[go: up one dir, main page]

JPS63281458A - Semiconductor photodetector and manufacture thereof - Google Patents

Semiconductor photodetector and manufacture thereof

Info

Publication number
JPS63281458A
JPS63281458A JP62116288A JP11628887A JPS63281458A JP S63281458 A JPS63281458 A JP S63281458A JP 62116288 A JP62116288 A JP 62116288A JP 11628887 A JP11628887 A JP 11628887A JP S63281458 A JPS63281458 A JP S63281458A
Authority
JP
Japan
Prior art keywords
photodetectors
light receiving
shaped
receiving element
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62116288A
Other languages
Japanese (ja)
Inventor
Hiroshi Konakano
浩志 向中野
Kojin Kawahara
河原 行人
Satoshi Machida
聡 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP62116288A priority Critical patent/JPS63281458A/en
Publication of JPS63281458A publication Critical patent/JPS63281458A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To reduce the dispersion of outputs even when film thickness differs among each photodetector by bringing transmitted light obtained by the photodetectors to the integral values of all transmitted light by forming irregularities onto the photodetectors. CONSTITUTION:When reading circuit sections 7 are arranged and shaped onto a single crystal semiconductor substrate of one conductivity type through semiconductor manufacturing engineering normally used for thermal oxidation, photoetching, ion implantation, thermal diffusion, etc., wells are shaped while photodetectors 6 are formed. LOCOSs conducting the element isolation of CMOS circuits are also shaped onto the photodetectors, thus forming irregular structure even in the surfaces of the photodetectors. SiO2, SiN, PSG (Phospho Silicate Glass) or the like is formed as a transparent protective film 2 in order to protect the photodetectors and the reading circuits from external environment at the final stage of the process. Accordingly, structure in which irregularities are shaped onto the photodetectors finally is formed through the process in which the CMOS circuits are shaped.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光照射された原稿からの反射光を受けて電気
信号に変換する半導体装置のうち、原稿と寸法的に1:
1に対応させた受光部を持つ密着読み取りが可能な半導
体受光装置及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a semiconductor device that receives reflected light from a light-irradiated document and converts it into an electrical signal, which is 1:1 in size from the document.
The present invention relates to a semiconductor light-receiving device capable of close reading having a light-receiving portion corresponding to 1, and a method for manufacturing the same.

〔発明の概要〕[Summary of the invention]

本発明は、光電変換を行うために、一導電型の単結晶基
板上に形成された光電変換用半導体受光素子(以下、受
光素子と称す。)の受光部へ照射される入射光の透過率
が保護膜の厚さにより異なるために生しる各受光素子へ
の入射光強度差を減少させる構造にしたものである。
In order to perform photoelectric conversion, the present invention is directed to the transmittance of incident light irradiated to the light receiving part of a semiconductor light receiving element for photoelectric conversion (hereinafter referred to as a light receiving element) formed on a single-crystal substrate of one conductivity type. This structure reduces the difference in intensity of light incident on each light-receiving element, which occurs because the light intensity differs depending on the thickness of the protective film.

又、読み取り回路をCM OS (Complemen
tary−Metal−Oxide−3emicond
uctor)構造で形成するため、Wellを形成する
工程で同一基板上に受光部を形成することができる。
In addition, the reading circuit is CM OS (Complemen
Tary-Metal-Oxide-3emicond
Since the light receiving portion is formed in a well structure, the light receiving portion can be formed on the same substrate in the process of forming the well.

さらに、入射光強度を均一にする手段として用いる構造
もLOGO3(Local  0xidation  
0fSilicon)プロセスを使用したものであり、
CMOSプロセスを変更することなく作成できるもので
ある。
Furthermore, the structure used as a means to make the incident light intensity uniform is LOGO3 (Local Oxidation
0fSilicon) process,
It can be created without changing the CMOS process.

〔従来の技術〕[Conventional technology]

従来、第2図に示す様に受光素子と受光素子で得られた
電気信号を時系列変換、及び増幅する読み取り回路を同
一半導体基板上に作成する場合、受光素子及び読み取り
回路を外部環境から保護する必要上、最終保護膜(以下
保護膜と称す。)を形成していた。
Conventionally, as shown in Figure 2, when creating a photodetector and a reading circuit that time-series converts and amplifies the electrical signals obtained by the photodetector on the same semiconductor substrate, it is necessary to protect the photodetector and the reading circuit from the external environment. For this reason, a final protective film (hereinafter referred to as a protective film) was formed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

一般に、第3図に示すような構造の場合、入射光が大気
1から受光素子へ垂直入射する光の透過率は、次式で与
えられる。なお、2は保護膜、3は一導電型単結晶半導
体基板である。
Generally, in the case of a structure as shown in FIG. 3, the transmittance of incident light that is perpendicularly incident on the light receiving element from the atmosphere 1 is given by the following equation. Note that 2 is a protective film, and 3 is a single conductivity type single crystal semiconductor substrate.

ここで、α= λ n買 : 大気の屈折率 n : 保護膜の屈折率 n2 : 半導体基板の屈折率 d : 保護膜の厚み λ : 入射光波長 である。Here, α= λ n purchase: refractive index of the atmosphere n: Refractive index of protective film n2: Refractive index of semiconductor substrate d: Thickness of protective film λ: Incident light wavelength It is.

mを整数とすると、Tはα−2mπ。If m is an integer, T is α-2mπ.

α−(2m+1)πの時に極値となる。Tをndの関数
として図示すると、第4図(alのようになる。
It reaches an extreme value when α-(2m+1)π. When T is illustrated as a function of nd, it becomes as shown in FIG. 4 (al).

即ち、受光素子上の保護膜の厚さの違いにより、受光素
子に照射される光強度が異なることになり、各受光素子
で得られる電気信号の強度は一定とならない。これは第
4図falに示す特性上、各受光素子で保護膜の厚さが
異なった場合、照射光強度は斜線部分a、bの違いとな
ってあられれる結果である。
That is, due to differences in the thickness of the protective film on the light receiving element, the intensity of light irradiated to the light receiving element differs, and the intensity of the electrical signal obtained from each light receiving element is not constant. This is because, due to the characteristics shown in FIG. 4, if the thickness of the protective film is different for each light-receiving element, the intensity of the irradiated light will be different between the shaded areas a and b.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するために本発明は、受光素子上に凹
凸を形成することにより、第4図fblに示す特性で図
中の部分Cが受光素子上に照射される構造にしたもので
ある。即ち、第1図ta+に示す様に保護膜の厚い部分
d、と薄い部分d2が同一受光素子上に存在するために
、受光素子が得る透過光は、そのすべての積分値となる
ため、各受光素子間で膜厚の違いがあった場合でも、第
4図(b)の実線の斜線部分Cと破線の斜線部分dの様
な特性となり、従来のように保護膜の膜厚の差に影響を
強く受けない。
In order to solve the above problems, the present invention has a structure in which the portion C in the figure is irradiated onto the light receiving element with the characteristics shown in Fig. 4 fbl by forming unevenness on the light receiving element. . That is, as shown in FIG. 1 ta+, since the thick portion d and thin portion d2 of the protective film exist on the same light receiving element, the transmitted light obtained by the light receiving element is the integral value of all of them. Even if there is a difference in film thickness between the light-receiving elements, the characteristics will be as shown in the solid shaded area C and the broken line shaded area d in Figure 4(b), and the difference in the thickness of the protective film will not be affected as in the conventional case. Not strongly affected.

前記受光素子上に凹凸を形成するためにLOGO8を用
いるが、CMO5回路形成のために従来用いられている
ものである。更に受光素子も前記0M03回路で使用す
るWellを使用したものである。
LOGO8 is used to form unevenness on the light receiving element, which is conventionally used for forming a CMO5 circuit. Furthermore, the light receiving element also uses the Well used in the 0M03 circuit.

〔実施例〕〔Example〕

以下に本発明の実施例を図面に基づいて詳細に説明する
Embodiments of the present invention will be described in detail below based on the drawings.

第1図ta+は、本発明の半導体受光装置の断面図であ
る。第1図(blは、本発明の半導体受光装置の平面図
であり、一導電型単結晶半導体基板に受光素子部が図面
上、左右方向に直線上に配列形成され、信号処理用の読
み取り回路は受光素子とほぼ同じ寸法で同方向に配列形
成されている。
FIG. 1 ta+ is a sectional view of the semiconductor light receiving device of the present invention. FIG. 1 (bl is a plan view of the semiconductor light receiving device of the present invention, in which light receiving elements are arranged in a straight line in the left and right direction on a single conductivity type single crystal semiconductor substrate, and a reading circuit for signal processing is formed. are arranged in substantially the same dimensions and in the same direction as the light-receiving elements.

なお、4は光電変換用半導体受光素子、5は半導体、集
積回路、6は受光素子部、7は読み取り回路部である。
Note that 4 is a semiconductor light receiving element for photoelectric conversion, 5 is a semiconductor integrated circuit, 6 is a light receiving element section, and 7 is a reading circuit section.

製作の手順は、通常使用されるCMOSプロセスと全く
同じで、本発明を実施するために加えた工程はない。読
み取り回路部を一導電型単結晶半導体基板に熱酸化、写
真食刻5イオン注入、熱拡散等の通常用いられる半導体
製造技術により配列形成される。この際、Wellを形
成すると同時に受光素子を同時に形成することができる
。又、受光素子上にも、0M03回路の素子分離を行う
LOGO3を形成する。この工程により、受光素子部表
面も凹凸のある構造となる。工程の最終段階で、受光素
子部、び読み取り回路を外部環境から保護するために、
透明保護膜としてS’ 021 S iNまたはP S
 G (Phospho 5ilicade Glas
s)等が形成される。
The fabrication procedure is exactly the same as the commonly used CMOS process, and there are no additional steps to implement the present invention. The reading circuit section is arrayed and formed on a single conductivity type single crystal semiconductor substrate using commonly used semiconductor manufacturing techniques such as thermal oxidation, photoetching, ion implantation, and thermal diffusion. At this time, the light receiving element can be formed at the same time as the well is formed. Also, LOGO3 is formed on the light receiving element to separate the elements of the 0M03 circuit. Through this step, the surface of the light receiving element also has an uneven structure. At the final stage of the process, to protect the light receiving element and reading circuit from the external environment,
S' 021 SiN or P S as a transparent protective film
G (Phospho 5ilicade Glass
s) etc. are formed.

このように0M03回路を形成するプロセスにより、最
終的に受光素子上に凹凸が生しているような構造となる
The process of forming the 0M03 circuit as described above ultimately results in a structure in which unevenness is formed on the light receiving element.

第5図に受光素子部の等価回路と読み取り回路の−例を
示す。フォトトランジスタとキャパシタで単位受光素子
の等価回路とする。集積回路部のトランジスタGnは、
蓄積された電荷を放電するもので、増幅器Anは、各単
位受光素子に接続され受光素子からの信号を増幅してい
る。増幅された信号はシフトレジスタSRnの出力を受
けてON状態になったトランスミッションゲートTnを
通り出力される。前述したトランジスタGn、Capa
、Ci tan  Cn、増幅器An、Lランスミッシ
ョンゲートTnはすべてCMOSプロセスにより形成可
能である。また受光素子は、フォトトランジスタに限っ
たものでなく、フォトダイオードに置き換えても同様の
効果がある。なお、6は受光素子部であり、7は読み取
り回路部である。
FIG. 5 shows an example of an equivalent circuit of a light receiving element section and a reading circuit. A phototransistor and a capacitor form an equivalent circuit of a unit light-receiving element. The transistor Gn of the integrated circuit section is
The amplifier An is connected to each unit light-receiving element and amplifies the signal from the light-receiving element. The amplified signal is output through a transmission gate Tn which is turned ON upon receiving the output of the shift register SRn. The aforementioned transistors Gn and Capa
, Ci tan Cn, amplifier An, and L transmission gate Tn can all be formed by a CMOS process. Further, the light receiving element is not limited to a phototransistor, and the same effect can be obtained even if it is replaced with a photodiode. Note that 6 is a light receiving element section, and 7 is a reading circuit section.

以上の様な工程及び回路により、本発明の半導体受光装
置が作成される。受光素子上の保護膜の厚みムラによる
出力差を少なくする構造と工程を増すことなく形成可能
である。
Through the steps and circuits described above, the semiconductor light receiving device of the present invention is fabricated. It is possible to form a structure that reduces output differences due to uneven thickness of the protective film on the light-receiving element without increasing the number of steps.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上説明した様に、CMOSプロセスの一工
程を使用し、受光素子に加工を行い、保護膜の厚さムラ
により生じる出力のバラツキを少なくするという効果が
ある。この様に本発明を用いると、原稿1図面など読み
取り用の装置の均一性を向上させ、かつ安価な半導体受
光装置を提供するという効果がある。
As explained above, the present invention uses one step of the CMOS process to process the light receiving element, and has the effect of reducing variations in output caused by uneven thickness of the protective film. As described above, the present invention has the effect of improving the uniformity of a device for reading a drawing of a manuscript and providing an inexpensive semiconductor light-receiving device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図[a)は、本発明の半導体受光装置の断面図、第
1図(b)は、本発明の半導体受光装置の平面図、第2
図は、従来の半導体受光装置の断面図、第3図は、受光
素子へ垂直入射する透過光の説明図、第4図(al、 
(blは、透過率(T)−nd特性を示す図、第5図は
、本発明を用いた半導体受光装置の等価回路図である。 1・・・大気 2・・・保8i!膜 3・・・一導電型単結晶半導体基板 4・・・光電変換用半導体受光素子 5・・・半導体集積回路 6・・・受光素子部 7・・・読み取り回路部 以上 つ
FIG. 1 [a] is a sectional view of the semiconductor light receiving device of the present invention, FIG. 1(b) is a plan view of the semiconductor light receiving device of the present invention, and FIG.
The figure is a cross-sectional view of a conventional semiconductor light receiving device, FIG. 3 is an explanatory diagram of transmitted light vertically incident on the light receiving element, and FIG.
(bl is a diagram showing transmittance (T)-nd characteristics, and FIG. 5 is an equivalent circuit diagram of a semiconductor light receiving device using the present invention. 1... Atmosphere 2... Protective film 3 ... One conductivity type single crystal semiconductor substrate 4 ... Semiconductor light receiving element for photoelectric conversion 5 ... Semiconductor integrated circuit 6 ... Light receiving element section 7 ... Reading circuit section

Claims (2)

【特許請求の範囲】[Claims] (1)光電変換素子と前記光電変換素子の出力信号を順
次読み出す読み取り回路がそれぞれ複数個含まれる半導
体受光装置であって、前記読み取り回路は、一導電型単
結晶半導体基板の表面に形成されたMOS回路で成ると
ともに前記光電変換素子は、表面に凹凸を有し、かつ前
記光電変換素子と読み取り回路は一対一に対応し、それ
ぞれ直線上に略々同一寸法幅で配されていることを特徴
とする半導体受光装置。
(1) A semiconductor light receiving device including a plurality of photoelectric conversion elements and a plurality of reading circuits that sequentially read out output signals of the photoelectric conversion elements, the reading circuits being formed on the surface of a single-crystal semiconductor substrate of one conductivity type. The photoelectric conversion element is composed of a MOS circuit, and has an uneven surface, and the photoelectric conversion element and the reading circuit have a one-to-one correspondence, and are arranged on a straight line with substantially the same width. A semiconductor light receiving device.
(2)読み取り回路部を製作する工程で、同時に前記光
電変換素子上に凹凸を製作することを特徴とする半導体
受光装置の製造方法。
(2) A method for manufacturing a semiconductor light receiving device, characterized in that, in the step of manufacturing a reading circuit section, unevenness is simultaneously manufactured on the photoelectric conversion element.
JP62116288A 1987-05-13 1987-05-13 Semiconductor photodetector and manufacture thereof Pending JPS63281458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62116288A JPS63281458A (en) 1987-05-13 1987-05-13 Semiconductor photodetector and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62116288A JPS63281458A (en) 1987-05-13 1987-05-13 Semiconductor photodetector and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS63281458A true JPS63281458A (en) 1988-11-17

Family

ID=14683339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62116288A Pending JPS63281458A (en) 1987-05-13 1987-05-13 Semiconductor photodetector and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS63281458A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6433366B1 (en) 1999-07-27 2002-08-13 Sharp Kabushiki Kaisha Circuit-incorporating light receiving device and method of fabricating the same
JP2007227636A (en) * 2006-02-23 2007-09-06 Seiko Instruments Inc Semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6433366B1 (en) 1999-07-27 2002-08-13 Sharp Kabushiki Kaisha Circuit-incorporating light receiving device and method of fabricating the same
US6593165B2 (en) * 1999-07-27 2003-07-15 Sharp Kabushiki Kaisha Circuit-incorporating light receiving device and method of fabricating the same
JP2007227636A (en) * 2006-02-23 2007-09-06 Seiko Instruments Inc Semiconductor device

Similar Documents

Publication Publication Date Title
US5119156A (en) Photo-detecting semiconductor device with passivation suppressing multi-reflections
US7186968B2 (en) Polarization sensitive solid state image sensor including integrated photodetector and polarizing assembly and associated methods
JPS63281458A (en) Semiconductor photodetector and manufacture thereof
JPS62226659A (en) Semiconductor device
KR20220008620A (en) image sensing device
JP4185357B2 (en) Semiconductor photodetection device
JPS6145862B2 (en)
JP3289535B2 (en) Photoelectric conversion device
JPH01271706A (en) Optical filter and photoelectric sensor using same
JPS62176356A (en) Color image sensor
JPH04263469A (en) Solid-state image sensing device
JPH01303752A (en) Structure of photosensitive part of solid-state imaging device
JPH065729B2 (en) One-dimensional contact type image sensor
JPS6177375A (en) color sensor
JPH0482269A (en) Two-dimensional array photodetector
JPH0744664B2 (en) Optical sensor array
JP2926968B2 (en) Color image sensor and color image reading method
JPS58114684A (en) Solid-state image pickup element
JPH0338063A (en) Color solid image pick-up element and manufacture thereof
JPS60213056A (en) Color solid-state imaging device
JPH05102447A (en) Semiconductor sensor
JPH02264431A (en) Optoelectric transducer
JP2003051589A (en) Semiconductor device with built-in photodetector and method for manufacturing the same
JPH01137202A (en) Waveguide light photodetecting device
JPH0694520A (en) Pyroelectric type infrared sensor