[go: up one dir, main page]

JPS63285866A - Nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery

Info

Publication number
JPS63285866A
JPS63285866A JP62122301A JP12230187A JPS63285866A JP S63285866 A JPS63285866 A JP S63285866A JP 62122301 A JP62122301 A JP 62122301A JP 12230187 A JP12230187 A JP 12230187A JP S63285866 A JPS63285866 A JP S63285866A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium
porous body
conductive porous
lithium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62122301A
Other languages
Japanese (ja)
Inventor
Kazuo Terashi
和生 寺司
Toshihiko Saito
俊彦 齋藤
Sanehiro Furukawa
古川 修弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP62122301A priority Critical patent/JPS63285866A/en
Publication of JPS63285866A publication Critical patent/JPS63285866A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • H01M4/0461Electrochemical alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/669Steels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PURPOSE:To increase cycle performance by forming a negative electrode with lithium alloy supported on a conductive porous body. CONSTITUTION:A positive electrode 2 consists of an active material capable of recharging and is spirally wound together with a negative electrode through a separator 3. The negative electrode 1 is prepared in such a way that a conductive porous body 7 is placed between two metal plates which are alloyed with lithium such as aluminium and they are immersed in an electrolyte, then electrochemically alloyed with lithium by using a lithium plate as the counter electrode to form a lithium alloy into which the conductive porous body is embedded. The conductive porous body 7 is made of the punched plate, net, or lath of stainless steel, molybdenum, titanium, or nickel. By this manufacturing method, the lithium alloy is strongly supported in the porous body and detaching of the lithium alloy from the negative electrode is prevented. The cycle performance of the battery is therefore enhanced.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は二酸化モリブデン、五酸化バナジウム、チタン
或いはニオブの硫化物などの再充電可能な活物質よりな
る正極と、リチウムを活物質とする負極とを備えた非水
系二次電池に関するものである0 (ロ)従来の技術 この種二次電池は放電時に負極活物質であるリチウムが
イオンとなって溶解し、充電時にその逆反応で負極上に
金属リチウムとして電析する反応であるが、電析リチウ
ムは樹枝状に成長する傾向があり最終的に正極に達して
内部短絡を引起すという問題がある。
[Detailed description of the invention] (a) Industrial application field The present invention comprises a positive electrode made of a rechargeable active material such as molybdenum dioxide, vanadium pentoxide, titanium or niobium sulfide, and a positive electrode made of lithium as the active material. 0 (b) Conventional technology In this type of secondary battery, lithium, which is the active material of the negative electrode, becomes ions and dissolves during charging, and the reverse reaction occurs when charging the negative electrode. Although this is a reaction in which metallic lithium is deposited on the surface of the metal, there is a problem in that the deposited lithium tends to grow in a dendritic form and eventually reaches the positive electrode, causing an internal short circuit.

このような不都合に対処するため、例えば特開昭52−
5423号公報に開示されているリチウム−アルミニウ
ム合金のようにリチウム合金を負極活物質とすることが
提案されている。リチウムと合金を形成する金属として
はアルミニウムの他にマグネシウム、亜鉛、スズ、鉛な
どが挙げられる。リチウム合金の利点は次述の如くであ
る。即ち、リチウム単独の場合にはリチウムがイオンと
なって溶出すると負極表面が凹凸状となり、その後の充
電の際、リチウムが凸部に集中的に電析して樹枝状に成
長するのに対し、リチウム−アルミニウム合金の場合に
は充電時にリチウムが負極の基体となるアルミニウムと
合金を形成するように復元するためリチウムの樹枝状成
長が抑制されるためである。
In order to deal with such inconveniences, for example,
It has been proposed to use a lithium alloy as a negative electrode active material, such as the lithium-aluminum alloy disclosed in Japanese Patent No. 5423. In addition to aluminum, examples of metals that form alloys with lithium include magnesium, zinc, tin, and lead. The advantages of lithium alloys are as follows. That is, in the case of lithium alone, when lithium is eluted as ions, the negative electrode surface becomes uneven, and during subsequent charging, lithium is deposited intensively on the convex parts and grows in a dendritic shape. This is because in the case of a lithium-aluminum alloy, lithium restores itself to form an alloy with aluminum, which serves as the base of the negative electrode, during charging, thereby suppressing dendritic growth of lithium.

(ハ)発明が解決しようとする問題点 負極をリチウム合金で構成したとしても、充放電の繰返
しにより合金が微細化し、負極から脱落して電池容量が
低下したり、又例えば扁平型電池において前記負極を負
極外部端子部材に接触圧により電気接続する場合には合
金の脱落により集電効果が低下して電池性能の劣化に至
る。
(c) Problems to be Solved by the Invention Even if the negative electrode is made of a lithium alloy, repeated charging and discharging may cause the alloy to become fine and fall off from the negative electrode, resulting in a decrease in battery capacity. When the negative electrode is electrically connected to the negative external terminal member by contact pressure, the alloy falls off, reducing the current collection effect and leading to deterioration of battery performance.

に)問題点を解決するだめの手段 負極として導電性多孔体を埋設したリチウム合金を用い
る。
2) As a final means of solving the problem, a lithium alloy with a conductive porous body embedded therein is used as the negative electrode.

(ホ)作 用 本発明による負極構造であれば、導電性多孔体の両側に
位置するリチウム合金が導電性多孔体の孔部を介して連
結され、導電性多孔体に強固に支持されることになるた
め、合金が負極から脱落するのを抑制しうる。
(E) Function With the negative electrode structure according to the present invention, the lithium alloy located on both sides of the conductive porous body is connected through the pores of the conductive porous body and is firmly supported by the conductive porous body. Therefore, the alloy can be prevented from falling off from the negative electrode.

又、導電性多孔体の一部を延長し、その延出部を負極外
部端子部材に固着して電気接続することにより、別途リ
ード片を取付けることが不要となると共に、扁平型電池
においては接触圧で電気接続する場合に比して集電効果
の向上が計れる0(ホ)実施例 実施例1 第1図は円筒型非水電解液二次電池の縦断面図を示し、
(1)は本発明の要旨とする負極であって後述する手順
により作成したものである。(2)は正極であって活物
質である硫化チタン80重量部に導電剤としてのアセチ
レンブラック10重量部及び結着剤としてのフッ素樹脂
10重量部を加え充分混合した後加圧成型したものであ
る。
In addition, by extending a part of the conductive porous body and fixing the extended part to the negative electrode external terminal member for electrical connection, it becomes unnecessary to attach a separate lead piece, and in flat batteries, it is not necessary to attach a lead piece. Embodiment Example 1 Figure 1 shows a longitudinal cross-sectional view of a cylindrical non-aqueous electrolyte secondary battery, in which the current collection effect is improved compared to the case where electrical connection is made by pressure.
(1) is a negative electrode which is the gist of the present invention, and was produced by the procedure described below. (2) is a positive electrode, which is made by adding 10 parts by weight of acetylene black as a conductive agent and 10 parts by weight of fluororesin as a binder to 80 parts by weight of titanium sulfide as an active material, mixing thoroughly, and then press-molding. be.

これら負極(1)及び正極(2)はポリプロピレン多孔
膜よりなるセパレータ(3)を介して巻回され負極端子
兼用の外装罐(4)に収納されている。(5)は絶縁バ
ッキング(6)を介して外装罐(4)の開口部に装着さ
れている正極端子兼用のキャップである。
These negative electrodes (1) and positive electrodes (2) are wound around a separator (3) made of a porous polypropylene membrane and housed in an exterior can (4) which also serves as a negative electrode terminal. (5) is a cap that also serves as a positive electrode terminal and is attached to the opening of the exterior can (4) via an insulating backing (6).

而して、負極はステンレス製パンチング板より・F支 なる導電、多孔体(7)を一対のアルミニウム板で挾持
したるものをプロピレンカーボネートと12ジメトキシ
エタンとの混合溶媒に過塩素酸リチウムを1モル/l溶
解した電解液中に浸漬し、金属リチウム板を対極として
電流密度α5mA/−で電気化学的合金化処理を施し、
リチクムーアルミニウム合金を形成したものである。
The negative electrode was made from a stainless steel punched plate.The conductive porous body (7) supported by F was sandwiched between a pair of aluminum plates, and one portion of lithium perchlorate was added to a mixed solvent of propylene carbonate and 12 dimethoxyethane. It was immersed in an electrolyte solution containing mol/l and subjected to electrochemical alloying treatment at a current density of α5 mA/- using a metal lithium plate as a counter electrode.
It is made of lyticum aluminum alloy.

I隊 尚、負極(1)は専へ多孔体(7)の延長部を外装罐(
4)の内底面にスポット溶接して電気接続し、又正極(
21は正極リード片(81により正極キャップ(5)に
電気接続されている。この電池を(A1)とする。
For the I squad, the negative electrode (1) is made by attaching the extension of the porous body (7) to the outer can (
Make an electrical connection by spot welding to the inner bottom surface of 4), and also attach the positive electrode (
21 is electrically connected to the positive electrode cap (5) by a positive electrode lead piece (81). This battery is referred to as (A1).

比較のために、導電性多孔体を有しないリチウム−アル
ミニウム合金よりなる負極を用い、且負極リード片を別
途用いて負極と外装罐とを電気接続する以外は実施例1
と同様の比較電池(B1)を作成した。
For comparison, Example 1 was used except that a negative electrode made of a lithium-aluminum alloy without a conductive porous body was used, and a negative electrode lead piece was used separately to electrically connect the negative electrode and the exterior can.
A comparative battery (B1) similar to the above was created.

第3図はこれら電池の充放電サイクル特性図を示すもの
であり、サイクル条件は充電電流5QmAで充電終止電
圧4.OV、放電電流50mAで放電終止電圧1.5v
とし、サイクル数と放電容量との関係を示す。
FIG. 3 shows the charge/discharge cycle characteristics of these batteries, and the cycle conditions are a charging current of 5 QmA and a charge end voltage of 4. OV, discharge end voltage 1.5V at discharge current 50mA
and shows the relationship between the number of cycles and discharge capacity.

第3図よシ本発明電池(A1〕は比較電池(Bりに比し
てサイクル特性が改善されているのがわかる。
It can be seen from FIG. 3 that the battery of the present invention (A1) has improved cycle characteristics compared to the comparative battery (B).

実施例2 第2図は扁平型非水電解液二次電池の半断面図を示し、
aυは実施例1で詳述した本発明の要旨とする負極であ
って、ステンレス製パンチング板よりなる導電性多孔体
11刀を埋設したりチウム−アルミニウム合金よりなり
、導電性多孔体(171の一部を負極罐114の内底面
にスポット溶接により固着されている。尚、導電性多孔
体CI?)の位置はスポット溶接の関係から中央より負
極罐14側に位置させると有益である。
Example 2 FIG. 2 shows a half-sectional view of a flat non-aqueous electrolyte secondary battery,
aυ is a negative electrode according to the gist of the present invention detailed in Example 1, in which a conductive porous body made of a punched plate made of stainless steel is embedded, or a conductive porous body made of a lithium-aluminum alloy (171 pieces) is embedded. A part of the conductive porous body CI?) is fixed to the inner bottom surface of the negative electrode housing 114 by spot welding.In view of spot welding, it is advantageous to position the conductive porous body CI?) closer to the negative electrode housing 14 than the center.

σ2は実施例1の正極と同一組成の正極であって、正極
罐t151の内底面に固着せる正極集電体a樽に圧接さ
れている。q3はポリプロピレン多孔膜よりなるセパレ
ータ、ueは絶縁バッキングである。この電池を(A2
)とする。
σ2 is a positive electrode having the same composition as the positive electrode of Example 1, and is pressed into contact with a positive electrode current collector a barrel fixed to the inner bottom surface of the positive electrode can t151. q3 is a separator made of a porous polypropylene membrane, and ue is an insulating backing. This battery (A2
).

比較のために、導電性多孔体を有しないリチウム−アル
ミニウム合金よりなる負極を用い、且負極罐の内底面に
負極集電体を固着し、負極を負極集電体く圧着して電気
接続する構成とする以外は実施例2と同様の比較電池(
B2]を作成した。
For comparison, a negative electrode made of a lithium-aluminum alloy without a conductive porous material was used, a negative electrode current collector was fixed to the inner bottom of the negative electrode container, and the negative electrode was crimped onto the negative electrode current collector for electrical connection. A comparative battery similar to Example 2 except for the configuration (
B2] was created.

第4図はこれら電池の充放電サイクル特性図を示すもの
であり、サイクル条件は充it流2.0 mAで充電終
止電圧4.QV、放t’a流2.OmAで放電終止電圧
1,5vとし、6時間のサイクル試験を行いサイクル数
と放電終止電圧との関係を示す。
FIG. 4 shows the charge/discharge cycle characteristics of these batteries, and the cycle conditions are a charging current of 2.0 mA and a charge end voltage of 4.0 mA. QV, Hot'a style 2. A cycle test was conducted for 6 hours at a discharge end voltage of 1.5 V at OmA to show the relationship between the number of cycles and the discharge end voltage.

第4図より本発明電池(A2)は比較電池(B2)に比
してサイクル特性が改善されているのがわかる。
It can be seen from FIG. 4 that the battery of the present invention (A2) has improved cycle characteristics compared to the comparative battery (B2).

(ト)発明の効果 上述した如り、リチウムを活物質とする負極を備えた非
水電解液二次1池において、負極としてst性多孔体を
埋設したリチウム合金を用いることにより、4を性多孔
体の孔部を介してリチウム合金が連結され、リチウム合
金が導電性多孔体に強固に支持されるためリチウム合金
が負極から脱落するのが抑制されサイクル特性の向上が
計れるものであり、その工業鈎浦値は極めて犬である。
(g) Effects of the invention As mentioned above, in a non-aqueous electrolyte secondary battery equipped with a negative electrode containing lithium as an active material, by using a lithium alloy in which an ST porous body is embedded as the negative electrode, 4. The lithium alloy is connected through the pores of the porous body, and the lithium alloy is firmly supported by the conductive porous body, which prevents the lithium alloy from falling off the negative electrode and improves cycle characteristics. Industrial Konoura values are extremely poor.

尚、リチウムと合金化する金属としては実施例で示した
アルミニウムに限定されず、マグネシウム、亜鉛、スズ
、鉛なども用いることができる。
Note that the metal alloyed with lithium is not limited to aluminum shown in the examples, but may also be used such as magnesium, zinc, tin, and lead.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による円筒型非水電解液二次
電池の横断面図、第2図は本発明の他の実施例による扁
平型非水電解液二次電池の半断面図、第6図及び第4図
は本発明電池と比較電池との充放電サイクル特性比較図
を夫々示す。 (IIoll−・・負極、+2103−・・正極、(3
1(13−セパレータ、(4)・・・負極端子兼用外装
罐、(5)・・・正極キャップ、(6)(161・・・
絶縁バッキング、(71Q71・・・4’4性多孔体、
(141・・・負極罐、051・・・正極罐。
FIG. 1 is a cross-sectional view of a cylindrical non-aqueous electrolyte secondary battery according to an embodiment of the present invention, and FIG. 2 is a half-sectional view of a flat-type non-aqueous electrolyte secondary battery according to another embodiment of the present invention. , FIG. 6, and FIG. 4 respectively show comparison diagrams of the charge/discharge cycle characteristics of the battery of the present invention and the comparative battery. (IIoll-...Negative electrode, +2103-...Positive electrode, (3
1 (13-separator, (4)...Negative electrode terminal/exterior can, (5)...Positive electrode cap, (6) (161...
Insulating backing, (71Q71...4'4 porous material,
(141... negative electrode can, 051... positive electrode can.

Claims (2)

【特許請求の範囲】[Claims] (1)再充電可能な活物質よりなる正極と、リチウムを
活物質とする負極とを備え、前記負極は導電性多孔体を
埋設したリチウム合金よりなることを特徴とする非水系
二次電池。
(1) A non-aqueous secondary battery comprising a positive electrode made of a rechargeable active material and a negative electrode made of lithium as an active material, the negative electrode being made of a lithium alloy in which a conductive porous body is embedded.
(2)導電性多孔体がステンレス、モリブデン、チタン
或いはニッケルからなるパンチング板、網若しくはラス
板である特許請求の範囲第(1)項記載の非水系二次電
池。
(2) The nonaqueous secondary battery according to claim (1), wherein the conductive porous body is a punched plate, a mesh, or a lath plate made of stainless steel, molybdenum, titanium, or nickel.
JP62122301A 1987-05-19 1987-05-19 Nonaqueous secondary battery Pending JPS63285866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62122301A JPS63285866A (en) 1987-05-19 1987-05-19 Nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62122301A JPS63285866A (en) 1987-05-19 1987-05-19 Nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JPS63285866A true JPS63285866A (en) 1988-11-22

Family

ID=14832567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62122301A Pending JPS63285866A (en) 1987-05-19 1987-05-19 Nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JPS63285866A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63308868A (en) * 1987-06-10 1988-12-16 Hitachi Ltd Secondary cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59186275A (en) * 1983-04-07 1984-10-23 Matsushita Electric Ind Co Ltd Manufacture of negative pole for nonaqueous electrolyte secondary battery
JPS59186276A (en) * 1983-04-07 1984-10-23 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPS62123660A (en) * 1985-11-25 1987-06-04 Hitachi Maxell Ltd Lithium secondary cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59186275A (en) * 1983-04-07 1984-10-23 Matsushita Electric Ind Co Ltd Manufacture of negative pole for nonaqueous electrolyte secondary battery
JPS59186276A (en) * 1983-04-07 1984-10-23 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPS62123660A (en) * 1985-11-25 1987-06-04 Hitachi Maxell Ltd Lithium secondary cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63308868A (en) * 1987-06-10 1988-12-16 Hitachi Ltd Secondary cell

Similar Documents

Publication Publication Date Title
JPS63285865A (en) Nonaqueous electrolyte secondary battery
JPS62243247A (en) Nonaqueous secondary battery
JP2000277154A (en) Nonaqueous electrolyte secondary battery
JP3177257B2 (en) Non-aqueous electrolyte secondary battery
JPS63285866A (en) Nonaqueous secondary battery
JPS61158665A (en) Nonaqueous electrolyte secondary battery
JPS63285878A (en) Nonaqueous secondary battery
JP2798753B2 (en) Non-aqueous electrolyte secondary battery
JP2798742B2 (en) Non-aqueous electrolyte secondary battery
JP2562651B2 (en) Non-aqueous electrolyte secondary battery
JPS63150867A (en) Nonaqueous secondary cell
JP3025692B2 (en) Rechargeable battery
JP2594035B2 (en) Rechargeable battery
JP2989212B2 (en) Non-aqueous electrolyte secondary battery
JP2865386B2 (en) Non-aqueous electrolyte secondary battery
JPH0719595B2 (en) Non-aqueous secondary battery
JPS58129789A (en) Flat type nickel-cadmium battery
JP3098534B2 (en) Cylindrical lithium secondary battery
JPS59146157A (en) Nonaqueous electrolyte secondary cell
JPH02278658A (en) Secondary battery
JP2744061B2 (en) Non-aqueous electrolyte secondary battery
JP4363560B2 (en) Flat non-aqueous electrolyte secondary battery
JP2639934B2 (en) Non-aqueous secondary battery
JPS62123660A (en) Lithium secondary cell
JPH0470744B2 (en)