JPS6327725B2 - - Google Patents
Info
- Publication number
- JPS6327725B2 JPS6327725B2 JP55124314A JP12431480A JPS6327725B2 JP S6327725 B2 JPS6327725 B2 JP S6327725B2 JP 55124314 A JP55124314 A JP 55124314A JP 12431480 A JP12431480 A JP 12431480A JP S6327725 B2 JPS6327725 B2 JP S6327725B2
- Authority
- JP
- Japan
- Prior art keywords
- solar cell
- output
- voltage
- temperature
- converter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
Landscapes
- Direct Current Feeding And Distribution (AREA)
- Control Of Electrical Variables (AREA)
Description
【発明の詳細な説明】
(イ) 産業上の利用分野
本発明は太陽電池を電源とする変換装置の制御
装置に関する。DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention relates to a control device for a conversion device using a solar cell as a power source.
(ロ) 従来技術及びこの発明が解決しようとする問
題点
第6図はこれまでに提案されているソーラポン
プシステムの主回路の一構成例を示すもので、1
は太陽電池、2はダイオード、3はコンデンサ、
4は変換装置としてのインバータ、5は誘導電動
機6およびそれに接続されたポンプ7からなる負
荷を示す。なお、太陽電池1、ダイオード2、コ
ンデンサ3からなる部分が通常の電池、例えば鉛
またはアルカリ電池として動作することを示すこ
とを図式的に示すために描いた従来の電池を示
す。第6図には詳細には示してないが、インバー
タは例えばその動作周波数を変えることによつて
出力が変えられる可変周波数制御インバータから
なり、太陽光量の変化にかかわらず太陽電池1の
出力電圧を所定の範囲内に保つようにその出力は
電池電圧設定器(第6図には図示してない)から
与えられる電池電圧設定値と電池電圧検出器(図
示せず)からの電池電圧検出値との間の差に応じ
て周波数制御される。(b) Prior art and problems to be solved by the present invention Figure 6 shows an example of the configuration of the main circuit of a solar pump system that has been proposed so far.
is a solar cell, 2 is a diode, 3 is a capacitor,
Reference numeral 4 indicates an inverter as a converter, and 5 indicates a load consisting of an induction motor 6 and a pump 7 connected thereto. It should be noted that a conventional battery is shown for the purpose of diagrammatically illustrating that the part consisting of the solar cell 1, the diode 2 and the capacitor 3 operates as a conventional battery, for example a lead or alkaline battery. Although not shown in detail in FIG. 6, the inverter is, for example, a variable frequency control inverter whose output can be changed by changing its operating frequency. In order to maintain the output within a predetermined range, the output is divided into a battery voltage setting value given from a battery voltage setting device (not shown in Figure 6) and a battery voltage detection value from a battery voltage detector (not shown). The frequency is controlled according to the difference between
太陽電池とインバータ等の静止電力変換装置お
よびそれに接続された負荷からなるエネルギー変
換システムが上述のように提案されている。この
ようなシステムにおいて、太陽電池の出力は太陽
光量および電池温度の変化によつて変化し、変換
装置の制御を適切に行なわないと、太陽エネルギ
ーの効率良い利用は達成できない。 As described above, an energy conversion system consisting of a solar cell, a static power conversion device such as an inverter, and a load connected thereto has been proposed. In such a system, the output of the solar cell changes depending on the amount of sunlight and changes in the cell temperature, and efficient use of solar energy cannot be achieved unless the conversion device is appropriately controlled.
本発明の目的は、上記のようなエネルギー変換
システムにおいて、太陽光量の変化や電池温度の
変化があつた場合においても太陽エネルギーを効
率良く利用できるようにする制御装置を提供する
ことにある。 An object of the present invention is to provide a control device that enables efficient use of solar energy in the energy conversion system as described above even when there is a change in the amount of sunlight or a change in battery temperature.
(ハ) 問題点を解決するための原理及び手段
以下、変換装置がインバータで負荷が交流電動
機とそれに接続されたポンプからなる場合、すな
わち、本発明をいわゆるソーラポンプシステムに
適用した場合を例にとつて説明する。(c) Principles and means for solving the problems Below, we will take as an example a case where the converter is an inverter and the load is an AC motor and a pump connected to it, that is, the case where the present invention is applied to a so-called solar pump system. Let me explain.
まず、基礎として太陽電池の特性を説明する。 First, the characteristics of solar cells will be explained as a basis.
第1図は温度Ta=25℃の条件下において太陽
光量Epをパラメータにとつた場合の太陽電池の
出力電圧(V)対出力電流(A)の特性を示し、第2
図は温度Ta=25℃の条件下において太陽光量Ep
をパラメータにとつた場合の太陽電池の出力電圧
(V)対出力電力(W)の特性を示す。なお、第
1図においてIS1〜IS6は短絡電流値を示し、
VO1〜VO4は出力開放時電圧値を示す。 Figure 1 shows the characteristics of the output voltage (V) versus output current (A) of the solar cell when the amount of sunlight Ep is taken as a parameter under the condition of temperature Ta = 25°C.
The figure shows the amount of sunlight Ep under the condition of temperature Ta = 25℃
The characteristics of the output voltage (V) versus the output power (W) of the solar cell are shown when the parameter is taken as a parameter. In addition, in Fig. 1, IS1 to IS6 indicate short circuit current values,
VO1 to VO4 indicate voltage values when the output is open.
第2図から明らかなように、太陽光量の変化に
応じて常にその時点の最大出力を得るためには、
電池出力電圧をV1およびV2で示される所定の範
囲内に保つように、太陽電池に接続されたインバ
ータ(一般的に云えば、変換装置)および負荷の
出力制御を行なえばよい。 As is clear from Figure 2, in order to always obtain the maximum output at that point in time according to changes in the amount of sunlight,
The output of an inverter (generally speaking, a converter) and a load connected to the solar cell may be controlled so as to maintain the battery output voltage within a predetermined range indicated by V1 and V2.
第3図は太陽光量Ep=100mV/cm2の条件下に
おいて太陽電池温度Tcをパラメータにとつた場
合の太陽電池の出力電圧(V)対出力電流の特性
を示し、第4図は太陽光量Ep=100mV/cm2の条
件下において太陽電池温度Tcをパラメータにと
つた場合の太陽電池の出力電圧(V)対出力電力
(W)の特性を示す。なお、第4図の一点鎖線は
太陽電池の最大出力点を結ぶ線である。これらの
図面から明らかなように、前述のように太陽電池
の出力電圧を所定の範囲内に保つ制御のみでは電
池温度の変化による電力変化に対応できず、出力
制御に大幅な狂いを生じ、システム全体の効率を
低下させてしまう。 Figure 3 shows the characteristics of the output voltage (V) vs. output current of the solar cell when the solar cell temperature Tc is taken as a parameter under the condition of sunlight amount Ep = 100 mV/ cm2 , and Figure 4 shows the characteristics of the output voltage (V) versus output current of the solar cell under the condition of sunlight amount Ep = 100 mV/cm2. 2 shows the characteristics of the output voltage (V) versus output power (W) of the solar cell when the solar cell temperature Tc is taken as a parameter under the condition of = 100 mV/cm 2 . Note that the dashed-dotted line in FIG. 4 is a line connecting the maximum output points of the solar cells. As is clear from these drawings, simply controlling the output voltage of the solar cell within a predetermined range as described above cannot cope with power changes due to changes in battery temperature, resulting in significant output control errors and system failure. This will reduce the overall efficiency.
そこで、太陽電池温度の変化により出力電力特
性がどのように変化するかを知るために第4図の
特性を電池温度に対応する最大出力点における特
性に書き直したのが第5図である。なお、Tc=
25℃は基準値を示す。 Therefore, in order to understand how the output power characteristics change due to changes in the solar cell temperature, the characteristics in FIG. 4 are rewritten to the characteristics at the maximum output point corresponding to the battery temperature, as shown in FIG. In addition, Tc=
25℃ indicates the standard value.
第5図から、太陽電池温度の上昇に対し最大出
力点における出力電力Pout,出力電圧Voutとも
に直線的に減少することが分る。 From FIG. 5, it can be seen that both the output power Pout and the output voltage Vout at the maximum output point decrease linearly as the solar cell temperature increases.
従つて、太陽電池の出力電力を大幅に左右する
太陽光量および太陽電池温度の変化に適切に対応
した出力制御を行なうためには、太陽電池の出力
電圧を所定の範囲内に保つ制御を行なうループの
電池電圧指令値に太陽電池の温度変化分を加味す
る補正を行なえばよいことになる。本発明はこの
ことを考慮に入れ、太陽電池に直接シリコンパテ
等により結合される温度センサーを設け、上記電
池電圧指令値として電池電圧設定器より与えられ
る電圧設定値からこの太陽電池温度センサーの出
力値を差引いた値を用いるようにしたものであ
る。 Therefore, in order to perform output control that appropriately responds to changes in the amount of sunlight and solar cell temperature, which greatly affect the output power of solar cells, it is necessary to create a control loop that maintains the output voltage of solar cells within a predetermined range. What is necessary is to correct the battery voltage command value by taking into account the temperature change of the solar cell. Taking this into consideration, the present invention provides a temperature sensor that is directly connected to the solar cell with silicone putty, etc., and outputs the output of this solar cell temperature sensor from the voltage setting value given from the battery voltage setting device as the battery voltage command value. The value obtained by subtracting the value is used.
(ニ) 実施例
第7図は本発明の一実施例のブロツク回路図
で、8は温度センサー、9は増幅部Aおよび3本
の抵抗器を有する増幅器、10は電池電圧設定
器、11は加算器、12は加算点、13は電池電
圧調節器、14は電圧−周波数変換器15、電動
機電圧指令器16、パルス分配、成形回路17か
らなるインバータ制御部を示す。構成要素12〜
17からなる部分は第6図について先に述べたよ
うに太陽電池1の出力電圧を所定の範囲内に保つ
ように制御する部分で、これまでは電池電圧設定
器10からの信号を直接に加算点12に供給して
いたところを、構成要素8,9,11を付加した
ところが本発明に係る部分である。(D) Embodiment FIG. 7 is a block circuit diagram of an embodiment of the present invention, in which 8 is a temperature sensor, 9 is an amplifier having an amplifier section A and three resistors, 10 is a battery voltage setting device, and 11 is a 12 is an addition point, 13 is a battery voltage regulator, and 14 is an inverter control unit consisting of a voltage-frequency converter 15, a motor voltage command unit 16, and a pulse distribution and shaping circuit 17. Component 12~
17 is a part that controls the output voltage of the solar cell 1 to be kept within a predetermined range, as described above with reference to FIG. The part according to the present invention is the part where components 8, 9, and 11 are added to the part that was supplied to point 12.
次に第7図の回路の動作を説明する。 Next, the operation of the circuit shown in FIG. 7 will be explained.
まず、第2図の電池特性に従つて電池電圧が設
定され、一方、太陽電池1の温度監視を行なう温
度センサー8の出力電圧(温度上昇に従つて出力
電圧が直線的に増加する)を負極性で加算器11
に供給して電池電圧設定器10からの設定電圧値
に加算する。これにより、第5図の最大出力点に
おける太陽電池電圧(Vout)の特性に従つて太
陽電池温度に依存した補正が行なわれるこの加算
器11の出力が電池電圧調節器13に対する設定
となり太陽電池電圧検出値と比較される。電池電
圧調節器13の出力はこの種インバータ装置につ
いてよく知られる仕方でインバータの出力を制御
する。例えば、太陽電池の出力電圧が小さいと
き、もしポンプが最高回転速度で最大出力を発生
した場合、電池電圧検出値が低下し、電圧調節器
13の出力はインバータの出力周波数を低下させ
る方向、従つて出力電圧を低下させる方向に変化
する。従つてポンプの出力が低下し、電池電圧の
検出値が増加し、安定状態に到達する。 First, the battery voltage is set according to the battery characteristics shown in FIG. adder 11
and is added to the set voltage value from the battery voltage setter 10. As a result, the output of this adder 11, which is corrected depending on the solar cell temperature according to the characteristics of the solar cell voltage (Vout) at the maximum output point in FIG. It is compared with the detected value. The output of the battery voltage regulator 13 controls the output of the inverter in a manner well known for inverter devices of this type. For example, when the output voltage of the solar cell is small, if the pump generates the maximum output at the maximum rotation speed, the battery voltage detection value will decrease, and the output of the voltage regulator 13 will decrease in the direction of lowering the output frequency of the inverter. As a result, the output voltage changes in the direction of decreasing the output voltage. Therefore, the output of the pump decreases, the detected value of the battery voltage increases, and a stable state is reached.
以上本発明を変換装置が可変周波数制御インバ
ータからなり負荷が誘導電動機とポンプとからな
るソーラポンプシステムに適用した場合について
説明したが、本発明はそれに限定されるものでは
ない。変換装置は可変出力運転される変換装置な
らば任意のものにでき、負荷もその変換装置の出
力値に応じた出力値で作動するものならば任意の
ものにしうる。 Although the present invention has been described above as applied to a solar pump system in which the conversion device is a variable frequency control inverter and the load is an induction motor and a pump, the present invention is not limited thereto. The converter can be any converter that operates with variable output, and the load can be any converter that operates with an output value that corresponds to the output value of the converter.
(ホ) 効果
以上説明したように、本発明は、電池電圧調節
器に与える太陽電池電圧指令値を太陽電池温度の
増減に応じて減増するという指令値補正を行うこ
とにより負荷の出力制御を行なわせるように構成
したため、周囲条件に変化が生じた場合でも常に
電池電力が最大値で運転される。本発明の応用範
囲には、上述したソーラポンプシステム以外に、
直流、交流いずれであれ変換装置を介してフア
ン、ポンプ、ブロア等の負荷が接続されるシステ
ム全般が含まれる。(e) Effects As explained above, the present invention controls the output of the load by correcting the solar cell voltage command value given to the battery voltage regulator by decreasing or increasing it in accordance with the increase or decrease in the solar cell temperature. Since the system is configured to do this, even if there is a change in the ambient conditions, the battery power is always operated at the maximum value. The scope of application of the present invention includes, in addition to the above-mentioned solar pump system,
This includes all systems in which loads such as fans, pumps, and blowers are connected via converters, whether direct current or alternating current.
第1図は太陽光量をパラメータにした太陽電池
の出力電圧対出力電流の特性を示す図、第2図は
太陽光量をパラメータにした太陽電池の出力電圧
対出力電力の特性を示す図、第3図は太陽電池温
度をパラメータにした太陽電池の出力電圧対出力
電流の特性を示す図、第4図は太陽電池温度をパ
ラメータにした太陽電池の出力電圧対出力電力の
特性を示す図、第5図は太陽電池の温度対該温度
の最大出力点における電力及び電圧の特性を示す
図、第6図はソーラポンプシステムの主回路の一
構成例を示す図、第7図は本発明の一実施例を示
す図である。
1:太陽電池、4:インバータ、5:負荷、
8:太陽電池温度センサー、10:電池電圧設定
器、11:加算器、12:加算点、13:電池電
圧調節器、14:インバータ制御部、15:電圧
−周波数変換器、16:電動機電圧指令器、1
7:パルス分配、成形回路。
Figure 1 is a diagram showing the output voltage vs. output current characteristics of a solar cell with the amount of sunlight as a parameter. Figure 2 is a diagram showing the output voltage vs. output power characteristic of a solar cell with the amount of sunlight as a parameter. Figure 4 shows the output voltage vs. output current characteristics of a solar cell with solar cell temperature as a parameter. Figure 4 shows the output voltage vs. output power characteristic of a solar cell with solar cell temperature as a parameter. The figure shows the characteristics of the temperature of the solar cell versus the power and voltage at the maximum output point of the temperature, Figure 6 shows an example of the configuration of the main circuit of a solar pump system, and Figure 7 shows one implementation of the present invention. It is a figure which shows an example. 1: Solar cell, 4: Inverter, 5: Load,
8: Solar cell temperature sensor, 10: Battery voltage setter, 11: Adder, 12: Addition point, 13: Battery voltage regulator, 14: Inverter control unit, 15: Voltage-frequency converter, 16: Motor voltage command vessel, 1
7: Pulse distribution, shaping circuit.
Claims (1)
装置と、この変換装置から給電される負荷とを具
備し、太陽光量の変化にかかわらずその都度可能
な最大出力を負荷へ供給するように太陽電池電圧
に対して所定の指令値を与える設定手段と、検出
される太陽電池電圧が前記設定手段によつて与え
られた指令値に一致するように前記変換装置を制
御する調節手段を備えたエネルギー変換システム
において、太陽電池温度センサーを設け、前記設
定手段によつて与えられる指令値をこのセンサー
の出力値に応じて、温度上昇にともなつて該指令
値を低下させるように変化させることにより、温
度に依存した最大出力点のずれを補償するように
したことを特徴とする太陽電池で駆動される変換
装置の制御装置。 2 特許請求の範囲第1項記載の制御装置におい
て、変換装置はその動作周波数を変えることによ
つて出力が変えられる可変周波数制御インバータ
からなるようにしたことを特徴とする太陽電池で
駆動される変換装置の制御装置。[Scope of Claims] 1. A solar cell that includes a solar cell, a conversion device driven by the solar cell, and a load supplied with power from the conversion device, and provides the maximum possible output to the load each time regardless of changes in the amount of sunlight. a setting means for giving a predetermined command value to the solar cell voltage so that the voltage is supplied to the solar cell; and controlling the conversion device so that the detected solar cell voltage matches the command value given by the setting means. In an energy conversion system equipped with an adjustment means, a solar cell temperature sensor is provided, and the command value given by the setting means is set so as to decrease the command value as the temperature rises in accordance with the output value of the sensor. 1. A control device for a converter driven by a solar cell, characterized in that the temperature-dependent shift in the maximum output point is compensated for by changing the temperature. 2. In the control device according to claim 1, the converter is driven by a solar cell, characterized in that it is comprised of a variable frequency control inverter whose output can be changed by changing its operating frequency. Control device for converter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55124314A JPS5749328A (en) | 1980-09-08 | 1980-09-08 | Control device for converter driven by solar battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55124314A JPS5749328A (en) | 1980-09-08 | 1980-09-08 | Control device for converter driven by solar battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5749328A JPS5749328A (en) | 1982-03-23 |
JPS6327725B2 true JPS6327725B2 (en) | 1988-06-06 |
Family
ID=14882257
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP55124314A Granted JPS5749328A (en) | 1980-09-08 | 1980-09-08 | Control device for converter driven by solar battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5749328A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58172725A (en) * | 1982-04-03 | 1983-10-11 | Fuji Electric Co Ltd | Control device for solar power generation system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5338994A (en) * | 1976-09-21 | 1978-04-10 | Nec Corp | Power supply unit for solar battery |
JPS5429029A (en) * | 1977-08-04 | 1979-03-03 | Rca Corp | Apparatus for transmitting electric power in other direction |
JPS5686030A (en) * | 1979-11-26 | 1981-07-13 | Exxon Research Engineering Co | Method and device for controlling application of dc output from solar battery to load |
-
1980
- 1980-09-08 JP JP55124314A patent/JPS5749328A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5338994A (en) * | 1976-09-21 | 1978-04-10 | Nec Corp | Power supply unit for solar battery |
JPS5429029A (en) * | 1977-08-04 | 1979-03-03 | Rca Corp | Apparatus for transmitting electric power in other direction |
JPS5686030A (en) * | 1979-11-26 | 1981-07-13 | Exxon Research Engineering Co | Method and device for controlling application of dc output from solar battery to load |
Also Published As
Publication number | Publication date |
---|---|
JPS5749328A (en) | 1982-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS60238918A (en) | Control device of variable speed motor | |
JPS6146186A (en) | Speed controlling method | |
JPH09261949A (en) | Dc/dc converter and solar generation system | |
US4446414A (en) | Terminal voltage limit regulator for a load commutated inverter | |
JP3283134B2 (en) | PWM converter device | |
JP6078416B2 (en) | Inverter | |
WO2017064820A1 (en) | Electric power generation system and its control system | |
JPS6327725B2 (en) | ||
JPS63181015A (en) | Maximum output control method for solar power generation equipment | |
JP3484506B2 (en) | Power control device and power generation system using the same | |
JPS6042713B2 (en) | Inverter control device | |
JPS5932398A (en) | Automatic voltage regulator | |
JPS61173698A (en) | Variable speed water turbine generator | |
US10819118B2 (en) | Method for operating inverter and inverter arrangement | |
KR0148833B1 (en) | Voltage control device of main shaft drive generator | |
JPS6122557B2 (en) | ||
JP2000020149A (en) | Sunshine inverter device | |
JP3019931B2 (en) | Inverter device | |
JPH0230998B2 (en) | ||
JPS6033760Y2 (en) | electric generator | |
JPS5915275Y2 (en) | Control device for static frequency converter | |
SU1342460A2 (en) | Water supply system for irrigation | |
JP2544555Y2 (en) | Voltage control device for main shaft drive generator | |
JPS6345616A (en) | Controller for solar pump | |
JPS6148724B2 (en) |