JPS63279514A - Superconductor wire rod, its manufacture and superconductive coil - Google Patents
Superconductor wire rod, its manufacture and superconductive coilInfo
- Publication number
- JPS63279514A JPS63279514A JP62114315A JP11431587A JPS63279514A JP S63279514 A JPS63279514 A JP S63279514A JP 62114315 A JP62114315 A JP 62114315A JP 11431587 A JP11431587 A JP 11431587A JP S63279514 A JPS63279514 A JP S63279514A
- Authority
- JP
- Japan
- Prior art keywords
- superconductor
- powder
- oxide superconductor
- metal tube
- wire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002887 superconductor Substances 0.000 title claims abstract description 128
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 239000000843 powder Substances 0.000 claims abstract description 61
- 229910052751 metal Inorganic materials 0.000 claims abstract description 29
- 239000002184 metal Substances 0.000 claims abstract description 29
- 239000013078 crystal Substances 0.000 claims abstract description 20
- 238000011049 filling Methods 0.000 claims abstract description 10
- 230000004907 flux Effects 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 14
- 238000005096 rolling process Methods 0.000 claims description 11
- 229910052727 yttrium Inorganic materials 0.000 claims description 6
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 5
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 4
- 229910052765 Lutetium Inorganic materials 0.000 claims description 4
- 229910052775 Thulium Inorganic materials 0.000 claims description 4
- 229910052769 Ytterbium Inorganic materials 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 229910052693 Europium Inorganic materials 0.000 claims description 3
- 229910052689 Holmium Inorganic materials 0.000 claims 3
- 229910052691 Erbium Inorganic materials 0.000 claims 2
- 229910009203 Y-Ba-Cu-O Inorganic materials 0.000 claims 1
- 229910052760 oxygen Inorganic materials 0.000 description 19
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 18
- 239000001301 oxygen Substances 0.000 description 18
- 238000000137 annealing Methods 0.000 description 5
- 230000007547 defect Effects 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 229910052788 barium Inorganic materials 0.000 description 3
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Chemical compound [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- KOAWAWHSMVKCON-UHFFFAOYSA-N 6-[difluoro-(6-pyridin-4-yl-[1,2,4]triazolo[4,3-b]pyridazin-3-yl)methyl]quinoline Chemical compound C=1C=C2N=CC=CC2=CC=1C(F)(F)C(N1N=2)=NN=C1C=CC=2C1=CC=NC=C1 KOAWAWHSMVKCON-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000004323 axial length Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000010622 cold drawing Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 230000005493 condensed matter Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 150000003891 oxalate salts Chemical class 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000005491 wire drawing Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的1
(産業上の利用分野)
本発明は、ペロブスカイト型の酸化物超電導体粉末を用
いた超電導体線材、その製造方法および超電導コイルに
関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention 1 (Industrial Application Field) The present invention relates to a superconductor wire using perovskite-type oxide superconductor powder, a method for manufacturing the same, and a superconducting coil.
(従来の技術)
近年、Ba−La−Cu−0系の層状ペロブスカイト型
の酸化物が高い臨界温度を有する可能性のあることが発
表されて以来、各所で酸化物超電導体の研究が行われテ
ィる(Z、Phys、B Condensed Mat
ter 64゜189−193(1986))。その中
でもY−Ba−Cu−0系で代表される酸素欠陥を有す
る欠陥ペロブスカイト型(ABa2Cu3O7−5型)
(Aは、Y、 Yb、 Ha、 fly、 Eu。(Prior Art) In recent years, it has been announced that layered perovskite-type oxides based on Ba-La-Cu-0 may have a high critical temperature, and since then, research on oxide superconductors has been carried out in various places. Tiru (Z, Phys, B Condensed Mat
ter 64°189-193 (1986)). Among them, defective perovskite type (ABa2Cu3O7-5 type) with oxygen defects represented by Y-Ba-Cu-0 system.
(A is Y, Yb, Ha, fly, Eu.
Er、 丁+aおよびLuから選ばれた元素)の酸化物
超電導体は、臨界温度■。が90に以上と液体窒素以上
の高い温度を示すため非常に有望な材料として注目され
ている
(Phys、Rev、Lett、vol、 58 N
o、9,908−910)。The oxide superconductor of elements selected from Er, D+a and Lu) has a critical temperature of ■. It is attracting attention as a very promising material because it shows a high temperature of 90 or higher, which is higher than liquid nitrogen (Phys, Rev. Lett, vol. 58 N
o, 9, 908-910).
しかしながら、この超電導体は、結晶性の酸化物であっ
て、焼結体または粉末として得られるため、長尺物に加
工することが困難であり、しかもこの超電導体はその結
晶の0面に沿って超電S電流が流れるため、この超電導
体粉末を単に長尺化しただけでは、結晶の配列方向がラ
ンダムになり、所望の臨界電流密度が得られないという
問題があった。However, since this superconductor is a crystalline oxide and is obtained as a sintered body or powder, it is difficult to process it into a long object. Therefore, simply increasing the length of the superconductor powder causes the crystals to be arranged in random directions, making it impossible to obtain the desired critical current density.
さらに、この超電導体は、結晶の0面に直角方向の磁場
における臨界磁場の値が、これと平行する磁場における
臨界磁場の値よりも著しく小さいため、結晶の配列方向
がランダムなまま長尺化して超電導コイルを形成した場
合には、本来の大きい磁場を形成することができないと
いう問題があった。Furthermore, in this superconductor, the value of the critical magnetic field in the magnetic field perpendicular to the zero plane of the crystal is significantly smaller than the value of the critical magnetic field in the magnetic field parallel to this, so the length of the superconductor increases while the orientation of the crystal remains random. However, when a superconducting coil is formed using a superconducting coil, there is a problem in that it is not possible to generate the originally large magnetic field.
(発明が解決しようとする問題点)
このようにべ[1ブス力イト型超電導体は、焼結体粉末
であって、その結晶の0面に沿って超電導電流が流れる
ため、これを長尺化して所望の臨界電流密度を得ること
が困難であった。(Problems to be Solved by the Invention) In this way, the Be.1 Busuite type superconductor is a sintered powder, and since superconducting current flows along the zero plane of the crystal, it is possible to It was difficult to obtain the desired critical current density.
また、この超電導体は、結晶の0面に直角方向の磁場に
おける臨界磁場の値が、これと平行する磁場における臨
界磁場の値よりも著しく小さいため、結晶の配列方向が
ランダムなまま長尺化して超電導コイルを形成した場合
には、本来の大きい磁場を形成することができないとい
う問題があった。In addition, in this superconductor, the value of the critical magnetic field in the magnetic field perpendicular to the zero plane of the crystal is significantly smaller than the value of the critical magnetic field in the magnetic field parallel to this, so the length of the crystal grows while the orientation direction of the crystal is random. However, when a superconducting coil is formed using a superconducting coil, there is a problem in that it is not possible to generate the originally large magnetic field.
本発明は、このような従来の難点を解消すべくなされた
もので、ペロブスカイト型超電導体粉末を用いた電流密
度の大きい超電導体線材、その製造方法および超電導コ
イルを提供することを目的とする。The present invention was made to solve these conventional difficulties, and an object of the present invention is to provide a superconductor wire with a high current density using perovskite superconductor powder, a method for manufacturing the same, and a superconducting coil.
[発明の構成]
(問題点を解決するための手段)
すなわち本発明の超電導体線材は、偏平金属管内に1、
ペロブスカイト型の酸化物超電導体粉末を、結晶の0面
を前記金属管の長さ方向に配向させて充填してなること
を特徴としており、その製造方法は、直径対厚さの比が
3〜5のペロブスカイト型の酸化物超電導体粉末を、断
面円形の金属管内に充填し、この金属管を、幅対厚さの
比が少なくとも2/1となるよう圧延加工することを特
徴としており、また本発明の超電導コイルは、偏平金属
管内に、ペロブスカイト型の酸化物超電導体粉末を、結
晶の0面を前記金属管の偏平な面に平行するよう配向さ
せて充填してなる超電導体線材を、前記偏平面がこの超
電導体線材に通電して発生する磁束と平行するように巻
回してなることを特徴どしている。[Structure of the Invention] (Means for Solving the Problems) That is, the superconductor wire of the present invention has 1,
It is characterized by being filled with perovskite-type oxide superconductor powder with the 0-plane of the crystal oriented in the length direction of the metal tube, and the manufacturing method is such that the diameter-to-thickness ratio is 3 to 3. The perovskite-type oxide superconductor powder of No. 5 is filled into a metal tube having a circular cross section, and the metal tube is rolled so that the width to thickness ratio is at least 2/1, and The superconducting coil of the present invention includes a superconducting wire formed by filling a flat metal tube with perovskite-type oxide superconductor powder with the 0-plane of the crystal oriented parallel to the flat surface of the metal tube. The superconductor wire is characterized in that the flat plane is wound so as to be parallel to the magnetic flux generated by energizing the superconductor wire.
ここでいう希土類元素を含有しペロブスカイト型構造を
有する酸化物超電導体はHi電導状態を実現できればよ
く、^Ba2Cu3O7−δ系(δは酸素欠陥を表し通
常1以下、^は、Y、 Wb、 Ho、 Dy、 Eu
。The oxide superconductor containing a rare earth element and having a perovskite structure needs only to be able to realize a Hi conduction state, and is based on the ^Ba2Cu3O7-δ system (δ represents an oxygen defect and is usually 1 or less, and ^ is Y, Wb, Ho). , Dy, Eu
.
[r、 Tm、 Lu ; Baの一部はsr等で買換
可能)等の酸素欠陥を有する欠陥ペロブスカイト型、5
r−La−CU−0系等の層状ベロビスカイト型等の広
義にペロブスカイト構造を有する酸化物とする。また希
土類元素も広義の定義とし、SC,Yおよびランタン系
を含むものとする。代表的な系としてY−Ba−Cu−
0系のほかに、5c−Ba−Cu−0系、5r−La−
Cu−0系、さらにSrをBa、Caで買換した系等が
挙げられる。Defect perovskite type with oxygen defects such as [r, Tm, Lu; part of Ba can be replaced with sr etc.), 5
The oxide is an oxide having a perovskite structure in a broad sense, such as a layered berovskite type such as r-La-CU-0 type. Rare earth elements are also broadly defined to include SC, Y, and lanthanum elements. A typical system is Y-Ba-Cu-
In addition to 0 series, 5c-Ba-Cu-0 series, 5r-La-
Examples include Cu-0 type, and systems in which Sr is replaced with Ba and Ca.
本発明酸化物超電導体は、例えば以下に示す製造方法に
より得ることができる。Y、 Ba、 CuなとのべO
ブス力イト型酸化物超電導体の構成元素を十分U合する
。この場合、各々の原料はY2O3゜Bad、 CuO
等の酸化物を用いることができる。また、これらの酸化
物のほかに、焼成後酸化物に転化する炭酸塩、硝酸塩、
シュウ酸塩、水酸化物等の化合物を用いてもよい。ペロ
ブスカイト型酸化物超電導体を構成する元素は、基本的
に化学量論比の組成となるように混合するが、多少製造
条件等との関係等で°ずれていても構わない。例えばY
−Ba−Cu−0系ではV 1molに対しBa 2m
ol 、Cu 3m。The oxide superconductor of the present invention can be obtained, for example, by the manufacturing method shown below. Y, Ba, Cu and O
Constituent elements of the Busuyrite type oxide superconductor are thoroughly combined. In this case, each raw material is Y2O3゜Bad, CuO
Oxides such as the following can be used. In addition to these oxides, carbonates, nitrates, and
Compounds such as oxalates and hydroxides may also be used. The elements constituting the perovskite-type oxide superconductor are basically mixed so as to have a stoichiometric composition, but there may be a slight deviation depending on the manufacturing conditions and the like. For example, Y
-Ba-Cu-0 system: 2m of Ba per 1mol of V
ol, Cu 3m.
1が標準組成であるが、実用上はYO16〜1.4m0
1%、Ba 1.5〜3.Omo1%、cu 2.0〜
4.0101%程度のずれは問題ない。1 is the standard composition, but in practice YO16~1.4m0
1%, Ba 1.5-3. Omo1%, cu2.0~
A deviation of about 4.0101% is not a problem.
前)木の原料を混合した侵、仮焼・粉砕し所望の形状に
しだ復、焼成する。仮焼は必ずしも必要ぐはない。焼成
・仮焼は十分な酸素が供給できるような酸素含有雰囲気
で800〜940″C程度で行うことが好ましい。Previous) Wood raw materials are mixed, calcined, crushed, reconstituted into the desired shape, and fired. Calcining is not necessarily necessary. The firing/calcination is preferably carried out at about 800 to 940''C in an oxygen-containing atmosphere where sufficient oxygen can be supplied.
また、その面方向の直径対C軸方向の厚さの比は3〜5
であり、その直径(C而−[の長軸)は、1〜5μm程
度のものが適している。Also, the ratio of the diameter in the surface direction to the thickness in the C-axis direction is 3 to 5.
The diameter (long axis of C) is suitably about 1 to 5 μm.
本発明の超電導体線材に使用される金属管は、AOv
Pd5cu、ステンレスm等からなるものであり、特に
、 Ag、Pd、等の金属管は、高温下でも酸化されな
いので、偏平後、酸素または酸素含有雰囲気下で焼鈍す
ることにより、前述したペロブスカイト型超電導体粉末
の酸素空席に酸素を導入して、δの値を小さくすること
ができる。The metal tube used for the superconductor wire of the present invention is AOv
In particular, metal tubes such as Ag and Pd do not oxidize even at high temperatures, so by annealing them in oxygen or an oxygen-containing atmosphere after flattening, the above-mentioned perovskite-type superconducting tubes can be made. The value of δ can be reduced by introducing oxygen into the oxygen vacancies in the body powder.
また、本発明におけるペロブスカイト型の酸化物超電導
体粉末の配向は、100%行われている必要はなく、少
くとも10%程度の配向率があれば有効である。Further, the perovskite-type oxide superconductor powder in the present invention does not need to be 100% oriented, and it is effective if the orientation rate is at least about 10%.
なお、本発明における配向率は、得られた線材の被覆金
属を取り除き、内部の酸化物超電導体をX線回折を用い
て回折強度を測定し、0面からの回折強度の変化から求
めたものである。In addition, the orientation rate in the present invention is determined by removing the coating metal of the obtained wire, measuring the diffraction intensity of the internal oxide superconductor using X-ray diffraction, and from the change in the diffraction intensity from the zero plane. It is.
本発明の超電導体線材を製造するには、まずBaCO3
、Y20 、 、CuO等のペロブスカイト型の酸化物
超電導体の原料を、前述した一般式に対して化学量論比
の組成となるように混合して粉砕した後乾燥し、粉末の
ままで800・〜1000℃の温度で数時間〜3日程度
焼成し反応させて結晶化さUる。To manufacture the superconductor wire of the present invention, first, BaCO3
, Y20, , CuO, and other perovskite-type oxide superconductor raw materials are mixed in a stoichiometric composition with respect to the above-mentioned general formula, pulverized, and dried. It is baked at a temperature of ~1000°C for several hours to three days to react and crystallize.
次に、この焼成物をボールミル、ボールミル、サンドグ
ラインダ、その他公知の手段により粉砕する。このとき
、ペロブスカイト型の酸化物超電導体粉末は、へき開面
から分割されて微粉末となる。粉砕は、平均粒径(C向
上の最大の軸の長さ)が1〜5μm程度、直径対厚さの
比が3〜5となるまで行うようにする。なお、必要に応
じて、粉砕した粉末を上記の範囲となるように分綴し°
C用いてもよい。Next, this fired product is pulverized using a ball mill, a ball mill, a sand grinder, or other known means. At this time, the perovskite-type oxide superconductor powder is divided from the cleavage plane and becomes fine powder. The pulverization is carried out until the average particle diameter (maximum axial length for C improvement) is approximately 1 to 5 μm and the diameter to thickness ratio is 3 to 5. If necessary, divide the pulverized powder into portions within the above range.
C may be used.
しかる後、このペロブスカイト型の酸化物超電導体粉末
を、Nb、 Ag、 Pd、 Cu、ステンレス鋼等か
らなる外径20mm、内径15mm程度の金属管に入れ
、プレス、スェージングマシン等により加圧して、幅対
厚さの比が271以上、充填率60%以上となるまで圧
延する。Thereafter, this perovskite-type oxide superconductor powder was placed in a metal tube made of Nb, Ag, Pd, Cu, stainless steel, etc., with an outer diameter of about 20 mm and an inner diameter of about 15 mm, and was pressurized using a press, swaging machine, etc. Rolling is performed until the width-to-thickness ratio is 271 or more and the filling rate is 60% or more.
この圧延工程において、超電導体粉末は、70%以上の
配向率にまで配向される。In this rolling process, the superconductor powder is oriented to an orientation rate of 70% or more.
また、長尺の超電導体を製造する場合には、例えば次の
ような方法を採用することができる。Furthermore, in the case of manufacturing a long superconductor, the following method can be adopted, for example.
■ 超電導体粉末を充填した金属管を、スェージングマ
シン等によりつき固めた後、順に長径対短径比の大きい
楕円形に変形していくように、複数組のローラーダイス
または通常のダイスを通過させて短径で1710以下、
好ましくは1/20となるまで減面加工を施し、最後に
円筒状のローうにより平坦に成形する。■ After compacting the metal tube filled with superconductor powder using a swaging machine, etc., it is passed through multiple sets of roller dies or regular dies so that it is deformed into an elliptical shape with a large major axis to minor axis ratio. and the short axis is 1710 or less,
Preferably, the surface is reduced to 1/20, and finally it is formed flat using a cylindrical row.
■ 超電導体粉末を充填した金属管を、スェージングマ
シン等によりつき固めた後、冷間で線引きして外径で1
710以下、好ましくは1720以下となるまで減面加
工を施し、最後に円筒状のローラにより平坦に成形する
。■ After compacting the metal tube filled with superconductor powder using a swaging machine, etc., it is cold drawn and has an outer diameter of 1.
The surface is reduced to 710 or less, preferably 1720 or less, and finally it is flattened using a cylindrical roller.
なお、これらの方法においては、必要に応じて中間で焼
鈍を施すようにしてもよい。In addition, in these methods, annealing may be performed in the middle as necessary.
このようにして、最終線径で成形した後、空気または酸
素含有雰囲気内で800〜940℃で1日前後焼鈍を施
す。この空気または酸素含有雰囲気内での焼鈍により、
ペロブスカイト型超電導体の酸素空席に酸素が導入され
、δの値が減少して、超電導体線材の電流密度がさらに
向上する。After forming the wire to the final wire diameter in this manner, it is annealed at 800 to 940° C. for about one day in an air or oxygen-containing atmosphere. This annealing in air or oxygen-containing atmosphere results in
Oxygen is introduced into the oxygen vacancies in the perovskite superconductor, reducing the value of δ and further improving the current density of the superconductor wire.
上記した2つの方法のうち、■の方法では、比較的低い
充填率の内から超電導体粉末のC而が偏平な面方向へ配
向を開始するので、より高い配向率を得ることができる
。Of the two methods described above, in method (2), since the carbon of the superconductor powder starts to be oriented in the direction of the flat surface from a relatively low filling rate, a higher orientation rate can be obtained.
このようにして製造された偏平な超電導体線材は、線引
ぎの過程でペロブスカイト型の酸化物超電導体粉末の0
面が線材の長手方向にも配向されているので、線材全体
としての臨界電流容量が大きく向上している。The flat superconductor wire produced in this way is made of perovskite-type oxide superconductor powder during the wire drawing process.
Since the planes are also oriented in the longitudinal direction of the wire, the critical current capacity of the wire as a whole is greatly improved.
なお、本発明の超電導体線材は、そのままコイルに成形
して使用してもよいが、その多数本を安定化材からなる
管中に配列して、さらに、スエ−ジング加工、冷間線引
き加工等を施して結晶のC而が偏平な面に平行な偏平形
状に成形してマルチ線材として使用することも可能であ
る。The superconductor wire of the present invention may be used as it is by being formed into a coil, but a large number of them may be arranged in a tube made of a stabilizing material, and then subjected to swaging processing, cold drawing processing, etc. It is also possible to form the crystal into a flat shape in which the crystal C is parallel to the flat surface and use it as a multi-wire material.
この超電導体線材をコイルに成形するには、偏平面がこ
の超電導体線Hに通電して発生する磁束と平行するよう
にして任意のコイル形状に成形Jればよい。In order to form this superconductor wire into a coil, it is sufficient to form the superconductor wire into an arbitrary coil shape so that the oblique plane is parallel to the magnetic flux generated by energizing the superconductor wire H.
(作用)
本発明の超電導体線材では、金属管内に充填されたペロ
ブスカイト型の酸化物超電導体粉末の超電導電流の流れ
る結晶のC而が超電導体線材の偏平な而に沿って配向さ
れているので、超電導電流は、超電導体線材の面方向に
流れ易くなり、この方向に対する超電導体線材の臨界電
流密度が向上している。(Function) In the superconductor wire of the present invention, since the C of the crystal in which the superconducting current flows in the perovskite-type oxide superconductor powder filled in the metal tube is oriented along the flat surface of the superconductor wire. , the superconducting current flows more easily in the plane direction of the superconductor wire, and the critical current density of the superconductor wire in this direction is improved.
また本発明の超電導体線材の製造方法においては、金属
管の圧延加工の際、直径対厚さの比が3〜5のペロブス
カイト型超電導体粉末が圧延方向に0面が平行となるよ
う配向され、したがって甲にその直径対長さの比率と圧
延加工の圧延の程度を考慮するだけで、成形とE’i1
時に超電導体粉末の配向を行うことができる。Furthermore, in the method for manufacturing a superconductor wire of the present invention, during rolling of a metal tube, perovskite superconductor powder having a diameter-to-thickness ratio of 3 to 5 is oriented so that its zero plane is parallel to the rolling direction. , therefore, just by considering its diameter-to-length ratio and the degree of rolling of the instep, the forming and E'i1
Orientation of superconductor powder can sometimes be performed.
さらに本発明の超電導コイルは、それ自体が作り出す磁
界の方向に酸化物超電導体の結晶の0面が配向されてい
るので、臨界磁場が向上し、また超電導体線材の偏平面
に垂直に電磁力が作用するようになる。Furthermore, in the superconducting coil of the present invention, the zero plane of the oxide superconductor crystal is oriented in the direction of the magnetic field produced by itself, so the critical magnetic field is improved, and the electromagnetic force is perpendicular to the flat plane of the superconductor wire. comes into play.
(実施例) 次に本発明の実施例について説明する。(Example) Next, examples of the present invention will be described.
実施例
BaC03粉末2Illo1%、Y2O3粉末0.sm
o1%、CuO粉末3 mo1%を充分混合して大気中
900℃で48時間焼成して反応させた後、この粉末原
料を酸素中で800℃で24時間焼成して反応させ、酸
素空席に酸素を導入した後、ボールミルを用いて粉砕し
、分級して、平均粒径2μm1直径対厚さの比が3〜5
のペロブスカイト型超電導体粉末を得た。Example BaC03 powder 2Illo1%, Y2O3 powder 0. sm
1% of CuO powder and 3 mo1% of CuO powder were mixed thoroughly and fired at 900°C in the air for 48 hours to cause a reaction.This powder raw material was then fired in oxygen at 800°C for 24 hours to cause a reaction, thereby adding oxygen to the oxygen vacancies. After introduction, it was crushed using a ball mill and classified to obtain particles with an average particle size of 2 μm and a diameter-to-thickness ratio of 3 to 5.
Perovskite-type superconductor powder was obtained.
次に、酸化物超電導体粉末を、外径20vl、内径15
n1長さ100mmの一端を封止したAg管中に入れ、
他端を封止した後、断面が、順次長径対短径比の大きく
なるローラーダイスおよびダイスを用いて長径2’Wl
、短径1寵の楕円形となるまで冷間で減面加工を施し最
後に円筒上ロールを用いて厚さ0.5mm、幅3nの根
状に成形し、次いで酸素中で900℃で12時間焼鈍を
行った。Next, the oxide superconductor powder was mixed with an outer diameter of 20 ml and an inner diameter of 15 ml.
One end of n1 length 100 mm is placed in a sealed Ag tube,
After sealing the other end, the cross section is made with a long diameter of 2'Wl using a roller die and a die in which the ratio of the major axis to the minor axis increases sequentially.
The area was cold-reduced until it became an elliptical shape with a short axis of 1 inch, and finally it was formed into a root shape with a thickness of 0.5 mm and a width of 3 nm using a cylindrical roll, and then heated at 900°C in oxygen for 12 hours. Time annealing was performed.
このようにして得た超電導体線材を、長さ方向に切断し
て線材の偏平力、向の超電導体粉末の配向率を測定した
ところ幅方向に70%、長さ方向に75%の配向率であ
った。また向被覆内の超電導体粉末の充填率は85%で
あった。またその超電導特性を測定したところ、臨界温
度は87にであり、77にでその臨界電流密度を外部1
1場が0の条件下で測定したところ1000A /−で
あった。The superconductor wire obtained in this way was cut in the length direction and the flattening force of the wire and the orientation rate of the superconductor powder in the direction were measured, and the orientation rate was 70% in the width direction and 75% in the length direction. Met. Further, the filling rate of superconductor powder in the coating was 85%. Also, when we measured its superconducting properties, we found that its critical temperature was 87, and its critical current density was 77.
When measured under the condition of 0 field, it was 1000 A/-.
また、この超電導体線材を発生する磁束と平坦面が平行
するよう外径3Ou、長さ50 nのコイル状に成形し
酸素中で900℃で12時間焼鈍を行った後、その臨界
磁場を測定したところ5■であった。In addition, this superconductor wire was formed into a coil with an outer diameter of 3 Ou and a length of 50 nm so that the flat surface was parallel to the generated magnetic flux, and after annealing in oxygen at 900°C for 12 hours, the critical magnetic field was measured. It turned out to be 5■.
一方、実施例で用いた超電導体粉末を実施例における超
電導体線材の充填率と等しい気孔率となるように圧縮成
形して900℃で12時間熱処理した超電導体ブロック
の臨界温度は93にであり、77にでその臨界電流密度
を測定したところ200A / mシであった。さらに
、実施例で用いた超電導体粉末とAQむを用いて、実施
例と同断面積の断面円形の超電導体線材とした線材を用
いて実施例と同形の超電導体コイルを製作し、その臨界
磁場を測定したところ、0.5■であった。On the other hand, the critical temperature of the superconductor block obtained by compression molding the superconductor powder used in the example to have a porosity equal to the filling rate of the superconductor wire in the example and heat-treating it at 900°C for 12 hours was 93. , 77, its critical current density was measured to be 200 A/m. Furthermore, a superconductor coil having the same shape as that of the example was fabricated using the superconductor powder and AQ powder used in the example, and a superconductor wire with a circular cross section having the same cross-sectional area as that of the example, and its critical magnetic field When measured, it was 0.5■.
[発明の効果1
以上の実施例からも明らかなように、本発明の超電導体
線材は、金属管内に充填されたペロブスカイト型の酸化
物超電導体粉末の超電S電流の流れる結晶の0面が超電
導体線材の偏平な面に沿って配向されているので、超電
導電流は、超電導体線材の面方向に流れ易くなり、この
方向に対する高い臨界電流密度が得られる。[Effects of the Invention 1] As is clear from the above examples, the superconductor wire of the present invention has a structure in which the zero face of the crystal through which the superelectric S current flows in the perovskite-type oxide superconductor powder filled in the metal tube. Since it is oriented along the flat surface of the superconductor wire, the superconducting current tends to flow in the plane direction of the superconductor wire, and a high critical current density in this direction can be obtained.
また本発明の超電導体線材の製造方法においては、金属
管の圧延加工の際、ペロブスカイト型超電導体粉末が圧
延方向に0面が平行となるよう配向され、したがって単
にその直径対長さの比率と圧延加工の圧延の程度を考慮
するだけで、成形と同時に超電導体粉末の配向を行うこ
とができる。In addition, in the method for manufacturing a superconductor wire of the present invention, during rolling of a metal tube, the perovskite superconductor powder is oriented so that its zero plane is parallel to the rolling direction, and therefore the diameter to length ratio is simply By simply considering the degree of rolling in the rolling process, the superconductor powder can be oriented simultaneously with forming.
さらに本発明の超電導コイルは、それ自体が作り出す磁
界の方向に沿って酸化物超電導体の結晶の0面が配向さ
れているので、高い臨界磁場を得ることができる。Further, in the superconducting coil of the present invention, since the zero plane of the oxide superconductor crystal is oriented along the direction of the magnetic field produced by itself, a high critical magnetic field can be obtained.
Claims (1)
導体粉末を、結晶のC面を前記金属管の偏平な面に平行
するよう配向させて充填してなることを特徴とする超電
導体線材。(2)ペロブスカイト型の酸化物超電導体粉
末の直径対厚さの比が3〜5であることを特徴とする特
許請求の範囲第1項記載の超電導体線材。 (3)前記酸化物超電導体粉末は、希土類元素を含有す
るペロブスカイト型の酸化物超電導体であることを特徴
とする特許請求の範囲第1項または第2項記載の超電導
体線材。 (4)前記酸化物超電導体粉末は、ABa_2Cu_3
O_7_−_δ系の酸化物超電導体(Aは、Y、Yb、
Ho、Dy、Eu、Er、Tm、およびLuから選ばれ
た元素)であることを特徴とする特許請求の範囲第3項
記載の超電導体線材。 (5)前記酸化物超電導体粉末は、Y−Ba−Cu−O
系であることを特徴とする特許請求の範囲第4項記載の
超電導体線材。 (6)前記酸化物超電導体粉末の直径が、1〜5μmで
あることを特徴とする特許請求の範囲第1項ないし第5
項のいずれか1項記載の超電導体線材。 (7)酸化物超電導体粉末の配向率が、少なくとも70
%であることを特徴とする特許請求の範囲第1項ないし
第6項のいずれか1項記載の超電導体線材。 (8)酸化物超電導体粉末の充填率が、少なくとも60
%であることを特徴とする特許請求の範囲第1項ないし
第7項のいずれか1項記載の超電導体線材。 (9)偏平金属管の幅対厚さの比が、少なくとも2/1
であることを特徴とする特許請求の範囲第1項ないし第
8項のいずれか1項記載の超電導体線材。 (10)直径対厚さの比が3〜5のペロブスカイト型の
酸化物超電導体粉末を、断面円形の金属管内に充填し、
この金属管を、幅対厚さの比が少なくとも2/1となる
よう圧延加工することを特徴とする超電導体線材の製造
方法。 (11)断面円形の金属管の圧延加工が、減面加工とと
もに行われることを特徴とする特許請求の範囲第10項
記載の超電導体線材の製造方法。 (12)前記酸化物超電導体粉末は、希土類元素を含有
するペロブスカイト型の酸化物超電導体であることを特
徴とする特許請求の範囲第10項または第11項記載の
超電導体線材の製造方法。 (13)前記酸化物超電導体粉末は、ABa_2Cu_
3O_7_−_δ系の酸化物超電導体(Aは、Y、Yb
、Ho、Dy、Lu、Er、Tm、およびLuから選ば
れた元素を示す。)であることを特徴とする特許請求の
範囲第10項ないし第12項のいずれか1項記載の記載
の超電導体線材の製造方法。 (14)前記酸化物の超電導体粉末は、Y−Ba−Cu
−O系であることを特徴とする特許請求の範囲第10項
ないし第13項のいずれか1項記載の超電導体線材の製
造方法。 (15)前記酸化物超電導体粉末の直径が、1〜5μm
であることを特徴とする特許請求の範囲第10項ないし
第14項のいずれか1項記載の超電導体線材の製造方法
。 (16)偏平金属管内に、ペロブスカイト型の酸化物超
電導体粉末を、結晶のC面を前記金属管の偏平な面に平
行するよう配向させて充填してなる超電導体線材を、前
記偏平面がこの超電導体線材に通電して発生する磁束と
平行するように巻回してなることを特徴とする超電導コ
イル。 (17)ペロブスカイト型の酸化物超電導体粉末の直径
対厚さの比が、3〜5であることを特徴とする特許請求
の範囲第16項記載の超電導コイル。 (18)前記酸化物超電導体粉末は、希土類元素を含有
するペロブスカイト型の酸化物超電導体であることを特
徴とする特許請求の範囲第16項または第17項記載の
超電導コイル。 (19)前記酸化物超電導体粉末は、ABa_2Cu_
3O_7_−_δ系の酸化物超電導体(Aは、Y、Yb
、Ho、Dy、Eu、Er、Tm、およびLuから選ば
れた元素)であることを特徴とする特許請求の範囲第1
6項ないし第18項のいずれか1項記載の超電導コイル
。 (20)前記酸化物超電導体粉末は、Y−Ba−Cu−
O系であることを特徴とする特許請求の範囲16項ない
し第19項のいずれか1項記載の超電導コイル。 (21)前記酸化物超電導体粉末の直径が、1〜5μm
であることを特徴とする特許請求の範囲第16項ないし
第20項のいずれか1項記載の超電導コイル。 (22)酸化物超電導体粉末の配向率が、少なくとも7
0%であることを特徴とする特許請求の範囲第16項な
いし第21項のいずれか1項記載の超電導コイル。 (23)酸化物超電導体粉末の充填率が、少なくとも6
0%であることを特徴とする特許請求の範囲第16項な
いし第22項のいずれか1項記載の超電導コイル。 (24)偏平金属管の幅対厚さの比が、少なくとも2/
1であることを特徴とする特許請求の範囲第16項ない
し第23項のいずれか1項記載の超電導コイル。[Claims] (1) A flat metal tube is filled with perovskite-type oxide superconductor powder with the C-plane of the crystal oriented parallel to the flat surface of the metal tube. superconductor wire material. (2) The superconductor wire according to claim 1, wherein the perovskite-type oxide superconductor powder has a diameter-to-thickness ratio of 3 to 5. (3) The superconductor wire according to claim 1 or 2, wherein the oxide superconductor powder is a perovskite-type oxide superconductor containing a rare earth element. (4) The oxide superconductor powder is ABa_2Cu_3
O_7_-_δ-based oxide superconductor (A is Y, Yb,
4. The superconductor wire according to claim 3, wherein the superconductor wire is an element selected from Ho, Dy, Eu, Er, Tm, and Lu. (5) The oxide superconductor powder is Y-Ba-Cu-O
5. The superconductor wire according to claim 4, which is a superconductor wire. (6) Claims 1 to 5, characterized in that the diameter of the oxide superconductor powder is 1 to 5 μm.
The superconductor wire according to any one of the above items. (7) The orientation rate of the oxide superconductor powder is at least 70
%, the superconductor wire according to any one of claims 1 to 6. (8) The filling rate of the oxide superconductor powder is at least 60
%, the superconductor wire according to any one of claims 1 to 7. (9) The width-to-thickness ratio of the flat metal tube is at least 2/1.
A superconductor wire according to any one of claims 1 to 8, characterized in that: (10) Filling a metal tube with a circular cross section with perovskite-type oxide superconductor powder having a diameter-to-thickness ratio of 3 to 5,
A method for manufacturing a superconductor wire, which comprises rolling the metal tube so that the width to thickness ratio is at least 2/1. (11) The method for manufacturing a superconductor wire according to claim 10, wherein rolling of the metal tube having a circular cross section is performed together with area reduction processing. (12) The method for producing a superconductor wire according to claim 10 or 11, wherein the oxide superconductor powder is a perovskite-type oxide superconductor containing a rare earth element. (13) The oxide superconductor powder is ABa_2Cu_
3O_7_-_δ-based oxide superconductor (A is Y, Yb
, Ho, Dy, Lu, Er, Tm, and Lu. ) The method for manufacturing a superconductor wire according to any one of claims 10 to 12. (14) The oxide superconductor powder is Y-Ba-Cu
The method for producing a superconductor wire according to any one of claims 10 to 13, characterized in that the superconductor wire is -O-based. (15) The diameter of the oxide superconductor powder is 1 to 5 μm
A method for manufacturing a superconductor wire according to any one of claims 10 to 14. (16) A superconductor wire obtained by filling a flat metal tube with perovskite-type oxide superconductor powder with the C-plane of the crystal oriented parallel to the flat surface of the metal tube. A superconducting coil characterized in that the superconducting wire is wound in parallel with the magnetic flux generated by energizing the superconducting wire. (17) The superconducting coil according to claim 16, wherein the perovskite-type oxide superconductor powder has a diameter-to-thickness ratio of 3 to 5. (18) The superconducting coil according to claim 16 or 17, wherein the oxide superconductor powder is a perovskite-type oxide superconductor containing a rare earth element. (19) The oxide superconductor powder is ABa_2Cu_
3O_7_-_δ-based oxide superconductor (A is Y, Yb
, Ho, Dy, Eu, Er, Tm, and Lu)
The superconducting coil according to any one of Items 6 to 18. (20) The oxide superconductor powder is Y-Ba-Cu-
The superconducting coil according to any one of claims 16 to 19, characterized in that it is O-based. (21) The diameter of the oxide superconductor powder is 1 to 5 μm
A superconducting coil according to any one of claims 16 to 20, characterized in that: (22) The orientation rate of the oxide superconductor powder is at least 7
22. The superconducting coil according to any one of claims 16 to 21, wherein the superconducting coil is 0%. (23) The filling rate of the oxide superconductor powder is at least 6
The superconducting coil according to any one of claims 16 to 22, wherein the superconducting coil is 0%. (24) The width-to-thickness ratio of the flat metal tube is at least 2/
1. The superconducting coil according to any one of claims 16 to 23, characterized in that:
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62114315A JPS63279514A (en) | 1987-05-11 | 1987-05-11 | Superconductor wire rod, its manufacture and superconductive coil |
DE3855717T DE3855717T3 (en) | 1987-03-13 | 1988-03-09 | Superconducting wire and process for its production |
EP92201690A EP0505015B1 (en) | 1987-03-13 | 1988-03-09 | Superconducting wire and method of manufacturing the same |
DE3855911T DE3855911T2 (en) | 1987-03-13 | 1988-03-09 | Superconducting wire and process for its manufacture |
DE3855912T DE3855912T2 (en) | 1987-03-13 | 1988-03-09 | Superconducting wire and process for its manufacture |
EP92201691A EP0503746B1 (en) | 1987-03-13 | 1988-03-09 | Superconducting wire and method of manufacturing the same |
EP88302050.5A EP0282286B2 (en) | 1987-03-13 | 1988-03-09 | Superconducting wire and method of manufacturing the same |
CN88101210A CN1035139C (en) | 1987-03-13 | 1988-03-12 | Oxide superconductor wire, manufacturing method thereof, and superconducting coil manufactured therewith |
US08/463,738 US6170147B1 (en) | 1987-03-13 | 1995-06-05 | Superconducting wire and method of manufacturing the same |
US08/463,777 US5935911A (en) | 1987-03-13 | 1995-06-05 | Superconducting wire and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62114315A JPS63279514A (en) | 1987-05-11 | 1987-05-11 | Superconductor wire rod, its manufacture and superconductive coil |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63279514A true JPS63279514A (en) | 1988-11-16 |
Family
ID=14634779
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62114315A Pending JPS63279514A (en) | 1987-03-13 | 1987-05-11 | Superconductor wire rod, its manufacture and superconductive coil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63279514A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01105409A (en) * | 1987-06-26 | 1989-04-21 | Hitachi Ltd | Oxide superconductive wire and manufacture thereof |
JPH01157504A (en) * | 1987-06-03 | 1989-06-20 | Mitsubishi Electric Corp | Superconducting coil |
JPH01246801A (en) * | 1988-03-19 | 1989-10-02 | Internatl Business Mach Corp <Ibm> | Superconducting magnet |
JPH01251515A (en) * | 1987-09-28 | 1989-10-06 | Hitachi Ltd | Oxide-based high-temperature superconducting wire and its manufacturing method |
JPH02260330A (en) * | 1989-03-31 | 1990-10-23 | Mitsubishi Metal Corp | Manufacturing method of Bi-based oxide superconducting wire with excellent critical current density |
JPH056716A (en) * | 1987-09-28 | 1993-01-14 | Hitachi Ltd | Oxide-based high temperature superconductor |
-
1987
- 1987-05-11 JP JP62114315A patent/JPS63279514A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01157504A (en) * | 1987-06-03 | 1989-06-20 | Mitsubishi Electric Corp | Superconducting coil |
JPH01105409A (en) * | 1987-06-26 | 1989-04-21 | Hitachi Ltd | Oxide superconductive wire and manufacture thereof |
JPH01251515A (en) * | 1987-09-28 | 1989-10-06 | Hitachi Ltd | Oxide-based high-temperature superconducting wire and its manufacturing method |
JPH056716A (en) * | 1987-09-28 | 1993-01-14 | Hitachi Ltd | Oxide-based high temperature superconductor |
JPH01246801A (en) * | 1988-03-19 | 1989-10-02 | Internatl Business Mach Corp <Ibm> | Superconducting magnet |
JPH02260330A (en) * | 1989-03-31 | 1990-10-23 | Mitsubishi Metal Corp | Manufacturing method of Bi-based oxide superconducting wire with excellent critical current density |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR970007765B1 (en) | Superconducting wire and method of manufacturing the same | |
JPS63279514A (en) | Superconductor wire rod, its manufacture and superconductive coil | |
JP3034255B2 (en) | Superconductor, superconductor wire, and method of manufacturing superconducting wire | |
JP2656253B2 (en) | Superconductor wire and manufacturing method thereof | |
JPS63279512A (en) | Superconductor wire rod and its manufacture | |
JP2644245B2 (en) | Oxide superconducting wire | |
JP2523632B2 (en) | Superconducting coil and manufacturing method thereof | |
JP2592872B2 (en) | Manufacturing method of oxide superconducting wire | |
JPS63285812A (en) | Manufacture of oxide superconductive wire material | |
JP2653462B2 (en) | Superconductor | |
JP2563411B2 (en) | Manufacturing method of oxide superconducting wire | |
JP2554659B2 (en) | Composite oxide superconductor wire connection | |
JP2597578B2 (en) | Superconductor manufacturing method | |
JP2590157B2 (en) | Manufacturing method of superconductor wire | |
JP2567891B2 (en) | Method for producing oxide superconducting molded body | |
JP2597579B2 (en) | Superconductor manufacturing method | |
JPH01128317A (en) | Manufacture of superconductive wire material | |
JPH01157455A (en) | Production of oxide superconducting sintered body | |
JPH05166426A (en) | Manufacture for ceramics superconductor | |
JPH04317415A (en) | Production of bi-based oxide superconductor | |
JPH0589730A (en) | Manufacture of multilayer ceramic superconductive conductor | |
JPH01308602A (en) | Manufacture of oxide super conductor | |
JPH01163915A (en) | Manufacture of oxide superconductive wire | |
JPH01163907A (en) | Oxide superconductive wire | |
JPH05182540A (en) | Manufacture of ceramics superconductive conductor |