[go: up one dir, main page]

JPS63277983A - Wiegand effect element and magnetic sensor - Google Patents

Wiegand effect element and magnetic sensor

Info

Publication number
JPS63277983A
JPS63277983A JP11316387A JP11316387A JPS63277983A JP S63277983 A JPS63277983 A JP S63277983A JP 11316387 A JP11316387 A JP 11316387A JP 11316387 A JP11316387 A JP 11316387A JP S63277983 A JPS63277983 A JP S63277983A
Authority
JP
Japan
Prior art keywords
magnetic
effect element
layers
magnetic layer
coercive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11316387A
Other languages
Japanese (ja)
Inventor
Kazunori Shimazaki
和典 嶋崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP11316387A priority Critical patent/JPS63277983A/en
Publication of JPS63277983A publication Critical patent/JPS63277983A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To attain size reduction by laminating two magnetic layers which form a Wiegand effect element, a magnetic layer which has coercive force different from the coercive force of both magnetic layers, and an electric coil. CONSTITUTION:Plural 1st connectors parts 2 are formed on a substrate 1 and a 1st insulating layer 3 is formed thereupon. A 1st magnetic layer 4 is formed thereupon and then a 2nd magnetic layer 5 which has the coercive force different from that of the 1st magnetic layer 4 is formed. Further, a 3rd magnetic layer 6 which is the same as the 1st magnetic layer 4 is formed covering the 2nd magnetic layer 5 and an insulating layer 7 is formed thereupon covering those magnetic layers. Then a conductor part 8 is so formed as to connect end parts of mutually adjacent conductor parts 2 which are not close to each other electrically, thus forming the Wiegand effect element formed of the magnetic layers 4-6 and the electric coil 9.

Description

【発明の詳細な説明】 発明の目的 (産業上の利用分野) この発明はウィーガンド効果素子及びウィーガンド効果
素子を利用した磁気センサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (Field of Industrial Application) The present invention relates to a Wiegand effect element and a magnetic sensor using the Wiegand effect element.

(従来技術) 従来、磁気検出について特開昭58−43502号、特
開昭58−148978R等で示されるようなウィーガ
ンド効果素子を利用した磁気センサが種々提案されてい
る。一般に、ウィーガンド効果素子とよばれるウィーガ
ンドワイヤはパイカロイ、バーンロイ等の結晶異方性が
小さく磁気ひずみ定数の大きい磁性、線に張力とねじり
応力を繰返し加えて圧縮性応力を残留させた後、外周部
を硬化させて作られる。そして、このウィーガンドワイ
ヤに電気コイルを巻回することにより、磁気センサが作
られる。
(Prior Art) Conventionally, various magnetic sensors using Wiegand effect elements have been proposed for magnetic detection, such as those disclosed in Japanese Patent Application Laid-open No. 58-43502, Japanese Patent Application Laid-Open No. 58-148978R, and the like. In general, Wiegand wire, which is called Wiegand effect element, is made of a magnetic material such as Picaloy or Vernloy, which has small crystal anisotropy and a large magnetostriction constant, and after repeatedly applying tension and torsional stress to the wire to leave compressive stress, It is made by hardening the parts. A magnetic sensor is then created by winding an electric coil around this Wiegand wire.

(発明が解決しようとする問題点) ところが、この種のウィーガンドワイヤを利用した磁気
センサは巻線を多数巻回しなければならないことから、
厚くなり大形化するとともに、巻線が断線し易いという
問題があった。又、ウィーガンドワイヤは前記したよう
に磁性線に張力とねじり応力を繰返し加えて外周部を硬
化させて作られ、製作も非常に面倒であるばかりか、ウ
ィーガンドワイヤ自身大きなものとなっていた。
(Problem to be solved by the invention) However, since a magnetic sensor using this type of Wiegand wire requires a large number of windings,
There was a problem that the winding wire was easily broken as well as becoming thicker and larger. Furthermore, as mentioned above, Wiegand wires are made by repeatedly applying tension and torsional stress to magnetic wires to harden the outer periphery, and not only is it extremely troublesome to manufacture, but the Wiegand wires themselves are large. .

第1の発明の目的は前記問題点を解消するために、簡単
な方法で小型で精度の高いウィーガンド効果素子を提供
することにある。
A first object of the invention is to provide a compact and highly accurate Wiegand effect element using a simple method in order to solve the above-mentioned problems.

第2の発明の目的は故障が少なく、かつ小型化を図るこ
とができる磁気センサを提−供することにある。
A second object of the invention is to provide a magnetic sensor that has fewer failures and can be made smaller.

発明の構成 (問題点を解決するための手段) 上記、目的を達成すべく、第1の発明は基板上に積層形
成される2つの磁性層にてその両磁性層の保磁力と異な
る保磁力を有する磁性層を#?i層被覆してなるウィー
ガンド効果素子をその要旨とするものである。
Structure of the Invention (Means for Solving Problems) In order to achieve the above-mentioned object, the first invention provides two magnetic layers laminated on a substrate with a coercive force different from that of both magnetic layers. A magnetic layer with #? The gist of this is a Wiegand effect element coated with an i-layer.

第2の発明は上面に複数個の第1の導体層を間隔をおい
て形成してなる基板上に、前記各第1の導体層の上を交
差してll4m形成される2つの磁性層とその両磁性層
の間に積層被覆され、かつ同両磁性層の保磁力と異なる
保磁力を有する磁性層とからなるウィーガンド効果素子
を形成し、前記基板上面に形成した各第1の導体層と電
気的に接続して同つィーガンド効果素fを巻回する電気
コイルを構成する複数個の第2の導体層を間隔をおいて
ウィーガンド効果素子上に形成してなる磁気センサをそ
の要旨とするものである。
The second invention comprises a substrate having a plurality of first conductor layers formed at intervals on the upper surface thereof, and two magnetic layers formed by 114 m crossing over each of the first conductor layers. A Wiegand effect element is formed between the two magnetic layers and a magnetic layer having a coercive force different from that of the two magnetic layers, and each first conductor layer formed on the upper surface of the substrate. Its gist is a magnetic sensor in which a plurality of second conductor layers are formed at intervals on a Wiegand effect element and constitute an electric coil that is electrically connected and winds the same Wiegand effect element f. It is something.

(作用) 第1の発明において、ウィーガンド効果素子は層構造に
形成されることから、素゛子自体が薄くなる。
(Function) In the first invention, since the Wiegand effect element is formed in a layered structure, the element itself becomes thin.

第2の発明において、磁気センサはウィーガンド効果素
子が層構造で形成され、このウィーガンド効果素子を巻
回する電気コイルも同じく層構造にて形成されているこ
とから、全体として薄くなる。
In the second aspect of the invention, the magnetic sensor has a Wiegand effect element formed in a layered structure, and an electric coil that winds this Wiegand effect element is also formed in a layered structure, so that the magnetic sensor is thin as a whole.

(実施例) 以下、この発明を具体化した一実施例を図面に従って説
明する。
(Example) An example embodying the present invention will be described below with reference to the drawings.

第1図(a)〜(a)及び第2図(a)〜(a)は磁気
センサの製造工程を示す図であって、ガラス等よりなる
基板1の上面全体に蒸着法、スパッタ法等の公知の薄膜
形成法にて数ミクロン−10ミクロンの導体層を形成し
た後、フォトリソグラフ等の手法で第1図(a)及び第
2図(a)に示すように、複数個の第1の導体部2を互
いに等間隔で平行に配列させてなる導体パターンを形成
する。
1(a)-(a) and FIG. 2(a)-(a) are diagrams showing the manufacturing process of a magnetic sensor, in which the entire upper surface of a substrate 1 made of glass or the like is coated by vapor deposition, sputtering, etc. After forming a conductor layer of several microns to 10 microns using a known thin film forming method, a plurality of first A conductor pattern is formed by arranging the conductor parts 2 in parallel to each other at equal intervals.

基板1上に導体パターンを形成した後、第1図(b)及
び第2図(b)に示すように、各導体部2の上を直交す
るように一定の幅を有した第1の絶縁113を形成する
。この絶縁層3は電気的絶縁材料からなる数ミクロン−
10ミクロンの層であって、本実施例ではポリアミドを
導体パターン上に塗布しプラズマ重合等の手法にてポリ
イミドの絶縁層を形成している。
After forming the conductor pattern on the substrate 1, as shown in FIG. 1(b) and FIG. 113 is formed. This insulating layer 3 is made of electrically insulating material and has a thickness of several microns.
In this embodiment, polyamide is applied onto the conductor pattern and a polyimide insulating layer is formed using a method such as plasma polymerization.

次に、前記絶縁層3の上面全体に、・第1図(C)(d
)及び第2図(C)(d)に示すように、磁性体よりな
る第1の磁性!14を形成した後、その第1の磁性層4
上面中央長手方向に磁性体よりなる第2の磁性層5を形
成する。続いて、前記第2の磁性層5を第1の磁性11
4とで被覆するように、第1の磁性層4と同じ成分特性
を有する磁性体よりなる第3の磁性116を、第1図(
e)及び第2図(e)に示すように、第1及び第2の磁
性層4゜5の上面に形成する。
Next, on the entire upper surface of the insulating layer 3,
) and as shown in FIGS. 2(C) and (d), the first magnetic! made of a magnetic material! 14, the first magnetic layer 4
A second magnetic layer 5 made of a magnetic material is formed in the longitudinal direction at the center of the upper surface. Subsequently, the second magnetic layer 5 is coated with the first magnetic layer 11.
4, a third magnetic layer 116 made of a magnetic material having the same component characteristics as the first magnetic layer 4 is coated with the third magnetic layer 116 shown in FIG.
As shown in e) and FIG. 2(e), the first and second magnetic layers are formed on the upper surfaces of the 4°5.

前記第1〜第3の各磁性層4,5.6は蒸着法、スパッ
タ法等の薄膜形成法にてそれぞれ数ミクロン−10ミク
ロンの厚さで形成され、共にパーマロイ(Ni、Feの
合金)若しくはパイカロイ(V、Go、Feの合金)等
の磁性体よりなっている。又、第1と第3の磁性層4.
6に対して第2の磁性層5はその成分特性が異なり、第
2の磁性FII5の保磁力(本実施例では5〜10 0
e)が第1.第3の磁性層4.6の保磁力(本実施例で
は20〜30 0e)より小さくなる成分特性の磁性体
で構成している。
The first to third magnetic layers 4, 5.6 are formed with a thickness of several microns to 10 microns by a thin film forming method such as vapor deposition or sputtering, and are made of permalloy (an alloy of Ni and Fe). Alternatively, it is made of a magnetic material such as picalloy (an alloy of V, Go, and Fe). Further, the first and third magnetic layers 4.
6, the second magnetic layer 5 has different component characteristics, and the coercive force of the second magnetic FII 5 (in this example, 5 to 100
e) is the first. It is made of a magnetic material whose component characteristics are smaller than the coercive force of the third magnetic layer 4.6 (20 to 300 e in this embodiment).

従って、第1〜第3の磁性層4〜6よりなる磁性層は中
心部と外周部とで保磁力が異なることになり、従来のウ
ィーガンドワイヤと実質的に同じ構成となり同一の効果
を有するウィーガンド効果素子が形成されたことになる
Therefore, the magnetic layer consisting of the first to third magnetic layers 4 to 6 has a different coercive force between the center and the outer periphery, and has substantially the same structure as the conventional Wiegand wire and has the same effect. This means that a Wiegand effect element has been formed.

第1〜第3の磁性層4〜6よりなるウィーガンド効果素
子が形成された後に、第1図(f)及び第2図(f)に
示すように、同素子を前記第1の磁性層4とで被覆する
ように、第1の絶縁層3と同じ絶縁材料で同じ手法にて
厚さが数ミクロン−10ミクロンの第2の絶縁117を
形成する。続いて、第1図(0)に示すように、第2の
絶縁層7の上面から前記第1の絶縁wJ3の下面に形成
した複数の第1の導体部2に対して互いに隣接する導体
部2において近接しない端部同志を電気的に接続するよ
うに前記第1の導体部2と同じ導電材料でかつ同じ手法
にて厚さが数ミクロン−10ミクロンの複数個の第2の
導体部8を形成する。
After the Wiegand effect element consisting of the first to third magnetic layers 4 to 6 is formed, as shown in FIG. 1(f) and FIG. A second insulator 117 having a thickness of several microns to 10 microns is formed using the same insulating material as the first insulating layer 3 and using the same method so as to cover the first insulating layer 3. Subsequently, as shown in FIG. 1(0), conductor parts adjacent to each other with respect to the plurality of first conductor parts 2 formed from the upper surface of the second insulating layer 7 to the lower surface of the first insulating wJ3. 2, a plurality of second conductor parts 8 having a thickness of several microns to 10 microns are made of the same conductive material as the first conductor part 2 and made using the same method so as to electrically connect the ends that are not adjacent to each other. form.

従って、第2の導体部8は第1の導体部2と協働して前
記絶縁WJ3.7に被覆された第1〜第3の磁性層4〜
6よりなるウィーガンド効果素子を巻回する電気コイル
9を形成する。
Therefore, the second conductor part 8 cooperates with the first conductor part 2 to cover the first to third magnetic layers 4 to 4 covered with the insulating WJ3.7.
An electric coil 9 is formed around which a Wiegand effect element consisting of 6 is wound.

その結果、第1〜第3の磁性層4〜6よりなるウィーガ
ンド効果素子はその外周に第1及び第2の導体部2.8
にてなる電気コイル9にて巻回されたことになり、従来
のウィーガンドワイヤに電気コイルを巻回した磁気セン
サと実質的に同じ構成となり同一の効果を有する磁気セ
ンサが形成されたことになる。。
As a result, the Wiegand effect element consisting of the first to third magnetic layers 4 to 6 has first and second conductor portions 2.8 on its outer periphery.
This means that a magnetic sensor is formed which has substantially the same configuration and the same effect as a conventional magnetic sensor in which an electric coil is wound around a Wiegand wire. Become. .

このように、本実施例では従来のウィーガンドワイヤと
実質的に同じウィーガンドワイヤP及びそのウィーガン
ド効果素子を利用した磁気センサを共にFsmにて形成
したので、従来のウィーガンドワイヤ及びウィーガンド
ワイヤを利用した磁気センサに比較して非常に薄く小型
にすることができるとともに、フレキシブルなものにす
ることができる。さらに、この磁気センサは全て[1成
形にて製作されることから、精度及び信頼性が高く、又
、従来の磁気センサのようにいちいちコイルを巻く必要
がなく製作も容易となる。
In this way, in this example, the Wiegand wire P, which is substantially the same as the conventional Wiegand wire, and the magnetic sensor using the Wiegand effect element are both formed of Fsm, so it is different from the conventional Wiegand wire and the Wiegand wire. It can be made much thinner and more compact than a magnetic sensor using magnetic sensors, and it can also be made flexible. Furthermore, since this magnetic sensor is manufactured by one molding process, it has high precision and reliability, and is easy to manufacture as there is no need to wind each coil as in conventional magnetic sensors.

尚、この発明は前記実施例に限定されるものではなく、
前記実施例では基板1をガラスにて行なったが、要は上
部に薄膜のウィーガンド効果素子及び磁気センサが形成
されるものであればよく、例えばポリイミド樹脂等の可
撓性のある素材を使用してよりフレキシブルなウィーガ
ンド効果素子及び磁気センサにしたりして実施してもよ
い。
Note that this invention is not limited to the above embodiments,
In the above embodiment, the substrate 1 was made of glass, but the point is that the substrate 1 may be made of a flexible material such as polyimide resin as long as a thin film Wiegand effect element and a magnetic sensor are formed thereon. It may also be implemented by using a more flexible Wiegand effect element and magnetic sensor.

又、前記実施例では第1〜第3の磁性114〜6はパー
マロイ若しくはパイカロイ等の磁性体で説明したが、要
は第2の磁性115の保磁力が第1゜第3の磁性層4.
6の保磁力と異なる成分特性となればよく、磁性体の材
料については特に限定されるものではない。尚、前記実
施例では第1及び第3の磁性層4.6をパーマロイ若し
くはパイカロイ等の磁性体で形成したことから、第1及
び第2の絶縁層3,7を形成したが、磁性体自体が絶縁
性を有する、例えばフェライト等の酸化物を第1、第3
の磁性114.6に使用すれば第1及び第2の絶縁13
.7を形成する工程が省略でき、前記実施例に比べてよ
り製作が容易となる。
Further, in the embodiment described above, the first to third magnetic layers 114 to 6 are made of magnetic materials such as permalloy or picalloy, but the point is that the coercive force of the second magnetic layer 115 is 1°, and the third magnetic layer 4.
The material of the magnetic body is not particularly limited as long as it has a component characteristic different from the coercive force of No. 6. In the above embodiment, since the first and third magnetic layers 4.6 were formed of a magnetic material such as permalloy or picalloy, the first and second insulating layers 3, 7 were formed, but the magnetic material itself The first and third oxides, such as ferrite, have insulating properties.
If used in the magnetic field 114.6 of the first and second insulation 13
.. 7 can be omitted, making manufacturing easier than in the previous embodiment.

更に、第1及び第2の導体部2.8の材料は特に限定し
なかったが、銅、銀、金、アルミニウム等の電気コイル
を形成できるものであればなんでもよい。
Further, the materials of the first and second conductor portions 2.8 are not particularly limited, but may be any material that can form an electric coil, such as copper, silver, gold, or aluminum.

発明の効果 以上詳述したように、この発明によれば小型で精度が高
く故障の少ないウィーガンド効果素子及び磁気センサを
簡単な方法で製作することができる効果を有する。
Effects of the Invention As detailed above, the present invention has the advantage that a Wiegand effect element and a magnetic sensor that are small, highly accurate, and have few failures can be manufactured by a simple method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(9)はこの発明を具体化したウィーガ
ンド効果素子及び磁気センサの製作工程を説明する説明
図、第2図(a)〜(9)は同じく各工程の積層状態を
示す断面図である。 図中、1は基板、2は第1の導体部、3は第1の絶縁層
3.4は第1の磁性層、5は第2の磁性層、6は第3の
磁性層、7は第2の絶縁層、8は第2の導体部、9は電
気コイルである。 特許出願人  株式会社 豊田自動織機製作所式 理 
人  弁理上  恩1)博宣 第1図 (1m))     (f) (d) 11図面無し 第2図 (i))(f) (C)     (9) (d)
Figures 1 (a) to (9) are explanatory diagrams explaining the manufacturing process of a Wiegand effect element and a magnetic sensor embodying the present invention, and Figures 2 (a) to (9) similarly illustrate the lamination state in each process. FIG. In the figure, 1 is a substrate, 2 is a first conductor part, 3 is a first insulating layer, 4 is a first magnetic layer, 5 is a second magnetic layer, 6 is a third magnetic layer, and 7 is a first insulating layer. A second insulating layer, 8 a second conductor, and 9 an electric coil. Patent applicant Toyota Industries Corporation Shikiri
1) Hironobu Figure 1 (1m)) (f) (d) 11 No drawing Figure 2 (i)) (f) (C) (9) (d)

Claims (1)

【特許請求の範囲】 1、基板上に積層形成される2つの磁性層にてその両磁
性層の保磁力と異なる保磁力を有する磁性層を積層被覆
してなるウィーガンド効果素子。 2、2つの磁性層間に積層被覆される磁性層はその両磁
性層の保磁力より小さい保磁力を有する成分特性の磁性
層である特許請求の範囲第1項に記載のウィーガンド効
果素子。 3、上面に複数個の第1の導体層を間隔をおいて形成し
てなる基板上に、前記各第1の導体層の上を交差して積
層形成される2つの磁性層とその両磁性層の間に積層被
覆され、かつ同両磁性層の保磁力と異なる保磁力を有す
る磁性層とからなるウィーガンド効果素子を形成し、前
記基板上面に形成した各第1の導体層と電気的に接続し
て同ウィーガンド効果素子を巻回する電気コイルを構成
する複数個の第2の導体層を間隔をおいてウィーガンド
効果素子上に形成してなる磁気センサ。 4、2つの磁性層間に積層被覆される磁性層はその両磁
性層の保磁力より小さい保磁力を有する成分特性の磁性
層である特許請求の範囲第3項に記載の磁気センサ。
[Claims] 1. A Wiegand effect element formed by laminating and covering two magnetic layers laminated on a substrate and having a coercive force different from that of both magnetic layers. 2. The Wiegand effect element according to claim 1, wherein the magnetic layer laminated and coated between two magnetic layers is a magnetic layer having component characteristics having a coercive force smaller than the coercive force of both magnetic layers. 3. On a substrate having a plurality of first conductor layers formed at intervals on its upper surface, two magnetic layers and their bimagnetic properties are laminated to cross over each of the first conductor layers. A Wiegand effect element is formed which is laminated and coated between the layers and has a coercive force different from that of the two magnetic layers, and is electrically connected to each of the first conductor layers formed on the upper surface of the substrate. A magnetic sensor comprising a Wiegand effect element and a plurality of second conductor layers formed at intervals on the Wiegand effect element and forming an electric coil connected to the Wiegand effect element. 4. The magnetic sensor according to claim 3, wherein the magnetic layer laminated and coated between two magnetic layers is a magnetic layer having component characteristics having a coercive force smaller than the coercive force of both magnetic layers.
JP11316387A 1987-05-09 1987-05-09 Wiegand effect element and magnetic sensor Pending JPS63277983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11316387A JPS63277983A (en) 1987-05-09 1987-05-09 Wiegand effect element and magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11316387A JPS63277983A (en) 1987-05-09 1987-05-09 Wiegand effect element and magnetic sensor

Publications (1)

Publication Number Publication Date
JPS63277983A true JPS63277983A (en) 1988-11-15

Family

ID=14605145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11316387A Pending JPS63277983A (en) 1987-05-09 1987-05-09 Wiegand effect element and magnetic sensor

Country Status (1)

Country Link
JP (1) JPS63277983A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9869565B2 (en) 2015-04-23 2018-01-16 Mitsubishi Electric Corporation Rotation detection device and method of manufacturing rotation detection device
JP2020064018A (en) * 2018-10-19 2020-04-23 パナソニックIpマネジメント株式会社 Encoder and brushless motor comprising the same
EP4394329A1 (en) * 2022-12-31 2024-07-03 POLDI microelectronics GmbH Magnetic field measuring device
EP4394416A1 (en) * 2022-12-31 2024-07-03 POLDI microelectronics GmbH Integrated circuit for measuring magnetic fields and measuring the polarization of light

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9869565B2 (en) 2015-04-23 2018-01-16 Mitsubishi Electric Corporation Rotation detection device and method of manufacturing rotation detection device
JP2020064018A (en) * 2018-10-19 2020-04-23 パナソニックIpマネジメント株式会社 Encoder and brushless motor comprising the same
EP4394329A1 (en) * 2022-12-31 2024-07-03 POLDI microelectronics GmbH Magnetic field measuring device
EP4394416A1 (en) * 2022-12-31 2024-07-03 POLDI microelectronics GmbH Integrated circuit for measuring magnetic fields and measuring the polarization of light
WO2024141657A1 (en) * 2022-12-31 2024-07-04 Poldi Microelectronics Gmbh Integrated circuit for measuring magnetic fields and for measuring the polarisation of light

Similar Documents

Publication Publication Date Title
JP3952971B2 (en) Wound-type common mode choke coil and manufacturing method thereof
JP6358194B2 (en) Coil parts
CN110660568B (en) Coil component
US5194806A (en) Strain sensor including an amorphous magnetic metal member, and a method of producing the strain sensor
KR20010098711A (en) Production method of anisotropic conductive film and anisotropic conductive film produced by this method
KR910000302B1 (en) Thin film magnetic head and its manufacturing method
JPS63277983A (en) Wiegand effect element and magnetic sensor
US11538624B2 (en) Wire wound inductor and manufacturing method thereof
JP4295744B2 (en) Round wire, coil, stator coil, rotor coil, and transformer
JPS63195913A (en) Magnet wire and manufacture thereof
JPH0442907A (en) Plane composite coil for plane transformer and its manufacture
JPH02256214A (en) Chip inductor and its manufacture
JPH0636214A (en) Coil component
US20070015349A1 (en) Method of producing a composite multilayer
JPS5898906A (en) Iron core
JPS6234121B2 (en)
US20030117249A1 (en) Inductive component and method for the production thereof
JPS63224209A (en) coil for core
JPH084653Y2 (en) Flat wire for coil
JP2633949B2 (en) Manufacturing method of magnetic head
JPH0342488B2 (en)
JPS605760A (en) How to manufacture printed coils
JP2002343140A (en) Flexible flat cable and manufacturing method thereof
JPH0340486B2 (en)
JPS5998506A (en) Inductance element