質ケイ素感光層を得た。
A cylindrical A1 substrate is installed at a predetermined position in the reaction chamber of a plasma CVD apparatus, and the substrate temperature is set at a predetermined temperature of 250 ℃.
℃ and 100% silane (S + H4
) gas at 250 CC per minute, hydrogen diluted ioppm diborane (B2H6) gas,! -3 CC1 changes per minute, 100%
Hydrogen gas was introduced at a rate of 250 cc per minute to maintain an internal pressure of 1.5 Torr (200, ON/rd) in the reaction tank, and then high-frequency power of 13°568H7 was applied to generate glow discharge. , the output of the high frequency power supply is 3
The power was maintained at 50W. In this way, a so-called i-type amorphous silicon photosensitive layer having a thickness of 20 μm and containing hydrogen and a very small amount of boron and having a high dark resistance was obtained.

以上の手順により陽極酸化処理を施したAI基板上にp
型の非晶質ケイ素層及びi型の非晶質ケイ素感光層とを
有する感光体を作製した。
By the above procedure, p
A photoreceptor having an i-type amorphous silicon layer and an i-type amorphous silicon photosensitive layer was produced.

、得られた電子写真用感光体に対して、正帯電特性を測
定したところ、感光体流入電流10μA / cmの場
合、コントラスト電位(帯電電位−残留電位)は750
V 、又、暗減衰率は25%/ Secであった。
When the positive charging characteristics of the obtained electrophotographic photoreceptor were measured, the contrast potential (charged potential - residual potential) was 750 when the photoreceptor inflow current was 10 μA/cm.
V, and the dark decay rate was 25%/Sec.

引き続いて、波長450. 650及び800nmの単
色光を用いて各々の波長における正帯電時の光感度を測
定したところ、入射光強度1oerg−5ec−1・c
IIt−2の場合、半減露光」は、上記の波長の順にそ
れぞれ23.3.0及び11.50rg・ff−2テア
ツタ。
Subsequently, wavelength 450. When the photosensitivity during positive charging at each wavelength was measured using monochromatic light of 650 and 800 nm, the incident light intensity was 1oerg-5ec-1・c
In the case of IIt-2, the "half-exposure" is 23.3.0 and 11.50 rg.ff-2 teats, respectively, in the order of the above wavelengths.

比較のために、陽極酸化処理を行っていないAll板上
に、上記と同一方法、同一条件によりp型の非晶質ケイ
素層及びi型の非晶質ケイ素感光層を有する感光体を作
製した。この電子写真用感光体に対して同様な方法で正
帯電特性を測定したところ、感光体流入電流10μA 
/ cmの場合、コントラスト電位(帯電電位−残留電
位)は400V、又、暗減衰率は55%/ SeCであ
った。引き続いて波長450. 650及び800nm
の単色光を用いて各々の波長における正帯電時の光感度
を測定したところ、入射光強度10erg −sec’
 ・cm−2(D場合、半減露光量は、上記の波長の順
にそれぞれ33.3.7及び22erCl −Cm″′
2でめった。
For comparison, a photoreceptor having a p-type amorphous silicon layer and an i-type amorphous silicon photosensitive layer was fabricated on an Al plate that had not been anodized using the same method and under the same conditions as above. . When the positive charging characteristics of this electrophotographic photoreceptor were measured using the same method, the photoreceptor inflow current was 10 μA.
/ cm, the contrast potential (charged potential - residual potential) was 400 V, and the dark decay rate was 55%/SeC. Subsequently, the wavelength is 450. 650 and 800nm
When the photosensitivity during positive charging at each wavelength was measured using monochromatic light, the incident light intensity was 10 erg -sec'
・cm-2 (in case of D, the half-decrease exposure amount is 33.3.7 and 22erCl -Cm''' in the order of the wavelengths above, respectively)
I failed at 2.

実施例3 表面を鏡面切削仕上げした外径121#φの円筒形状の
高純度(4N> A I−fVtg合金基板を、アセト
ンを用いて空温で10分間超音波洗浄した後、続いて、
空温の純水中で10分間超音波洗浄した。
Example 3 A cylindrical high-purity (4N>A I-fVtg alloy substrate with an outer diameter of 121#φ and a mirror-cut surface was ultrasonically cleaned at air temperature for 10 minutes using acetone, and then,
Ultrasonic cleaning was performed for 10 minutes in air-temperature pure water.

引き続いて、純粋沸騰水中煮沸処理を10分間実施した
Subsequently, a boiling treatment in pure boiling water was performed for 10 minutes.

この基板に対して、純水中にホウ酸10重量%及びホウ
01重量%を加えた溶液を用いて陽極酸化処理を実施し
た。そのときの陽極酸化条件は、液温85℃、電流密度
2.5mA/7及び陽極酸化時間45分であった。
This substrate was anodized using a solution containing 10% by weight of boric acid and 1% by weight of boron in pure water. The anodizing conditions at that time were a liquid temperature of 85° C., a current density of 2.5 mA/7, and an anodizing time of 45 minutes.

処理されたA1基板を陽極酸化溶液から取り出し、純水
中で10分間超音波洗浄し、その後乾燥させた。このよ
うにして得られたAI基板上の陽極酸化皮膜の厚さは約
0.2μmであった。次に上記の陽極酸化皮膜が形成さ
れたA1基板を、円筒状基板上へのアモルファスシリコ
ン膜の生成が可能な容量結合型プラズマCVD装置内の
所定の位置に配置した。引き続いてシラン(S i 1
−14 >ガスとジボラン(82H6)ガスの混合ガス
をグロー放電分解することにより、上記の陽極酸化皮膜
を形成したAll板上に、水素と微量のホウ素を含む比
較的高暗抵抗でいわゆるi型の非晶質ケイ素膜を生成し
た。このときの非晶質ケイ素膜の生成条件は次のようで
あった。
The treated A1 substrate was removed from the anodizing solution, ultrasonically cleaned in pure water for 10 minutes, and then dried. The thickness of the anodic oxide film on the AI substrate thus obtained was about 0.2 μm. Next, the A1 substrate on which the anodic oxide film was formed was placed at a predetermined position in a capacitively coupled plasma CVD apparatus capable of forming an amorphous silicon film on a cylindrical substrate. Subsequently, silane (S i 1
-14 > By glow discharge decomposition of a mixed gas of gas and diborane (82H6) gas, a so-called i-type film containing hydrogen and a trace amount of boron with a relatively high dark resistance is formed on the Al plate on which the above anodic oxide film is formed. produced an amorphous silicon film. The conditions for forming the amorphous silicon film at this time were as follows.

プラズマCVD装置の反応室内の所定の位置に円筒型A
I基板を設置し、基板温度を所定の温度である250℃
に維持し、反応室内に100%シラン(S i H4)
ガスを毎分400cc、水素稀釈の1100ppジボラ
ン(B2H6)ガスヲ毎分4CC1更ニ、100%水素
(町)ガスを毎分400CCで流入させ、反応槽内を1
.5Torr(200,ON/TIt>の内圧に維持し
た後、13.568H2の高周波電力を投入して、グロ
ー放電を生じせしめ、高周波電源の出力を350Wに維
持した。このようにして陽極酸化皮膜を設けたA:基板
上に厚さ25μmの水素と極微量のホウ素を含む高暗抵
抗でいわゆるi型の非晶質ケイ素感光層を有する感光体
を得た。
Cylindrical type A is placed at a predetermined position inside the reaction chamber of the plasma CVD equipment.
Install the I board and set the board temperature to the specified temperature of 250°C.
100% silane (S i H4) in the reaction chamber.
Gas was introduced at 400 cc per minute, 1100 pp diborane (B2H6) gas diluted with hydrogen was introduced at 4 cc/min, and 100% hydrogen (machi) gas was introduced at 400 cc/min.
.. After maintaining the internal pressure at 5 Torr (200, ON/TIt>), a high frequency power of 13.568 H2 was applied to generate a glow discharge, and the output of the high frequency power supply was maintained at 350 W. In this way, the anodic oxide film was A: A photoreceptor was obtained having a so-called i-type amorphous silicon photosensitive layer with a high dark resistance and containing hydrogen and a very small amount of boron and having a thickness of 25 μm on a substrate.

得られた電子写真用感光体に対して、正帯電特性を測定
したところ、感光体流入電流10μA / cmの場合
、コントラスト電位(帯電電位−残留電位)は680V
 1又、暗減衰率は37%/ SeGであった。
When the positive charging characteristics of the obtained electrophotographic photoreceptor were measured, the contrast potential (charged potential - residual potential) was 680 V when the photoreceptor inflow current was 10 μA / cm.
First, the dark decay rate was 37%/SeG.

引き続いて、波長450.650及びaoonmの単色
光を用いて各々の波長における正帯電時の光感度を測定
したところ、入射光強度1oerg−5ec−1・cm
’の場合、半減露光量は、上記の波長の順にそit、−
Fし25.5.3.2及Cf 14.7erQ−cm−
”テあった。
Subsequently, when the photosensitivity during positive charging at each wavelength was measured using monochromatic light with a wavelength of 450.650 and aoonm, the incident light intensity was 1 oerg-5ec-1 cm.
', the half-decreased exposure amount is it, - in the order of wavelengths above.
F25.5.3.2 and Cf 14.7erQ-cm-
``There was a time.

更に、A1基板と非晶質ケイ素感光層との接着性は良好
なものであった。
Furthermore, the adhesion between the A1 substrate and the amorphous silicon photosensitive layer was good.

比較のために、陽極酸化処理を行っていないAI基板上
に、上記と同一方法、同一条件によりi型の非晶質ケイ
素感光層を有する感光体を作製した。この電子写真用感
光体に対して同様な方法で正帯電特性を測定したところ
、感光体流入電流10μA / cmの場合、コントラ
スト電位(帯電電位−残留電位)は340V、又、暗減
衰率は72%/secでめった。引き続いて波長450
. 650及び800nmの単色光を用いて各々の波長
における正帯電時の光感度を測定したところ、入射光強
度10 erg −5ec−’ −にH−”(D場合、
半Wc it 光m ハ、上記の波長の順にそれぞれ3
6.4.1及び278rg・CI!t−2であった。又
、非晶質ケイ素感光層の一部にA1基板からの剥離が見
られた。
For comparison, a photoreceptor having an i-type amorphous silicon photosensitive layer was fabricated on an AI substrate that had not been anodized by the same method and under the same conditions as above. When the positive charging characteristics of this electrophotographic photoreceptor were measured in a similar manner, when the photoreceptor inflow current was 10 μA/cm, the contrast potential (charged potential - residual potential) was 340 V, and the dark decay rate was 72. %/sec. Subsequently, wavelength 450
.. When the photosensitivity during positive charging at each wavelength was measured using monochromatic light of 650 and 800 nm, it was found that the incident light intensity was 10 erg -5ec-'-H-'' (in case of D,
half Wc it light m c, 3 each in the order of the above wavelengths
6.4.1 and 278rg・CI! It was t-2. Further, peeling from the A1 substrate was observed in a part of the amorphous silicon photosensitive layer.

実施例4 表面を鏡面切削仕上げした外径121.φの円筒形状の
高純度(4N>Al−Mg合金基板を、アセトンを用い
て室温で10分間超音波洗浄した債、続いて、室温の純
水中で10分間超音波洗浄した。
Example 4 External diameter: 121 mm with mirror-cut surface. A high purity (4N>Al-Mg alloy substrate) having a cylindrical shape of φ was ultrasonically cleaned using acetone at room temperature for 10 minutes, and then ultrasonically cleaned in pure water at room temperature for 10 minutes.

引き続いて、純水沸騰水中煮沸処理を10分間実施した
Subsequently, boiling treatment in pure boiling water was performed for 10 minutes.

この基板に対して、純水中にホウ酸10重量%及びホウ
砂1,5重量%を加えた溶液を用いて陽極酸化処理を実
施した。ぞのときの陽極酸化条件は、液温85℃、電流
密度3mA/cm及び陽極酸化時間45分でめった。
This substrate was anodized using a solution containing 10% by weight of boric acid and 1.5% by weight of borax in pure water. The anodic oxidation conditions were a liquid temperature of 85° C., a current density of 3 mA/cm, and an anodization time of 45 minutes.

処理されたA1基板を陽極酸化溶液から取り出し、純水
中で10分間超音波洗浄し、その後乾燥させた。このよ
うにして得られたAI基板上の陽極酸化皮膜の厚さは約
0.25μmであった。次に上記の陽極酸化皮膜が形成
されたA1基板を、円筒状基板上へのアモルファスシリ
コン膜の生成が可能な容量結合型プラズマCVD装置内
の所定の位置に配置した。引き続いてシラン(SiH4
)ガスとジボラン(B2 H6)ガスの混合ガスをグロ
ー放電分解することにより、上記の陽極酸化皮膜を形成
したAI基板上に、水素とホウ素を含むいわゆるp型の
非晶質ケイ素膜を生成した。この時の非晶質ケイ素膜の
生成条件は次のようであった。
The treated A1 substrate was removed from the anodizing solution, ultrasonically cleaned in pure water for 10 minutes, and then dried. The thickness of the anodic oxide film on the AI substrate thus obtained was about 0.25 μm. Next, the A1 substrate on which the anodic oxide film was formed was placed at a predetermined position in a capacitively coupled plasma CVD apparatus capable of forming an amorphous silicon film on a cylindrical substrate. Subsequently, silane (SiH4
) gas and diborane (B2H6) gas by glow discharge decomposition, a so-called p-type amorphous silicon film containing hydrogen and boron was generated on the AI substrate on which the above anodic oxide film was formed. . The conditions for forming the amorphous silicon film at this time were as follows.

プラズマCVD装置の反応室内の所定の位置に円筒状A
1基板を設置し、基板温度を所定の温度である250℃
に維持し、反応室内に100%シラン(SiH4)ガス
を毎分200cc、水素稀釈の11001)pジボラン
(B2 H5)ガスを毎分200CCテl入させ、反応
槽内を0.5Torr (66、7N / Tri >
の内圧に維持した後、13.56MHzの高周波電力を
投入して、グロー放電を生じせしめ、高周波電源の出力
を120 Wに維持した。このようにして陽極酸化皮膜
を設けたA1基板上に厚さ0.5μmの水素とホウ素を
含むいわゆるp型の非晶質ケイ素層を形成した。
Cylindrical A is placed at a predetermined position in the reaction chamber of the plasma CVD device.
1 board is installed, and the board temperature is set to 250°C, which is the predetermined temperature.
100% silane (SiH4) gas was introduced into the reaction chamber at a rate of 200 cc per minute, hydrogen-diluted 11001)p diborane (B2 H5) gas was introduced at a rate of 200 cc/min, and the inside of the reaction chamber was maintained at 0.5 Torr (66, 7N/Tri>
After maintaining the internal pressure at , 13.56 MHz high frequency power was applied to generate glow discharge, and the output of the high frequency power source was maintained at 120 W. In this way, a so-called p-type amorphous silicon layer containing hydrogen and boron and having a thickness of 0.5 μm was formed on the A1 substrate provided with the anodic oxide film.

続いて、シラン(S i H4)ガスとジボラン(82
H6)ガスの混合ガスをグロー放電分解することにより
、上記のp型の非晶質ケイ素層の上に、水素と微量のホ
ウ素を含む比較的高暗抵抗でいわゆるi型の非晶質ケイ
素膜を生成した。この時の非晶質ケイ素膜の生成条件は
次のようであった。
Next, silane (S i H4) gas and diborane (82
H6) By glow discharge decomposition of a gas mixture, a so-called i-type amorphous silicon film containing hydrogen and a trace amount of boron and having a relatively high dark resistance is formed on the above p-type amorphous silicon layer. was generated. The conditions for forming the amorphous silicon film at this time were as follows.

プラズマCVD装置の反応室内の所定の位置に円筒型A
1基板を設置し、基板温度を所定の温度である250℃
に維持し、反応室内に100%シラン(SiH4)ガス
を毎分220CC,水素稀釈(7)100ppmジボラ
ン(82H6)ガスを毎分2.5CC,更にioo%水
素(H2)ガスを毎分200ccで流入させ、反応槽内
を1.5Torr(200,ON/Td>の内圧に維持
した後、13.568H2の高周波電力を投入して、グ
ロー放電を生じせしめ、高周波電源の出力を300Wに
維持した。このようにして厚さ25μmの水素と極微量
のホウ素を含む高暗抵抗でいわゆるi型の非晶質ケイ素
感光層を得た。
Cylindrical type A is placed at a predetermined position inside the reaction chamber of the plasma CVD equipment.
1 board is installed, and the board temperature is set to 250°C, which is the predetermined temperature.
In the reaction chamber, 100% silane (SiH4) gas was supplied at 220cc/min, hydrogen diluted (7) 100ppm diborane (82H6) gas was supplied at 2.5cc/min, and ioo% hydrogen (H2) gas was supplied at 200cc/min. After maintaining the internal pressure in the reaction tank at 1.5 Torr (200, ON/Td>), high-frequency power of 13.568 H2 was applied to generate a glow discharge, and the output of the high-frequency power source was maintained at 300 W. In this way, a so-called i-type amorphous silicon photosensitive layer having a thickness of 25 μm and containing hydrogen and a very small amount of boron and having a high dark resistance was obtained.

以上の手順により陽極酸化処理を施したAI基板上にp
型の非晶質ケイ素層及びi型の非晶質ケイ素感光層とを
有する感光体を作製した。
By the above procedure, p
A photoreceptor having an i-type amorphous silicon layer and an i-type amorphous silicon photosensitive layer was produced.

得られた電子写真用感光体に対して、正帯電特性を測定
したところ、感光体流入電流10μA / cmの場合
、コントラスト電位(帯電電位−残留電位)は810V
 1又、暗減衰率は27%/ SeCであった。
When the positive charging characteristics of the obtained electrophotographic photoreceptor were measured, the contrast potential (charged potential - residual potential) was 810 V when the photoreceptor inflow current was 10 μA / cm.
First, the dark decay rate was 27%/SeC.

引き続いて、波長450. 650及びaoonmの単
色光を用いて各々の波長における正帯電時の光感度を測
定したところ、入射光強度10erg・ 5ec−1・
cm’の場合、半減露光量は、上記の波長の順にそれぞ
れ24.3.0及び11.6erg * cm−2でめ
ッた。更に、AI基板と非晶質ケイ素層との接着性は良
好なものであった。
Subsequently, wavelength 450. When the photosensitivity during positive charging at each wavelength was measured using monochromatic light of 650 nm and 10 nm, the incident light intensity was 10 erg・5ec−1・
cm', the half-decay exposure was set at 24.3.0 and 11.6 erg*cm-2, respectively, in the order of the wavelengths mentioned above. Furthermore, the adhesion between the AI substrate and the amorphous silicon layer was good.

比較のために、陽極酸化処理を行っていないA1基板上
に、上記と同一方法、同一条件によりp型の非晶質ケイ
素層及びi型の非晶質ケイ素感光層を有する感光体を作
製した。この電子写真用感光体に対し、て同様な方法で
正帯電特性を測定したところ、感光体流入電流10μA
 / cmの場合、コントラスト電位(帯電電位−残留
電位)は430V、又、暗減衰率は60%/ Secで
めった。引き続いて波長450. 650及び800n
mの単色光を用いて各々の波長における正帯電時の光感
度を測定したとコロ、入射光強度10erl;l −5
ec−1” Cm−2の場合、半減露光量は、上記の波
長の順にそれぞれ34.4及び25erg・cm’であ
った。又、非晶質ケイ素層の一部にAIDS板からの剥
離がみられた。
For comparison, a photoreceptor having a p-type amorphous silicon layer and an i-type amorphous silicon photosensitive layer was fabricated on an A1 substrate that had not been anodized using the same method and conditions as above. . When the positive charging characteristics of this electrophotographic photoreceptor were measured using the same method, the photoreceptor inflow current was 10 μA.
/ cm, the contrast potential (charged potential - residual potential) was 430 V, and the dark decay rate was 60%/sec. Subsequently, the wavelength is 450. 650 and 800n
The photosensitivity during positive charging at each wavelength was measured using monochromatic light of m, and the incident light intensity was 10erl; l -5
In the case of ec-1" Cm-2, the half-decrease exposure doses were 34.4 and 25 erg cm', respectively, in the order of the wavelengths mentioned above. In addition, part of the amorphous silicon layer was peeled off from the AIDS plate. It was seen.

発明の効果 以上の結果からも明らかなように、本発明の非晶質ケイ
素感光層を有する電子写真用感光体は、ホウ酸電解質溶
液を用いて陽極酸化して形成された陽極酸化皮膜を有す
るアルミニウム基板を用いて構成されたものであるから
、暗減衰が小さくて極めて帯電性が高く、且つ、帯電特
性が外部環境の雰囲気の変化によって影響を受けず、又
、450nm〜800nmの範囲の波長の光に対して光
感度が高められたものとなる。特に800nm付近の長
波長域における光感度の改善に対して有効でおるので、
半導体レーザービームプリンタ用感光体として適用でき
る。
Effects of the Invention As is clear from the above results, the electrophotographic photoreceptor having an amorphous silicon photosensitive layer of the present invention has an anodic oxide film formed by anodic oxidation using a boric acid electrolyte solution. Since it is constructed using an aluminum substrate, it has low dark decay and extremely high charging properties, and its charging characteristics are not affected by changes in the external environment. It has increased photosensitivity to light. It is particularly effective in improving photosensitivity in the long wavelength region around 800 nm.
It can be applied as a photoreceptor for semiconductor laser beam printers.

又、本発明の電子写真用感光体は、A1基板と非晶質ケ
イ素感光層との密着性に優れている。
Further, the electrophotographic photoreceptor of the present invention has excellent adhesion between the A1 substrate and the amorphous silicon photosensitive layer.

更に、本発明の電子写真用感光体は、耐熱性、化学安定
性が高く、かつ、機械的強度が高く、耐摩耗性に優れ、
繰返し使用しても優れた画質の画像を与える。
Furthermore, the electrophotographic photoreceptor of the present invention has high heat resistance, high chemical stability, high mechanical strength, and excellent abrasion resistance.
Provides images of excellent quality even after repeated use.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の電子写真感光体の基本的構成を示す模
式図、第2図は陽極酸化中の電流と電圧の関係を示すグ
ラフである。 1・・・アルミニウム基板、2・・・陽極酸化皮膜、3
・・・非晶質ケイ素感光層。 特許出願人  富士ゼロックス株式会社代理人    
弁理士  渡部 剛 第1図 −〉時間t1t2 第2図 手続補正書(自発) 昭和63年 3月31日 特許庁長官  小 川 邦 夫 膜 性 所  東京都港区赤坂三丁目3番5@名 称  (
549)富士ゼロックス株式会社代表者  小林陽太部 6、補正の内容 0)明細書第4頁第1行の「発明が解決症とする問題点
」を、「発明が解決しようとする問題点」に補正する。 ■ 同第9頁第6行〜第8行のr−Cu系、A1+1 −si系・・・・・Al−Mg−8t系等」を、r−C
u系、A1−5i系、Al−Cu−Zn系、Al−8i
系、Al−Cu−3i系等」に補正する。 ■ 同第21頁第1行の「実施例2」を改行して同第1
行と第2行の間に挿入する。 以上
FIG. 1 is a schematic diagram showing the basic structure of the electrophotographic photoreceptor of the present invention, and FIG. 2 is a graph showing the relationship between current and voltage during anodic oxidation. 1... Aluminum substrate, 2... Anodic oxide film, 3
...Amorphous silicon photosensitive layer. Patent applicant Fuji Xerox Co., Ltd. Agent
Patent attorney Tsuyoshi Watanabe Figure 1 Time t1t2 Figure 2 Procedural amendment (voluntary) March 31, 1985 Commissioner of the Patent Office Kunio Ogawa Membrane Office 3-3-5 Akasaka, Minato-ku, Tokyo @ Name (
549) Fuji Xerox Co., Ltd. Representative Yota Kobayashi Department 6 Contents of the amendment 0) Changed "problem to be solved by the invention" in the first line of page 4 of the specification to "problem to be solved by the invention" to correct. ■ "r-Cu system, A1+1-si system... Al-Mg-8t system, etc." on page 9, lines 6 to 8,
u series, A1-5i series, Al-Cu-Zn series, Al-8i
system, Al-Cu-3i system, etc.". ■ Add “Example 2” in the first line of page 21 of the same page to the first line of the same page.
Insert between the line and the second line. that's all

Claims (5)

【特許請求の範囲】[Claims] (1)ホウ酸電解質溶液を用いて陽極酸化によって形成
された陽極酸化皮膜を有するアルミニウム基板と非晶質
ケイ素感光層とを有することを特徴とする電子写真用感
光体。
(1) An electrophotographic photoreceptor comprising an aluminum substrate having an anodic oxide film formed by anodic oxidation using a boric acid electrolyte solution and an amorphous silicon photosensitive layer.
(2)ホウ酸電解質溶液が、純水中にホウ酸及びホウ砂
を含有してなることを特徴とする特許請求の範囲第1項
に記載の電子写真用感光体。
(2) The electrophotographic photoreceptor according to claim 1, wherein the boric acid electrolyte solution contains boric acid and borax in pure water.
(3)純水中のホウ酸の含有量が0.5〜60重量%、
ホウ砂の含有量が0〜30重量%であることを特徴とす
る特許請求の範囲第1項又は第2項に記載の電子写真用
感光体。
(3) The content of boric acid in pure water is 0.5 to 60% by weight,
The electrophotographic photoreceptor according to claim 1 or 2, wherein the content of borax is 0 to 30% by weight.
(4)感光層がi型非晶質ケイ素層からなることを特徴
とする特許請求の範囲第1項に記載の電子写真用感光体
(4) The electrophotographic photoreceptor according to claim 1, wherein the photosensitive layer is made of an i-type amorphous silicon layer.
(5)感光層とアルミニウム基板上に形成された陽極酸
化皮膜との間にp型非晶質ケイ素層を設けてなることを
特徴とする特許請求の範囲第1項に記載の電子写真用感
光体。
(5) A photosensitive material for electrophotography according to claim 1, characterized in that a p-type amorphous silicon layer is provided between the photosensitive layer and the anodic oxide film formed on the aluminum substrate. body.
JP12021487A 1987-05-19 1987-05-19 Electrophotographic sensitive body Pending JPS63286858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12021487A JPS63286858A (en) 1987-05-19 1987-05-19 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12021487A JPS63286858A (en) 1987-05-19 1987-05-19 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPS63286858A true JPS63286858A (en) 1988-11-24

Family

ID=14780717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12021487A Pending JPS63286858A (en) 1987-05-19 1987-05-19 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPS63286858A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02111955A (en) * 1988-10-21 1990-04-24 Mitsubishi Kasei Corp Manufacturing method of electrophotographic photoreceptor
JPH02181159A (en) * 1989-01-04 1990-07-13 Fuji Xerox Co Ltd Electrophotographic sensitive body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02111955A (en) * 1988-10-21 1990-04-24 Mitsubishi Kasei Corp Manufacturing method of electrophotographic photoreceptor
JPH02181159A (en) * 1989-01-04 1990-07-13 Fuji Xerox Co Ltd Electrophotographic sensitive body

Similar Documents

Publication Publication Date Title
JPS6239736B2 (en)
KR920002244B1 (en) Electro photographic sensitive body
US5162185A (en) Electrophotographic photoreceptor and process for producing the same
US5166020A (en) Electrophotographic photoreceptor
JPS63286858A (en) Electrophotographic sensitive body
JP2535924B2 (en) Electrophotographic photoreceptor
JP2596024B2 (en) Electrophotographic photoreceptor
US5219691A (en) Electrophotographic photoreceptor and process for producing the same
JP2663647B2 (en) Electrophotographic photoreceptor and method of manufacturing the same
JPH07120058B2 (en) Electrophotographic photoreceptor and manufacturing method thereof
JP2622758B2 (en) Electrophotographic photoreceptor and method of manufacturing the same
JPS585749A (en) Photoreceptor
JP3902975B2 (en) Negative charging electrophotographic photoreceptor
JPS6348056B2 (en)
JPH1165146A (en) Light receiving member for electrophotography
JPS6348055B2 (en)
JPS62182748A (en) Electrophotographic sensitive body and its preparation
JPS6242264B2 (en)
JPS628785B2 (en)
JP2000029233A (en) Electrophotographic photoreceptor and its production
JP2002311614A (en) Electrophotographic photoreceptive member
JPH1184700A (en) Electrophotographic light receiving member
JPS6242263B2 (en)
JP2003107765A (en) Electrophotographic photoreceptor and method of making electrophotographic photoreceptor
JPH11202514A (en) Electrophotographic photoreceptive member