JPS63278599A - Sewage purifying device - Google Patents
Sewage purifying deviceInfo
- Publication number
- JPS63278599A JPS63278599A JP61280474A JP28047486A JPS63278599A JP S63278599 A JPS63278599 A JP S63278599A JP 61280474 A JP61280474 A JP 61280474A JP 28047486 A JP28047486 A JP 28047486A JP S63278599 A JPS63278599 A JP S63278599A
- Authority
- JP
- Japan
- Prior art keywords
- chamber
- water
- circulating
- contact aeration
- anaerobic filtration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Biological Treatment Of Waste Water (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、水洗トイレ汚水等の有機物濃度か高く、かつ
窒素を含む汚水の処理方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for treating sewage such as flush toilet sewage which has a high organic matter concentration and contains nitrogen.
従来、下水、し尿等の有機性排水を処理する方法として
は活性汚泥法が主に用いられて来たか、この活性汚泥法
は汚泥濃度の調節、空気量、返送汚泥量の調整等の高度
な維持管理技術を要する。Conventionally, the activated sludge method has been mainly used as a method for treating organic wastewater such as sewage and human waste, but this activated sludge method requires advanced techniques such as adjusting the sludge concentration, air volume, and return sludge volume. Requires maintenance and management skills.
最近になって、微生物を固定して有機性排水を処理する
生物膜法か普及して来た。生物膜法の中でも接触ばっ気
性は、維持管理の容易さから浄化槽レベルでは主流を占
める処理方法である。本法の特長は、汚泥量か極端に永
いために活性汚泥法では生息できない比増殖速度の小さ
い生物(代表種として亜硝酸菌、硝酸菌等の硝化菌)で
も増゛殖か可能である。したかって、し尿のように比較
的窒素分を多く含有する排水を本法で処理した場合、処
゛理水には多址の亜硝酸性窒素(Now N) 、硝
酸性窒素(NOi N)が残留するようになる。特に
亜硝酸性窒素は1■/l に対し化学的酸素要求量(C
OD)として、1.14■/を検出される他、生物化学
的酸素要求ffl (BOD)測定に際しても7ラン瓶
中での硝化反応により、BOD値に異状を生じることも
よく知られた事実である。Recently, the biofilm method for treating organic wastewater by immobilizing microorganisms has become popular. Among the biofilm methods, catalytic aeration is the mainstream treatment method at the septic tank level because of its ease of maintenance and management. A feature of this method is that it is possible to grow even organisms with low specific growth rates (typical species include nitrifying bacteria such as nitrite bacteria and nitrate bacteria) that cannot survive in the activated sludge method due to the extremely long sludge volume. Therefore, when wastewater containing relatively high nitrogen content, such as human waste, is treated using this method, the treated water contains a large amount of nitrite nitrogen (Now N) and nitrate nitrogen (NOi N). will remain. In particular, nitrite nitrogen has a chemical oxygen demand (C
In addition to the detected OD) of 1.14 ■/, it is also a well-known fact that when measuring biochemical oxygen demand ffl (BOD), the nitrification reaction in the 7-run bottle causes abnormalities in the BOD value. It is.
以上のような点と、さらに環境汚染防止の点から、近年
とくに排水中の窒素の除去が求められるようになった。In view of the above points and the prevention of environmental pollution, in recent years there has been a particular demand for the removal of nitrogen from wastewater.
窒素除去技術のうち、アンモニアストリッピング法はア
ルカリ剤の注入を行うため浄化槽レベルでの採用は困難
である。これに対し生物学的脱窒常法は、処理工程は増
加するものの完壁な脱窒素を望まない限り設備費、維持
費とも有利な方式である。特に原水中の有機物を水素供
与体として利用するLuzack −EtLinger
プロセス(1962)は他法に比べて優れた方式である
。Among nitrogen removal technologies, the ammonia stripping method involves injection of an alkaline agent, which makes it difficult to employ at the septic tank level. On the other hand, although the conventional biological denitrification method requires more processing steps, it is advantageous in terms of equipment costs and maintenance costs unless complete denitrification is desired. In particular, Luzack-EtLinger uses organic matter in raw water as a hydrogen donor.
Process (1962) is a superior method compared to other methods.
しかしながら本性は基本的には浮遊汚泥法であるから、
接触ばっ気方式にそのまま持ち込むことは不可能である
。特に硝化液の返送の際に持ち込む接触はっ気室内の溶
存酸素(Do)により原水中の有機物か消費され、脱窒
素に要する水素供与体としての有機物が不足し、脱窒素
率が低下する問題かある。However, since it is basically a floating sludge method,
It is impossible to directly introduce it into a contact aeration system. In particular, the organic matter in the raw water is consumed by the dissolved oxygen (Do) brought into the contact aeration chamber when returning the nitrified solution, resulting in a lack of organic matter as the hydrogen donor required for denitrification, resulting in a decrease in the denitrification rate. There is.
本発明は、接触ばっ気室内の硝化液を嫌気沢過室に循環
する廠に、硝化液中に存在する溶存酸素を消費させるた
めの循環室を設け、よって原水中の有機物を有効に水素
供与体として利用でさるような脱窒素機構を付加した汚
水浄化装置を提供するものである。The present invention provides a circulation chamber for consuming dissolved oxygen present in the nitrification solution in the factory that circulates the nitrification solution in the catalytic aeration chamber to the anaerobic filtration chamber, thereby effectively providing hydrogen to the organic matter in the raw water. The purpose of the present invention is to provide a sewage purification device equipped with a denitrification mechanism that can be used as a body.
前記の目的を達成するための本発明の構成を実施例に対
応する第1図〜第4図を用いて説明すると、本発明は接
触ばっ気室内のはっ気液を嫌気性1過室に返送する際、
循環室中に汚泥の堆積しない程度の水流を発生させるた
めのバッフルを配設し、このバックルにより区画された
下向流室と上向流室とをばっ気液が通過することにより
、Doを消費するようにしたものである。The structure of the present invention for achieving the above object will be explained using FIGS. 1 to 4 corresponding to the embodiment. When returning the item,
A baffle is installed in the circulation chamber to generate a water flow that does not cause sludge to accumulate, and the aeration liquid passes through the downward flow chamber and upward flow chamber divided by the buckle, thereby reducing Do. It is meant to be consumed.
本発明の実施例を第1図乃至第4図に基づき以下説明す
る。Embodiments of the present invention will be described below with reference to FIGS. 1 to 4.
2は一方にb水の流入管lを設けるとともに、他方に嫌
気性濾過室3への移流口15を上方部に設は移流口15
前11o4こ移流バッフル14を形成させた沈澱分離で
ある。4は、嫌気性濾過室3内の濾過汚水を接触ばっ気
室5へ流入させるための移流管である。6は接触はっ気
室5底部に設けられた散気筒であり、11は接触ばっ気
室5内の汚水を返送するための上方に流出口を有する循
環装置である。7は接触ばっ気室5底部で連通された消
毒室9を有する沈澱室である。23は接触ばっ気室5に
設けた循環装置11に連通され且つ沈澱分離室2の移流
口15近傍の移流バッフルと仕切板13との間に流出口
を設けた循環室であり、循環室23は該室23内には液
面上より底部近傍に至るバッフル12により下向流室1
6及び上向流室17に区画され相互底部で連通されてい
る。2 is provided with an inflow pipe 1 for B water on one side, and an advection port 15 to the anaerobic filtration chamber 3 is provided in the upper part on the other side.
The former 11o4 is a precipitation separation in which an advection baffle 14 is formed. 4 is an advection pipe for causing the filtered wastewater in the anaerobic filtration chamber 3 to flow into the contact aeration chamber 5. Reference numeral 6 denotes an aeration pipe provided at the bottom of the contact aeration chamber 5, and 11 denotes a circulation device having an outlet above for returning the waste water in the contact aeration chamber 5. 7 is a precipitation chamber having a disinfection chamber 9 communicated with the contact aeration chamber 5 at the bottom. Reference numeral 23 denotes a circulation chamber that is connected to the circulation device 11 provided in the contact aeration chamber 5 and has an outlet between the advection baffle near the advection port 15 of the sedimentation separation chamber 2 and the partition plate 13; In the chamber 23, a downward flow chamber 1 is formed by a baffle 12 extending from above the liquid level to near the bottom.
6 and an upward flow chamber 17, which are communicated with each other at the bottom.
次に汚水の流れについて説明すると、流入管lより流入
した汚水は、沈澱分離室2において夾雑物を除去された
後移流バッフル14を潜り、移流口15を経て嫌気性濾
過室3に導かれる。嫌気性濾過室3においては、内部に
充填された1材内に捕捉保持された嫌気性細菌により、
嫌気的消化作用を受ける他、後置の接触ばっ気室5内で
生成された亜硝酸性窒素(NOi N)及び硝酸性窒
素(NOi N)を嫌気性濾過室3に循環させること
により、汚水中の有a物を水素供与体とする脱窒素反応
ニヨリ、NOi N 、 NOi Nヲ窒素カス(
Nz)として放出する。これらを反応式で示すと以下の
とおりである。Next, to explain the flow of wastewater, the wastewater flowing in from the inflow pipe 1 has impurities removed in the sedimentation separation chamber 2, passes through the advection baffle 14, and is guided to the anaerobic filtration chamber 3 through the advection port 15. In the anaerobic filtration chamber 3, due to the anaerobic bacteria captured and held in the single material filled inside,
In addition to being subjected to anaerobic digestion, nitrite nitrogen (NOi N) and nitrate nitrogen (NOi N) generated in the downstream contact aeration chamber 5 are circulated to the anaerobic filtration chamber 3. Denitrification reaction using arousal substances in the nitrogen as hydrogen donors, NOiN, NOiN, nitrogen scum (
Nz). The reaction formula for these is as follows.
2 NOi + 3 (Hz )→N2↑+2 Hz
O+ 20H−2NOi + 5 (H2、)→N
2↑+4HzO+20H−これらの反応により、理論的
にはNOj N IKyに対し1.71縁、NOi
N IKgに対しては2.86初のBODがそれ
ぞれ消費されることによりシステム全体としての処理性
能が向上することになる。さらに接触はっ気室5内で消
費したアルカリ度の半分か回収でさるため処理水の水素
イオン濃度(pH)低下を防止することかできる。2 NOi + 3 (Hz) → N2↑+2 Hz
O+ 20H-2NOi + 5 (H2,)→N
2↑+4HzO+20H-Through these reactions, theoretically 1.71 edge for NOj N IKy, NOi
For NIKg, 2.86 first BODs are consumed, thereby improving the processing performance of the system as a whole. Furthermore, since half of the alkalinity consumed in the contact aeration chamber 5 is recovered, a decrease in the hydrogen ion concentration (pH) of the treated water can be prevented.
移流管4を経て接触ばっ気室5に流入した汚水は、散気
筒6より吐出される空気と内部に設けられた接触材の表
面に付着した好気的生物膜の作用によりBODか除去さ
れる。また、汚水中の窒素分くそのほとんどかアンモニ
ア性窒素NH”4 N)は以下の反応により、生物学
的に酸化される。BOD is removed from the wastewater that has flowed into the contact aeration chamber 5 through the advection pipe 4 by the action of the air discharged from the aeration pipe 6 and the aerobic biofilm attached to the surface of the contact material provided inside. . In addition, most of the nitrogen in wastewater, ammonia nitrogen (NH"4 N), is biologically oxidized by the following reaction.
NH2+ 1.5 Ch °立技11山NOi+2H”
N Oi + 0.502立上三1と二NOiこれらの
反応では、NH2N thに対して酸素4.6縁、ア
ルカIJ Ji 7.14〜か消費される。NH2+ 1.5 Ch °Tategi 11 mountain NOi+2H”
NOi + 0.502 rising 31 and 2 NOi In these reactions, 4.6 rim of oxygen and 7.14~ of alkali IJ Ji are consumed for NH2N th.
次にこれらのNOi 、 NOxを含む硝化液を前述し
た嫌気性濾過室3に循環する方法についてであるか、第
3図にはエアリフト効果を利用した循環装置llを示し
たか、その他のモーターポンプを用いても充分である。Next, we will discuss how to circulate the nitrifying solution containing NOi and NOx to the anaerobic filtration chamber 3 mentioned above. It is sufficient to use it.
この硝化液中には接触はっ気室5で供給された酸素か、
溶存酸素(DO)という形で持ち込まれるのは避けられ
ない。一般に脱窒反応に要する有機物をメタノールで表
わすと次式のようである。This nitrifying solution contains oxygen supplied in the contact aeration chamber 5,
It is inevitable that it will be introduced in the form of dissolved oxygen (DO). In general, when the organic substance required for denitrification reaction is expressed in terms of methanol, it is as shown in the following formula.
メll/ −ル要求址= 2.47 X NOs +
1.53 XN0z+0.87XDO
従って、DOか多いと汚水中の有機物かDo消費という
形で使用され、No; N、NOi Nの還元に必
要な有機物が不足することになる。良好な脱窒素率を得
るためのBOD/N比は4以上とされており、凍原等の
B OD/N比の低い(2,7位)汚水では、Do消費
か大きな問題である。本発明では第3図に示すように、
バッフル12により硝化液循環室を2室に区画しており
、下向流室16と上向流室17を通過する際、微生物の
呼吸によりDOを消費するようにしである。下向流室1
6と上向流室17の比は、第3図に示すごとく、下向流
室16側を狭く、上向流室17側を広くすると汚泥の不
必要な堆積か防げる。また第4図に示すようにバッフル
12の下端を上向流室17側にホッパーを形成させるよ
うに傾斜させると、ホッパ一部に形成されるスラッジブ
ランケットにより効果が増大する。このようにしてDO
を消費された硝化液は沈澱分離室2の移流バッフル14
の上方近辺で沈澱分離水と混合され、嫌気性濾過室3に
導かれる。Mell/-requirement = 2.47 x NOs +
1.53 The BOD/N ratio to obtain a good denitrification rate is said to be 4 or more, and Do consumption is a major problem in wastewater with a low BOD/N ratio (2nd or 7th) such as from frozen fields. In the present invention, as shown in FIG.
The nitrified solution circulation chamber is divided into two chambers by a baffle 12, and when passing through the downward flow chamber 16 and the upward flow chamber 17, DO is consumed by microbial respiration. Downward flow chamber 1
6 and the upward flow chamber 17, as shown in FIG. 3, by making the downward flow chamber 16 narrower and the upward flow chamber 17 wider, unnecessary accumulation of sludge can be prevented. Further, as shown in FIG. 4, if the lower end of the baffle 12 is inclined so as to form a hopper on the upward flow chamber 17 side, the effect will be increased due to the sludge blanket formed in a part of the hopper. In this way DO
The consumed nitrification liquid is transferred to the advection baffle 14 of the precipitation separation chamber 2.
It is mixed with precipitated and separated water near the top of the anaerobic filtration chamber 3.
以上のプロセスにより生物処理された汚水は、沈澱室7
において剥離汚泥を沈°降分離させた後、消毒剤8と接
触し、消毒室9にて安定化させた後流出管lOより放流
される。The wastewater that has been biologically treated through the above process is sent to the sedimentation chamber 7.
After the peeled sludge is sedimented and separated in the sludge, it is brought into contact with a disinfectant 8, stabilized in a disinfection chamber 9, and then discharged from an outflow pipe IO.
〔発明の効果〕
本発明は、沈澱分離室及び/又は嫌気性1過室と接触は
っ気室、沈@呈、消毒室とをこの順に配置し、接触ばっ
気室と嫌気性濾過室間に循環室を設けるとともに、該室
の終端部において沈澱分離室からの流出水又は原水に循
環室からの循環水を混合させた構成としたので下記の効
果を奏するものである。[Effects of the Invention] The present invention arranges a precipitation separation chamber and/or an anaerobic filtration chamber, a contact aeration chamber, a sedimentation chamber, and a disinfection chamber in this order, and creates a gap between the contact aeration chamber and the anaerobic filtration chamber. A circulation chamber is provided in the chamber, and the circulating water from the circulation chamber is mixed with the outflow water or raw water from the precipitation separation chamber at the end of the chamber, so that the following effects can be achieved.
1、)嫌気性1過室における脱窒素反応時のDO油消費
要する有機物量の減少が防止でき脱窒素率が向上すると
ともに脱窒素反応に使用される有機物量か増加し処理水
質か向上する。1.) Decrease in the amount of organic matter required for DO oil consumption during the denitrification reaction in the anaerobic 1-pass chamber is prevented, the denitrification rate is improved, and the amount of organic matter used for the denitrification reaction is increased, improving the quality of treated water.
2、)脱窒素反応の向上により、アルカリ度か回復し処
理水のpH低下を防止できる。2.) By improving the denitrification reaction, the alkalinity can be recovered and a decrease in the pH of the treated water can be prevented.
第1図は、本発明の一実施例を示す汚水の浄化装置の平
面図、第2図は第1図のA−A断面図、第3図は第1図
のB−B断面拡大図、第4図は他の実施例のB−B断面
拡大図、第5図は従来の生物学的脱窒素性のフローシー
トの一例である。
符号の説明FIG. 1 is a plan view of a sewage purification device showing an embodiment of the present invention, FIG. 2 is a sectional view taken along line A-A in FIG. 1, and FIG. 3 is an enlarged cross-sectional view taken along line B-B in FIG. FIG. 4 is an enlarged cross-sectional view taken along line B-B of another embodiment, and FIG. 5 is an example of a conventional biological denitrification flow sheet. Explanation of symbols
Claims (1)
気室5、沈澱室7、消毒室9とをこの順に配置し、接触
ばっ気室5と嫌気性濾過室3間に循環室23を設けると
ともに、該室23の終端部において沈澱分離室2からの
流出水又は原水に循環室23からの循環水を混合させた
ことを特徴とする汚水浄化装置。 2、循環室が、バッフルにより下向流室及び上向流室に
形成され、下向流室を上向流室より狭く形成させたこと
を特徴とする特許請求の範囲第1項記載の汚水浄化装置
。 3、バッフルが、下端を上向流室側にホッパー状に傾斜
させたものであることを特徴とする特許請求の範囲第1
項または第2項記載の汚水浄化装置。[Claims] 1. The precipitation separation chamber 2 and/or the anaerobic filtration chamber 3, the contact aeration chamber 5, the precipitation chamber 7, and the disinfection chamber 9 are arranged in this order, and the contact aeration chamber 5 and the anaerobic filtration chamber 5 are arranged in this order. A sewage purification device characterized in that a circulation chamber 23 is provided between the chambers 3, and the circulating water from the circulation chamber 23 is mixed with the outflow water or raw water from the sedimentation separation chamber 2 at the end of the chamber 23. 2. The wastewater according to claim 1, wherein the circulation chamber is formed into a downward flow chamber and an upward flow chamber by a baffle, and the downward flow chamber is formed narrower than the upward flow chamber. Purification device. 3. Claim 1, characterized in that the baffle has a lower end inclined in the shape of a hopper toward the upward flow chamber.
The sewage purification device according to item 1 or 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61280474A JPS63278599A (en) | 1986-11-25 | 1986-11-25 | Sewage purifying device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61280474A JPS63278599A (en) | 1986-11-25 | 1986-11-25 | Sewage purifying device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63278599A true JPS63278599A (en) | 1988-11-16 |
JPH0417717B2 JPH0417717B2 (en) | 1992-03-26 |
Family
ID=17625579
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61280474A Granted JPS63278599A (en) | 1986-11-25 | 1986-11-25 | Sewage purifying device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63278599A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR200250140Y1 (en) * | 2001-06-13 | 2001-11-16 | 주식회사 아이이아이 | A waste water disposal plant |
KR100348160B1 (en) * | 1999-09-28 | 2002-08-09 | 주식회사 엔비켐 | Advanced biological water treatment system |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04117920A (en) * | 1990-09-10 | 1992-04-17 | Tiger Vacuum Bottle Co Ltd | Rice cooker |
-
1986
- 1986-11-25 JP JP61280474A patent/JPS63278599A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100348160B1 (en) * | 1999-09-28 | 2002-08-09 | 주식회사 엔비켐 | Advanced biological water treatment system |
KR200250140Y1 (en) * | 2001-06-13 | 2001-11-16 | 주식회사 아이이아이 | A waste water disposal plant |
Also Published As
Publication number | Publication date |
---|---|
JPH0417717B2 (en) | 1992-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1307059C (en) | Method of treating waste water and equipment therefor | |
EP1054840B1 (en) | Wastewater treatment plant comprising upflow anaerobic reactor, and wastewater treatment method using thereof | |
KR100422211B1 (en) | Management Unit and Method of Foul and Waste Water | |
CN217148724U (en) | Sewage treatment integrated biological nitrogen and phosphorus removal device | |
JP2003126887A (en) | Method and device for treating water containing phosphorus and ammonia | |
US6261456B1 (en) | Waste water treatment method and waste water treatment equipment capable of treating waste water containing fuluorine, nitrogen and organic matter | |
CN110451718A (en) | Advanced waste treatment apparatus based on ozone and biofilm particles sewage sludge reactor | |
KR101190472B1 (en) | A none piping membrane bioreactor with circulation-agitater | |
CN110803833A (en) | Petrochemical RO strong brine treatment system and method | |
JPH0722757B2 (en) | Biological removal method of nitrogen and phosphorus and its treatment device | |
CN105984991B (en) | A kind of sewerage advanced treatment process | |
KR20140067307A (en) | Advanced treatment method for purifying wastewater | |
JPS63278599A (en) | Sewage purifying device | |
KR100745444B1 (en) | Wastewater Treatment System Using Biological Media | |
JPH08318292A (en) | Waste water treatment method and apparatus | |
KR100519263B1 (en) | Sewage treatment system | |
JP3807945B2 (en) | Method and apparatus for treating organic wastewater | |
JP2953835B2 (en) | Biological nitrification and denitrification equipment | |
KR960011888B1 (en) | Biological sewage and wastewater treatment device combined with nitrogen and phosphorus removal and its treatment method | |
JP2504248B2 (en) | Sewage treatment equipment | |
CN208038125U (en) | Device for removing total nitrogen in sewage | |
JP2004097926A (en) | Water treatment method and water treatment equipment | |
JP3782738B2 (en) | Wastewater treatment method | |
JP4689007B2 (en) | Wastewater purification method | |
JP3666064B2 (en) | Wastewater treatment equipment |