JPS63278525A - Production of vapor-liquid separation membrane - Google Patents
Production of vapor-liquid separation membraneInfo
- Publication number
- JPS63278525A JPS63278525A JP11079287A JP11079287A JPS63278525A JP S63278525 A JPS63278525 A JP S63278525A JP 11079287 A JP11079287 A JP 11079287A JP 11079287 A JP11079287 A JP 11079287A JP S63278525 A JPS63278525 A JP S63278525A
- Authority
- JP
- Japan
- Prior art keywords
- porous membrane
- membrane
- weight
- polymer
- separation membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012528 membrane Substances 0.000 title claims description 58
- 238000000926 separation method Methods 0.000 title claims description 18
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 239000007788 liquid Substances 0.000 title 1
- 229920000642 polymer Polymers 0.000 claims description 30
- 239000011148 porous material Substances 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 18
- 239000002904 solvent Substances 0.000 claims description 6
- 239000003431 cross linking reagent Substances 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 23
- 239000001301 oxygen Substances 0.000 description 23
- 229910052760 oxygen Inorganic materials 0.000 description 23
- 239000007789 gas Substances 0.000 description 21
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 18
- 239000010409 thin film Substances 0.000 description 10
- 229910052757 nitrogen Inorganic materials 0.000 description 9
- 239000000020 Nitrocellulose Substances 0.000 description 6
- 239000010408 film Substances 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 229920001220 nitrocellulos Polymers 0.000 description 6
- -1 polytetrafluoroethylene Polymers 0.000 description 5
- TVJPBVNWVPUZBM-UHFFFAOYSA-N [diacetyloxy(methyl)silyl] acetate Chemical compound CC(=O)O[Si](C)(OC(C)=O)OC(C)=O TVJPBVNWVPUZBM-UHFFFAOYSA-N 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 239000004205 dimethyl polysiloxane Substances 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- AYOHIQLKSOJJQH-UHFFFAOYSA-N dibutyltin Chemical compound CCCC[Sn]CCCC AYOHIQLKSOJJQH-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229920005597 polymer membrane Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- OGZPYBBKQGPQNU-DABLZPOSSA-N (e)-n-[bis[[(e)-butan-2-ylideneamino]oxy]-methylsilyl]oxybutan-2-imine Chemical compound CC\C(C)=N\O[Si](C)(O\N=C(/C)CC)O\N=C(/C)CC OGZPYBBKQGPQNU-DABLZPOSSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- XSGUVBCHBVUMMR-UHFFFAOYSA-N ethenyl-tris(prop-1-enoxy)silane Chemical compound CC=CO[Si](OC=CC)(OC=CC)C=C XSGUVBCHBVUMMR-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- NYMPGSQKHIOWIO-UHFFFAOYSA-N hydroxy(diphenyl)silicon Chemical class C=1C=CC=CC=1[Si](O)C1=CC=CC=C1 NYMPGSQKHIOWIO-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- HKJYVRJHDIPMQB-UHFFFAOYSA-N propan-1-olate;titanium(4+) Chemical compound CCCO[Ti](OCCC)(OCCC)OCCC HKJYVRJHDIPMQB-UHFFFAOYSA-N 0.000 description 1
- 239000004627 regenerated cellulose Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B13/00—Oxygen; Ozone; Oxides or hydroxides in general
- C01B13/02—Preparation of oxygen
- C01B13/0229—Purification or separation processes
- C01B13/0248—Physical processing only
- C01B13/0251—Physical processing only by making use of membranes
- C01B13/0255—Physical processing only by making use of membranes characterised by the type of membrane
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、重合体希薄溶液を使用して、多孔質膜から気
体選択透過性のある非多孔質膜を迅速にかつ容易に製造
する方法に関する。本発明は例えば空気中から酸素の豊
富な空気を供給する装置に適用されるが、水素や炭酸ガ
スなど他の気体分離膜製造にも適用可能である。[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for quickly and easily producing a non-porous membrane with gas selective permeability from a porous membrane using a dilute polymer solution. Regarding. The present invention is applied, for example, to an apparatus that supplies oxygen-rich air from the air, but it is also applicable to the production of membranes for separating other gases such as hydrogen and carbon dioxide.
非多孔質膜の気体透過性は、膜厚に比例して低下するた
め、単位面積、単位時間当シの気体透過量を増大させる
ためには、膜厚を薄くした方が有利である。そのため、
非多孔質の気体分離膜製造方法として、高分子膜を非対
称化し、高分子膜表面にのみ、非多孔質の1層を形成さ
せる方法、多孔質膜基材上に非多孔質膜を形成させて複
合膜化する方法等がある。複合膜化する方法としては、
多孔質膜表面に重合体溶液を塗布又は流延する方法、多
孔質膜表面にプラズマ重合法により薄膜を形成する方法
、水面上に重合体溶液を供給して薄膜をつくり(水面展
開法)、多孔質膜表面に載せる方法などがある。Since the gas permeability of a non-porous membrane decreases in proportion to the membrane thickness, it is advantageous to reduce the membrane thickness in order to increase the amount of gas permeation per unit area and unit time. Therefore,
Methods for manufacturing non-porous gas separation membranes include a method of making a polymer membrane asymmetric and forming a single non-porous layer only on the surface of the polymer membrane, and a method of forming a non-porous membrane on a porous membrane base material. There are methods such as forming a composite film using As a method for forming a composite film,
A method of coating or casting a polymer solution on the surface of a porous membrane, a method of forming a thin film on the surface of a porous membrane by plasma polymerization, a method of forming a thin film by supplying a polymer solution on the water surface (water surface spreading method), There are methods such as placing it on the surface of a porous membrane.
多孔質膜上に重合体溶液を直接塗布または流延する方法
は、細孔のない部分では非多孔質の薄い層を形成するが
、細孔内に重合体溶液が入り込み細孔内では厚い層とな
るという欠点がある。Direct coating or casting of a polymer solution on a porous membrane forms a thin non-porous layer in areas without pores, but the polymer solution enters the pores and forms a thick layer within the pores. There is a drawback that.
水面上に薄膜を形成させてから多孔質膜上に載せる方法
や膜を非対称化する方法、プラズマ重合法により多孔質
膜上に薄膜を形成させる方法は、薄膜の形成および分離
膜の製造に特別な装置や複雑な工程を必要とする点が問
題である。Methods such as forming a thin film on the water surface and then placing it on a porous membrane, making the membrane asymmetrical, and forming a thin film on a porous membrane using plasma polymerization are special methods for forming thin films and manufacturing separation membranes. The problem is that it requires sophisticated equipment and complicated processes.
本発明は、上記のよう表従来法の欠点・問題点を解消し
て、特別な装置を必要とすることもなく、迅速Kかつ容
易に気体分離膜を製造する方法を提供するものである。The present invention solves the drawbacks and problems of the conventional methods as described above, and provides a method for quickly and easily producing a gas separation membrane without requiring any special equipment.
〔問題点を解決するための手段・作用〕本発明はポリオ
ルガノシロキサンを主成分とする重合体を揮発性溶媒に
溶解させた重合体溶液中に多孔質膜を浸した後、乾燥さ
せることKよシ、非多孔質膜を製造することを特徴とす
る気体′分離膜製造法である。[Means and effects for solving the problem] The present invention involves soaking a porous membrane in a polymer solution in which a polymer containing polyorganosiloxane as a main component is dissolved in a volatile solvent, and then drying it. This is a method for producing a gas separation membrane characterized by producing a non-porous membrane.
本発明の特に好ましい実施態様としては重合体濃度が5
重量%以上20Itit%以下である重合体溶液を用い
て行なうこと、重合体がポリオルガノシロキサン50〜
100重量部と架橋剤50重量部以下とを含むものであ
ること、また多孔質膜の細孔は孔径がα5μ惜以上α5
μ悔以下であることが挙げられる。In a particularly preferred embodiment of the invention, the polymer concentration is 5.
It is carried out using a polymer solution having a concentration of not less than 20% by weight, and the polymer is a polyorganosiloxane of 50 to 20% by weight.
100 parts by weight and 50 parts by weight or less of a crosslinking agent, and the pores of the porous membrane have a pore diameter of α5 μ or more α5
One example is being less than μ regret.
本発明は、気体透過速度(、I/cd・θ@Q−cts
Hg)の大きな気体分離膜を、迅速Kかつ容易に製造す
るために、多孔質膜の細孔内に薄膜を形成させ細孔を塞
ぐ方法として、揮発性溶媒にポリオルガノシロキサンを
溶解させた重合体溶液中に多孔質膜を浸した後、これを
取り出し乾燥させる方法を採用したものである。The present invention provides gas permeation rate (, I/cd・θ@Q-cts
In order to quickly and easily produce a gas separation membrane with a large Hg), a method for forming a thin film within the pores of a porous membrane to close the pores is to use a heavy-duty membrane in which polyorganosiloxane is dissolved in a volatile solvent. This method employs a method in which a porous membrane is immersed in a coalescing solution, then taken out and dried.
多孔質膜の表面及び細孔内に厚い膜を形成させず、細孔
内にのみ薄膜を形成させるために、重合体溶液に含まれ
る重合体(共重合体を含む)を該溶液全量に対し5重量
%以上20重量%以下にすることが好ましい。すなわち
、重合体濃度を20重量係以下として重合体溶液の粘度
を低下させることにより、多孔質膜表面に重合体溶液が
付着することを防ぎ、細孔内にのみ重合体溶液を残留さ
せ、薄膜を形成させるものである。In order to form a thin film only in the pores without forming a thick film on the surface of the porous membrane and in the pores, the polymer (including copolymer) contained in the polymer solution is added to the total amount of the solution. The content is preferably 5% by weight or more and 20% by weight or less. That is, by lowering the viscosity of the polymer solution by setting the polymer concentration to 20% by weight or less, it is possible to prevent the polymer solution from adhering to the surface of the porous membrane, leaving the polymer solution only in the pores, and forming a thin film. is formed.
また、多孔質膜の細孔内にのみ重合体溶液を残留させる
ためKは、該細孔の孔径が(LO5μ惰以上CL5μ惰
以下であることが必要であシ、好ましくは孔径l12#
s以下である。In addition, in order to make the polymer solution remain only in the pores of the porous membrane, the pore diameter of the pores must be (LO5μ or more and CL5μ or less, preferably 112#).
s or less.
このような多孔質膜としては、例えばニトロセルロース
膜、再生セルロース膜、ポリテトラフルオロエチレン(
FTIFK)膜等が挙げられるが、これに限定されるも
のではなく、本発明に用いる揮発性溶媒に溶解せずに上
記の細孔条件を満足するような多孔質膜であれば本発明
に用い得る。Examples of such porous membranes include nitrocellulose membranes, regenerated cellulose membranes, and polytetrafluoroethylene (
FTIFK) membranes, etc., but are not limited thereto; any porous membrane that satisfies the above pore conditions without being dissolved in the volatile solvent used in the present invention can be used in the present invention. obtain.
多孔質膜の細孔内く形成された薄膜は強度がなく、細孔
径がIIL5〜clLap情程度といった大きな孔径の
多孔質膜では、気体供給側と透過側の差圧に耐えること
ができないので、ポリオルガノシロキサ/に架橋剤を添
加し、室温で硬化させ、差圧に耐えうる薄膜とする。The thin film formed within the pores of a porous membrane has no strength, and a porous membrane with a large pore diameter, such as IIL5 to clLap, cannot withstand the differential pressure between the gas supply side and the permeation side. A crosslinking agent is added to polyorganosiloxa and cured at room temperature to form a thin film that can withstand differential pressure.
本発明のポリオルガノシロキサンとしては、例エバジメ
チルシロキサン、ジフェニルシロキサン又はビニルメチ
ルシロキサ/の重合体又はこれらの共重合体が挙げられ
る。Examples of the polyorganosiloxane of the present invention include evadimethylsiloxane, diphenylsiloxane or vinylmethylsiloxane/polymers or copolymers thereof.
ポリオルガノシロキサンを溶解させる揮発性溶媒として
は、炭素原子数4から8のパラフィン系炭化水素または
その誘導体と、芳香族炭化水素及び/またはその誘導体
、エーテル及び/または環式エーテルであシ、好ましく
はペンタン、ヘプタン、ベンゼン、テトラヒドロフラン
などである。The volatile solvent for dissolving the polyorganosiloxane is preferably a paraffinic hydrocarbon having 4 to 8 carbon atoms or a derivative thereof, an aromatic hydrocarbon and/or a derivative thereof, an ether and/or a cyclic ether. Examples include pentane, heptane, benzene, and tetrahydrofuran.
重合体溶液に添加する架橋剤としては、例えばメチルト
リアセトキシシラン、メチルトリス(メチルエチルケト
キシム)シラン、ビニルトリメトキシシラン、ビニルト
リプロペノキシシラン、ジメチルビス(M−メチルアシ
ルアミノ)シランなどが用いられる。また、触媒として
、少量のジプテルスズジオクトエートまたはテトラプロ
ピルチタネートを用いてよい。Examples of the crosslinking agent added to the polymer solution include methyltriacetoxysilane, methyltris(methylethylketoxime)silane, vinyltrimethoxysilane, vinyltripropenoxysilane, and dimethylbis(M-methylacylamino)silane. Small amounts of diptertin dioctoate or tetrapropyl titanate may also be used as catalysts.
実施例1゜
ポリジメチルシロキサン20重量部、メチルトリアセト
キシシラン1重量部、ジブチルスズジオクタエートα0
02重量部、ヘキサ780重量部よりなる重合体溶液中
に、孔径(L1μ惰のニトロセルロース多孔質膜を浸し
た後、該膜を取り出して空気中で乾燥させた。得られた
膜を差圧1気圧で酸素、窒素、空気のガス透過試験を行
った。各気体の透過速度(−74−・eea−3Hg)
は、酸素で1.87 X 10−’ cd/eIj”8
@O”yiHg 、窒素で1.17 X 10−’d/
eyl−taaa−3Hg であシ、分離係数(酸素
の透過速度/窒素の透過速度:なお分離係数は同じ膜厚
の場合ガス透過速度比で表される。)はt6oであった
。空気の透過速度は1.52 X 10 ” n110
1 ”!leo”51 Hgであり、酸素20容量係の
空気からS2.6容量チの酸素富化空気を得ることがで
きた。Example 1 20 parts by weight of polydimethylsiloxane, 1 part by weight of methyltriacetoxysilane, dibutyltin dioctaate α0
After immersing a nitrocellulose porous membrane with a pore size of 1 μm in a polymer solution consisting of 2 parts by weight of Hex. Gas permeation tests for oxygen, nitrogen, and air were conducted at 1 atm.Permeation rate of each gas (-74-・eea-3Hg)
is 1.87 x 10-'cd/eIj"8 in oxygen
@O"yiHg, 1.17 x 10-'d/ with nitrogen
eyl-taaa-3Hg, and the separation coefficient (oxygen permeation rate/nitrogen permeation rate: the separation coefficient is expressed as a gas permeation rate ratio when the film thickness is the same) was t6o. Air permeation rate is 1.52 x 10” n110
1"!leo" was 51 Hg, and it was possible to obtain oxygen-enriched air with a volume of S2.6 from air with a volume of oxygen of 20.
実施例2
実施例1.と同様の重合体溶液中に1孔径α2μ惰のニ
トロセルロース多孔質膜を浸した後、空気中で乾燥させ
た。得られた膜のガス透過試験結果を以下に示す。Example 2 Example 1. A porous nitrocellulose membrane with a pore diameter of α2μ was immersed in a polymer solution similar to the above, and then dried in air. The gas permeation test results of the obtained membrane are shown below.
酸素の透過速度は、1.70 X 10 ”” 67/
(J・sea’、Hgであり、窒素の透過速度は1.
OOX 10−’tri/eJ−s e c・備Jig
であシ、分離係数は1.70であった。また、空気の透
過速度は1.05 X 10″″′cd/cJ−s a
c −cm Hgで1)、酸素20容量チの空気から
5工4容量チの酸素富化空気を得た。The oxygen permeation rate is 1.70 x 10 ”” 67/
(J・sea', Hg, and the nitrogen permeation rate is 1.
OOX 10-'tri/eJ-sec・Bijig
Yes, the separation coefficient was 1.70. Also, the air permeation rate is 1.05 x 10''''cd/cJ-s a
At c-cm Hg 1), 5 volumes of oxygen-enriched air were obtained from 20 volumes of oxygen air.
実施例&
ポリジメチルシロキサン10重量部、メチルトリアセト
キシシランα5重量部、ジブチルススオクタニー)(L
OO1重量部、ヘキサン90重量部よりなる重合体溶液
中に、孔径α1μ溝のニトロセルロース膜を浸した後、
空気中で乾燥させた。得られた膜のガス透過試験結果を
以下に示す。酸素の透過速度は2. B OX 10−
’eJ/−・meC−eIRHg、窒素の透過速度は1
.74 XXl0−46i ’ 88 C”68 Hg
であり、分離係数は1.61であツタ。空気の透過速度
は1. a o x 1a−’cPI/−5Fa8θc
’ m Hgであり、酸素2o容量チの空気から酸素
5[LO容量−の酸素富化空気が得られた。Examples & 10 parts by weight of polydimethylsiloxane, 5 parts by weight of methyltriacetoxysilane, dibutylsulfur octany) (L
After immersing a nitrocellulose membrane with a pore diameter of α1μ in a polymer solution consisting of 1 part by weight of OO and 90 parts by weight of hexane,
Dry in air. The gas permeation test results of the obtained membrane are shown below. The oxygen permeation rate is 2. BOX 10-
'eJ/-・meC-eIRHg, the nitrogen permeation rate is 1
.. 74 XXl0-46i ' 88 C"68 Hg
The separation coefficient is 1.61. The air permeation rate is 1. a ox 1a-'cPI/-5Fa8θc
' m Hg, and oxygen-enriched air with an oxygen content of 5[LO capacity] was obtained from air with an oxygen capacity of 2O2.
比較例1゜
ポリジメチルシロキサン40重量部、メチルトリアセト
キシシラン2重量部、ジブチルスズオクタエート000
4重量部、ヘキサン60重量部よりなる重合体溶液中に
1孔径α8μ偽のニトロセルロース多孔質膜を浸した後
、空気中で乾燥させた。得られた膜のガス透過試験結果
を以下に示す。酸素の透過速度は2.98X10″″a
e!I/cd ・s e c ’ 51 Hgでl)、
窒素の透過速度は1.56x 10−’ シ4bsec
・mHgで1)、分離係数は2.19であった。空気の
透過速度は1.45X10″″・J/a/−8eQ−m
Hgであり、酸素2o容量チの空気から酸素5五4容量
チの酸素富化空気を得た。この例では酸素及び窒素のガ
ス透過速度が実施例1〜5のそれの10”分の1のオー
ダーとなってしまった。ガス透過速度は膜厚に反比例す
るので、本比較例のように重合体濃度を高くすると細孔
内の膜厚が厚くなり、ガス透過速度が小さくなることが
分る。Comparative Example 1 40 parts by weight of polydimethylsiloxane, 2 parts by weight of methyltriacetoxysilane, 000 parts by weight of dibutyltin octaate
A fake nitrocellulose porous membrane with a pore diameter of α8μ was immersed in a polymer solution consisting of 4 parts by weight and 60 parts by weight of hexane, and then dried in air. The gas permeation test results of the obtained membrane are shown below. The oxygen permeation rate is 2.98X10″a
e! I/cd ・sec ' 51 Hg l),
The nitrogen permeation rate is 1.56x 10-' 4 bsec
- mHg was 1), and the separation coefficient was 2.19. Air permeation speed is 1.45X10''・J/a/-8eQ-m
Hg, and oxygen-enriched air with 554 volumes of oxygen was obtained from air with 2 volumes of oxygen. In this example, the gas permeation rate for oxygen and nitrogen was on the order of 1/10" of that in Examples 1 to 5. Since the gas permeation rate is inversely proportional to the film thickness, It can be seen that as the combined concentration increases, the film thickness within the pores increases and the gas permeation rate decreases.
比較例2
実施例1と同様の重合体溶液中に、孔径18μ鴨のニト
ロセルロース膜を浸した後、空気中で乾燥した膜を用い
てガス透過試験を行った結果を以下に示す。酸素と窒素
の透過速度はそれぞれ、X O5X 10−’ 、 2
.7 J X 10−’d/、−j−seC−eII4
Hgであり、分離係数は1.11であった。Comparative Example 2 A nitrocellulose membrane with a pore size of 18 μm was immersed in the same polymer solution as in Example 1, and then the membrane was dried in air. The results of a gas permeation test are shown below. The permeation rates of oxygen and nitrogen are X O5X 10-' and 2, respectively.
.. 7 J X 10-'d/, -j-seC-eII4
Hg, and the separation coefficient was 1.11.
空気の透過速度は2.80 X 10−’ nj/(J
−5ea ’cmHgであり、酸素富化空気は得られ
なかった。The air permeation rate is 2.80 x 10-' nj/(J
-5ea' cmHg, and oxygen-enriched air was not obtained.
本発明は、ポリオルガノシロキサンを主成分とする重合
体を5重量部以上20重量部以下の割合で揮発性溶媒8
0重量部に溶解させた溶液中に、孔径CLO5μ惰以上
0.5μ惰以下の多孔質膜を浸した後、乾燥させること
により、気体選択透過性のある非多孔質膜を、迅速にか
つ容易に製造することができる。本発明により製造され
る膜は、酸素と窒素の透過速度は、それぞれt 7 [
1〜2.80 X 10−’ erl/cd ’gec
’υHg # t O〜1.80 X 10−’crl
/cl ・88O’mHgであり、分離係数は1.6〜
1.7であった。また、酸素20容′fk傷の空気から
、透過速度1.0〜1.8X10−’cl/、−・se
a・削■gで、50容量チ以上の酸素富化空気を得るこ
とができた。The present invention uses a polymer mainly composed of polyorganosiloxane in a proportion of 5 parts by weight or more and 20 parts by weight or less as a volatile solvent.
By immersing a porous membrane with a pore diameter of 5 μm or more and 0.5 μm or less in a solution containing 0 parts by weight of CLO and then drying it, a non-porous membrane with gas selective permeability can be quickly and easily produced. can be manufactured. The membrane produced according to the present invention has a permeation rate of oxygen and nitrogen of t 7 [
1~2.80 X 10-'erl/cd'gec
'υHg # t O~1.80 X 10-'crl
/cl ・88O'mHg, and the separation coefficient is 1.6~
It was 1.7. In addition, from the air with 20 volumes of oxygen fk, the permeation rate is 1.0 to 1.8
By a, cutting, and g, more than 50 volumes of oxygen-enriched air could be obtained.
Claims (4)
揮発性溶媒に溶解させた重合体溶液中に多孔質膜を浸し
た後、乾燥させることにより、非多孔質膜を製造するこ
とを特徴とする気体分離膜製造法。(1) A non-porous membrane is produced by immersing a porous membrane in a polymer solution in which a polymer whose main component is polyorganosiloxane is dissolved in a volatile solvent and then drying the membrane. Gas separation membrane manufacturing method.
%以上20重量%以下含むものである特許請求範囲第1
項記載の気体分離膜製造法。(2) Claim 1 in which the polymer solution contains the heavy substance in an amount of 5% by weight or more and 20% by weight or less based on the total amount of the solution.
Gas separation membrane manufacturing method described in Section 1.
重量部と架橋剤50重量部以下とを含む重合体である特
許請求範囲第1項記載の気体分離膜製造法。(3) The polymer has a polyorganosiloxane content of 50 to 100
The method for producing a gas separation membrane according to claim 1, which is a polymer containing 50 parts by weight or less of a crosslinking agent and 50 parts by weight or less of a crosslinking agent.
m以下である特許請求の範囲第1項記載の気体分離膜製
造法。(4) The pore diameter of the porous membrane is 0.05 μm or more and 0.5 μm
The method for manufacturing a gas separation membrane according to claim 1, wherein the gas separation membrane is less than or equal to m.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11079287A JPS63278525A (en) | 1987-05-08 | 1987-05-08 | Production of vapor-liquid separation membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11079287A JPS63278525A (en) | 1987-05-08 | 1987-05-08 | Production of vapor-liquid separation membrane |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63278525A true JPS63278525A (en) | 1988-11-16 |
Family
ID=14544748
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11079287A Pending JPS63278525A (en) | 1987-05-08 | 1987-05-08 | Production of vapor-liquid separation membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63278525A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0681862A2 (en) * | 1994-05-09 | 1995-11-15 | Hoechst Aktiengesellschaft | Composite membrane and process for the production thereof |
KR100356043B1 (en) * | 2000-02-21 | 2002-10-12 | 주식회사 화인 코리아 | A seperating membrane for treatment of volatile organic compounds, and a method of manufacturing them |
KR100413592B1 (en) * | 2000-12-08 | 2003-12-31 | 한국화학연구원 | Hybrid structured membranes for the separation of volatile organic compounds from waste stream, and preparation thereof |
US6835411B1 (en) * | 1997-01-08 | 2004-12-28 | Dow Corning Corporation | Conservation of organic and inorganic materials |
KR100644366B1 (en) | 2005-11-08 | 2006-11-10 | 한국화학연구원 | Mass production method of polymer hollow fiber membrane for asymmetric gas separation |
JP2019209274A (en) * | 2018-06-06 | 2019-12-12 | 東芝ライフスタイル株式会社 | Method for producing oxygen enrichment membrane |
-
1987
- 1987-05-08 JP JP11079287A patent/JPS63278525A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0681862A2 (en) * | 1994-05-09 | 1995-11-15 | Hoechst Aktiengesellschaft | Composite membrane and process for the production thereof |
EP0681862A3 (en) * | 1994-05-09 | 1996-01-17 | Hoechst Ag | Composite membrane and process for the production thereof. |
US6835411B1 (en) * | 1997-01-08 | 2004-12-28 | Dow Corning Corporation | Conservation of organic and inorganic materials |
KR100356043B1 (en) * | 2000-02-21 | 2002-10-12 | 주식회사 화인 코리아 | A seperating membrane for treatment of volatile organic compounds, and a method of manufacturing them |
KR100413592B1 (en) * | 2000-12-08 | 2003-12-31 | 한국화학연구원 | Hybrid structured membranes for the separation of volatile organic compounds from waste stream, and preparation thereof |
KR100644366B1 (en) | 2005-11-08 | 2006-11-10 | 한국화학연구원 | Mass production method of polymer hollow fiber membrane for asymmetric gas separation |
JP2019209274A (en) * | 2018-06-06 | 2019-12-12 | 東芝ライフスタイル株式会社 | Method for producing oxygen enrichment membrane |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4156597A (en) | Ultrathin polyetherimide membrane and gas separation process | |
US4230463A (en) | Multicomponent membranes for gas separations | |
KR940006394B1 (en) | Composite membrane and their manufacture and use | |
US5733663A (en) | Composite membrane and process for its production | |
US4863496A (en) | Reactive posttreatment for gas separation membranes | |
CN1694791B (en) | Process for producing porous film and porous film | |
KR890001614A (en) | Asymmetric Gas Separators with Improved Graded Density Skin | |
Chung | A review of microporous composite polymeric membrane technology for air-separation | |
JPH0318926B2 (en) | ||
JPS6154222A (en) | Composite separation membrane | |
JPS6054707A (en) | Dense composite membrane | |
CA1249111A (en) | Method for producing a very thin, dense membrane and (supported) membrane so produced | |
JPH0417084B2 (en) | ||
JPS63278525A (en) | Production of vapor-liquid separation membrane | |
US4919694A (en) | Selective gas permeation membranes and method of manufacturing them | |
Madaeni et al. | The influence of membrane formation parameters on structural morphology and performance of PES/PDMS composite membrane for gas separation | |
JPS621438A (en) | Asymmetric or complex polyquinoxaline base film capable of being used for gas permeation, particularly, gas mixture fractionation, and mainly dehydration and deoxidizing of gas, particularly, gassy hydrocarbon | |
JPS588517A (en) | Method for producing gas selectively permeable composite membrane | |
JPH0224574B2 (en) | ||
JPH03262523A (en) | Oxygen enriching composite membrane | |
JP2688882B2 (en) | Method for producing composite membrane for gas separation | |
JPH0413011B2 (en) | ||
JPS6256775B2 (en) | ||
JPS63214319A (en) | Composite membrane for separation | |
JPH0446172B2 (en) |