JPS63274692A - Synthesis of diamond - Google Patents
Synthesis of diamondInfo
- Publication number
- JPS63274692A JPS63274692A JP10919387A JP10919387A JPS63274692A JP S63274692 A JPS63274692 A JP S63274692A JP 10919387 A JP10919387 A JP 10919387A JP 10919387 A JP10919387 A JP 10919387A JP S63274692 A JPS63274692 A JP S63274692A
- Authority
- JP
- Japan
- Prior art keywords
- diamond
- gas
- raw material
- carbon monoxide
- hydrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010432 diamond Substances 0.000 title claims abstract description 46
- 229910003460 diamond Inorganic materials 0.000 title claims abstract description 41
- 230000015572 biosynthetic process Effects 0.000 title description 3
- 238000003786 synthesis reaction Methods 0.000 title description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 claims abstract description 29
- 239000000758 substrate Substances 0.000 claims abstract description 20
- 239000007789 gas Substances 0.000 claims description 46
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 27
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 23
- 239000001257 hydrogen Substances 0.000 claims description 19
- 229910052739 hydrogen Inorganic materials 0.000 claims description 19
- 238000001308 synthesis method Methods 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 37
- 239000002994 raw material Substances 0.000 abstract description 16
- 238000000151 deposition Methods 0.000 abstract description 14
- 230000008021 deposition Effects 0.000 abstract description 13
- 238000005268 plasma chemical vapour deposition Methods 0.000 abstract description 10
- 239000000126 substance Substances 0.000 abstract description 8
- 238000010884 ion-beam technique Methods 0.000 abstract description 3
- 230000005281 excited state Effects 0.000 abstract description 2
- 239000008246 gaseous mixture Substances 0.000 abstract 4
- 238000005019 vapor deposition process Methods 0.000 abstract 2
- 238000004544 sputter deposition Methods 0.000 abstract 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 16
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 15
- 238000006243 chemical reaction Methods 0.000 description 10
- 238000001069 Raman spectroscopy Methods 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 229930195733 hydrocarbon Natural products 0.000 description 8
- 150000002430 hydrocarbons Chemical group 0.000 description 8
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 8
- 239000011787 zinc oxide Substances 0.000 description 8
- 230000002194 synthesizing effect Effects 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 4
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 229910000423 chromium oxide Inorganic materials 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 238000004611 spectroscopical analysis Methods 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 238000007740 vapor deposition Methods 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 2
- 239000005751 Copper oxide Substances 0.000 description 2
- YZCKVEUIGOORGS-UHFFFAOYSA-N Hydrogen atom Chemical compound [H] YZCKVEUIGOORGS-UHFFFAOYSA-N 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 229910000431 copper oxide Inorganic materials 0.000 description 2
- 239000012776 electronic material Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002309 gasification Methods 0.000 description 2
- 229910021385 hard carbon Inorganic materials 0.000 description 2
- 239000012770 industrial material Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 229910000464 lead oxide Inorganic materials 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000007737 ion beam deposition Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000029052 metamorphosis Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- -1 oxides Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
この発明はダイヤモンドの合成方法に関し、さらに詳し
く言うと、たとえば各種保護膜、光学用材料、電子材料
、化学工業材料などに広く利用することができるダイヤ
モンドを速い速度で効率よく堆積させるダイヤモンドの
合成方法に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for synthesizing diamond, and more specifically, it can be widely used in various protective films, optical materials, electronic materials, chemical industrial materials, etc. This invention relates to a diamond synthesis method that efficiently deposits diamonds at a high speed.
[従来の技術およびその問題点1
近年、ダイヤモンドの合成技術が著しい発展を遂げつつ
あり、これまでに、炭化水素をプラズマ分解して基板表
面に硬質炭素を得るプラズマCvD法、不均等化学反応
を利用して基板表面に硬質炭素膜を得る化学輸送法など
のCVD法、熱陰極P!Gガン、冷陰極PIGガンある
いはスパッターガンを用いたイオン化蒸若法などの種々
の合成技術が知られるに至っている。[Conventional technology and its problems 1 Diamond synthesis technology has been making remarkable progress in recent years, and so far, the plasma CvD method, which produces hard carbon on the substrate surface by plasma decomposition of hydrocarbons, and the plasma CVD method, which uses asymmetric chemical reaction, CVD methods such as chemical transport methods to obtain a hard carbon film on the substrate surface using hot cathode P! Various synthesis techniques have become known, such as ionization vaporization using a G gun, cold cathode PIG gun, or sputter gun.
ところで、従来、提案されてさた方法は、原料に炭化水
素または炭化水素と水素との混合ガスを用いるものであ
り(特開昭58−91100号公報、特開昭58−11
0494号公報、特開昭58−135117号公報。By the way, the methods that have been proposed so far use hydrocarbons or a mixed gas of hydrocarbons and hydrogen as the raw material (Japanese Patent Application Laid-open No. 58-91100, Japanese Patent Application Laid-Open No. 58-11).
No. 0494, JP-A-58-135117.
特開昭59−83732号公報、特開昭80−1030
99号公報等参照)、これらの方法はダイヤモンドの堆
積速度が遅いという聞届を有していた。JP-A-59-83732, JP-A-80-1030
99, etc.), these methods have been reported to have a slow diamond deposition rate.
そこで、ダイヤモンドの堆積速度の向上を図ることを目
的として、炭化水素と水素とからなる混合ガスに一酸化
炭素を含有させた原料ガスを用いる方法が提案されてい
る(特開昭110−191097号公報参照)。Therefore, in order to improve the diamond deposition rate, a method has been proposed that uses a raw material gas containing carbon monoxide in a mixed gas of hydrocarbon and hydrogen (Japanese Patent Laid-Open No. 110-191097). (see official bulletin).
しかしながら、前記公報に記載された方法は従来の方法
において用いられてきた原料ガスに新たに一酸化炭素を
含有させる必要があるので、原料ガスの調製が複雑化す
るとともに、その操作が煩雑であるという看たな問題を
有している。さらに、前記公報によると、炭化水素に配
合する一酸化炭素の配合含有量をto61%よりも多く
すると、基体表面に析出する人工ダイヤモンド中の酸素
含有量が多くなりすぎて、ダイヤモンドの結晶構造が損
なわれるようになると言う重大な欠点がある。However, the method described in the above publication requires carbon monoxide to be newly added to the raw material gas used in the conventional method, which complicates the preparation of the raw material gas and makes the operation complicated. There is an obvious problem. Furthermore, according to the above-mentioned publication, if the content of carbon monoxide added to the hydrocarbon is increased to more than 61%, the oxygen content in the artificial diamond deposited on the surface of the substrate becomes too high, causing the crystal structure of the diamond to change. There is a serious drawback that it becomes damaged.
そこで、操作が簡単で、しかも堆積速度が速くて、生産
効率に優れた、結晶構造の損なわれていないダイヤモン
ドの合成方法への要請は依然として強いのが現状である
。Therefore, there is still a strong need for a method for synthesizing diamond with an intact crystal structure that is easy to operate, has a high deposition rate, and has excellent production efficiency.
[発明の目的J
この発明の目的は、前記要請に応え、高周波プラズマC
VD法、マイクロ波プラズマCvD法、熱フィラメン)
CVD法、化学輸送法、イオン化蒸着法、イオンビーム
蒸着法等のいずれの方法による場合であっても、堆積速
度が速く、シかも原料ガスの調製に要する操作がきわめ
て簡単で生産効率に優れた。結晶構造に乱れのないダイ
ヤモンドの合成方法を提供することである。[Objective of the Invention J] An object of the present invention is to meet the above-mentioned request and to
VD method, microwave plasma CvD method, hot filament)
No matter which method is used, such as CVD, chemical transport, ionization vapor deposition, or ion beam vapor deposition, the deposition rate is fast, and the operations required to prepare the raw material gas are extremely simple, resulting in excellent production efficiency. . An object of the present invention is to provide a method for synthesizing diamond without disordering the crystal structure.
前記目的を達成するために、この発明者が鋭意検討を重
ねた結果、一酸化炭素ガスと水素ガスとの混合ガスを原
料に用いた場合には、驚くべきことに、従来、必須の原
料とされていた炭化水素を用いなくてもダイヤモンドを
製造することができ、しかも、炭化水素を用いた場合に
比較して速い堆積速度で効率よくダイヤモンドが合成で
きることをを見い出してこの発明に到達した。In order to achieve the above object, the inventor has made extensive studies and found that when a mixed gas of carbon monoxide gas and hydrogen gas is used as a raw material, it is surprisingly possible to This invention was achieved by discovering that diamonds can be produced without the use of hydrocarbons, and that diamonds can be synthesized more efficiently at a faster deposition rate than when hydrocarbons are used.
すなわち、この発明の概要は、一酸化炭素と水素とを、
水素ガスが工容量%以上となる割合で、含有する混合ガ
スを励起して得られるガスを、基板に接触させることを
特徴とするダイヤモンドの合成方法である。That is, the outline of this invention is that carbon monoxide and hydrogen are
This method of synthesizing diamond is characterized in that a gas obtained by exciting a mixed gas containing hydrogen gas is brought into contact with a substrate at a ratio of hydrogen gas equal to or higher than the working volume.
使用に供する前記一酸化炭素としては特に制限がなく、
たとえば石炭、コークスなどと空気または水蒸気を熱時
反応させて得られる発生炉ガスや水性ガスを充分に精製
したものを用いることができる。The carbon monoxide to be used is not particularly limited,
For example, sufficiently purified generator gas or water gas obtained by thermally reacting coal, coke, etc. with air or steam can be used.
使用に供する前記水素について特に制限がなく、たとえ
ば石油類のガス化、天然ガス、水性ガスなどの変成、水
の電解、鉄と水蒸気との反応。There are no particular restrictions on the hydrogen to be used, for example, gasification of petroleum, metamorphosis of natural gas, water gas, etc., electrolysis of water, reaction of iron and steam.
石炭の完全ガス化などにより得られるものを充分に精1
したものを用いることができる。Thoroughly refine what is obtained through complete gasification of coal, etc.
can be used.
この発明の方法においては、lX料ガスとして一酸化炭
素と前記水素とを、一酸化炭素ガスの含有量が1容量%
以上、好ましくは3容量%以上、さらに好ましくは5容
量%以上となる割合で、含有する混合ガスを励起して得
られるガスを、基板に接触させることにより基板上にダ
イヤモンドを堆積させる。In the method of this invention, carbon monoxide and the hydrogen are used as the lX material gas, and the content of the carbon monoxide gas is 1% by volume.
Diamond is deposited on the substrate by bringing the gas obtained by exciting the mixed gas contained above into contact with the substrate at a ratio of preferably 3% by volume or more, more preferably 5% by volume or more.
前記混合ガス中の水素ガスの含有量が1容量%よりも少
ないとダイヤモンドが生威しなかったり、ダイヤモンド
がたとえ生成してもその堆積速度が著しく小さい。If the content of hydrogen gas in the mixed gas is less than 1% by volume, diamonds may not survive, or even if diamonds are formed, their deposition rate is extremely low.
前記基板には、特に制限がなく、たとえばシリコン、ア
ルミニウム、チタン、タングステン、モリブデン、コバ
ルトおよびクロムなどの金属、これらの酸化物、窒化物
および炭化物、これらの合金、 Al203−Fl!系
、TiC−11i系、Tie−Go系および84 C−
Fe系等のサーメットならびに各種セラミックスからな
るもののいずれをも使用することができる。The substrate is not particularly limited, and includes, for example, metals such as silicon, aluminum, titanium, tungsten, molybdenum, cobalt, and chromium, oxides, nitrides, and carbides thereof, alloys thereof, Al203-Fl! system, TiC-11i system, Tie-Go system and 84 C-
Both Fe-based cermets and various ceramics can be used.
前記原料ガスを励起して励起状態の炭素を含有する前記
原料ガスを得る手段としては、たとえばプラズマCVD
法、スバフタ法、イオン化蒸着法、イオンビーム蒸着法
、熱フイラメント法、化学輸送法などの従来より公知の
方法を用いることができる。As a means for exciting the raw material gas to obtain the raw material gas containing carbon in an excited state, for example, plasma CVD is used.
Conventionally known methods can be used, such as a vacuum deposition method, a vacuum deposition method, an ionization deposition method, an ion beam deposition method, a thermal filament method, and a chemical transport method.
前記プラズマCVD法を用いる場合には、前記水素は高
岡波またはマイクロ波の照射(よってプラズマを形成し
、前記化学輸送法および熱フイラメント法などのCVD
法を用いる場合には、前記水素は熱または放電により原
子状水素を形成する。When the plasma CVD method is used, the hydrogen is irradiated with Takaoka waves or microwaves (thus forming a plasma), and the hydrogen is heated by CVD methods such as the chemical transport method and the hot filament method.
When using the method, the hydrogen forms atomic hydrogen by heat or electric discharge.
この原子状水素は、ダイヤモンドの析出と同時に析出す
る黒鉛構造の炭素を除去する作用を有する。This atomic hydrogen has the effect of removing carbon in the graphite structure that is deposited at the same time as the diamond is deposited.
この発明の方法においては、前記原料ガスのキャリヤー
として、不活性ガスを用いることもできる。In the method of this invention, an inert gas can also be used as a carrier for the raw material gas.
不活性ガスの具体例としては、アルゴンガス、ネオンガ
ス、ヘリウムガス、キセノンガス、窒素ガスなどが挙げ
られる。Specific examples of the inert gas include argon gas, neon gas, helium gas, xenon gas, and nitrogen gas.
これらは、1種単独で用いてもよいし、2種以上を組合
わせて用いてもよい。These may be used alone or in combination of two or more.
この発明の方法においては、以下の条件下に反応が進行
して、1&板上にダイヤモンドが析出する。In the method of this invention, the reaction proceeds under the following conditions, and diamond is deposited on the 1& plate.
すなわち、前記基板の表面の温度は、前記原料ガスの励
起手段によって異なるので、−概に決定することはでき
ないが、たとえばプラズマCVD法を用いる場合には1
通常、400℃〜1000℃、好ましくは450℃〜9
50℃である。この温度が400℃より低い場合には、
ダイヤモンドの堆積速度が遅くなったり、励起状態の炭
素が生成しないことがある。一方、 tooo℃より高
い場合には、基板上に堆積したダイヤモンドがエツチン
グにより削られてしまい、堆積速度の向上が見られない
ことがある。That is, since the temperature of the surface of the substrate varies depending on the excitation means of the source gas, it cannot be determined generally, but for example, when using the plasma CVD method,
Usually 400℃~1000℃, preferably 450℃~9
The temperature is 50°C. If this temperature is lower than 400℃,
Diamond deposition rate may be slow or excited carbon may not be produced. On the other hand, if the temperature is higher than too°C, the diamond deposited on the substrate may be etched away, and no improvement in the deposition rate may be observed.
反応圧力は1通常、101〜103torr、好ましく
は1〜800 torrである0反応圧力が10−コt
artよりも低い場合には、ダイヤモンドの堆積速度が
遅くなったり、ダイヤモンドが析出しなくなったりする
。一方、 1(l torrより高くしてもそれに相当
する効果は得られない。The reaction pressure is usually 101 to 103 torr, preferably 1 to 800 torr, and the reaction pressure is 10 torr.
When it is lower than art, the diamond deposition rate becomes slow or diamond does not precipitate. On the other hand, even if it is made higher than 1(l torr), a corresponding effect cannot be obtained.
この発明の方法により得ることのできるダイヤモンドは
、たとえば切削工具の表面保M!lなどの各種保i1m
、光学用材料、電子材料、化学工業材料などに好適に利
用することができる。The diamond that can be obtained by the method of the present invention can be used, for example, to protect the surface of cutting tools! Various types of protection i1m such as l
, optical materials, electronic materials, chemical industrial materials, etc.
[発明の効果] この発明によると、高周波プラズマCVD法。[Effect of the invention] According to this invention, a high frequency plasma CVD method.
マイクロ波プラズマCVD法、FAフィラメントCVD
法、化学輸送法、イオン化蒸着法、イオンビーム蒸着法
等のいずれの方法による場合であっても、一酸化炭素と
水素との混合ガスを原料として、速い堆積速度でダイヤ
モンドを合成することができるので、
(1) 炭化水素を用いる場合のように、原料ガスの
調製が複雑化したり、操作が煩雑になったりすることが
なく。Microwave plasma CVD method, FA filament CVD
Diamond can be synthesized at a high deposition rate using a mixed gas of carbon monoxide and hydrogen as a raw material, regardless of the method used, such as the chemical transport method, ionization vapor deposition method, or ion beam vapor deposition method. Therefore, (1) Unlike when using hydrocarbons, the preparation of raw material gas does not become complicated or the operations become complicated.
(2)シかも、生産効率に優れる。(2) Excellent production efficiency.
(3) ダイヤモンドの結晶構造に乱れがない等の効
果を有する工業的に有利なダイヤモンドの合成方法を提
供することができる。(3) It is possible to provide an industrially advantageous method for synthesizing diamond, which has the effect of not causing disorder in the crystal structure of diamond.
[実施例]
次いで、この発明の実施例および比較例を示し、この発
明についてさらに具体的に説明する。[Example] Next, Examples and Comparative Examples of the present invention will be shown to further specifically explain the present invention.
(実施例1)
周波数2.45G[zのマイクロ波電源を使用し、基板
温度900℃、圧力50torrの条件下に出力を50
0Wに設定した。(Example 1) A microwave power source with a frequency of 2.45G
It was set to 0W.
次に、この反応室内に一酸化炭素を流量5mccm、水
素を流量115mcc−で導入して、マイクロ波プラズ
マCVD法によりダイヤモンドの合成を1時間行って、
前記温度に制御した基板上に厚み10#Lmの堆積物を
得た。なお、基板にはシリコンウェハを用いた。Next, carbon monoxide was introduced into the reaction chamber at a flow rate of 5 mcc, and hydrogen was introduced at a flow rate of 115 mcc, and diamond was synthesized for 1 hour by microwave plasma CVD.
A deposit with a thickness of 10 #Lm was obtained on the substrate controlled at the above temperature. Note that a silicon wafer was used as the substrate.
得られた堆積物について、ラマン分光分析を行なったと
ころ、ラマン散乱スペクトルの1333c+++−1付
近にダイヤモンドに起因するピークが見られ、不純物の
ないダイヤモンドであることを確認した。When the obtained deposit was subjected to Raman spectroscopic analysis, a peak attributed to diamond was observed near 1333c+++-1 in the Raman scattering spectrum, confirming that it was diamond without impurities.
(比較例1) 前記実施例1において、一酸化炭素に代えて。(Comparative example 1) In Example 1, instead of carbon monoxide.
メタンガスを用いたほかは前記実施例1と同様にしてダ
イヤモンドの合成を行なった。Diamond was synthesized in the same manner as in Example 1 except that methane gas was used.
その結果、厚み1.0pmの堆積物しか得られず、前記
実施例1に比較してその堆積速度はl/lOに低下した
。As a result, a deposit with a thickness of only 1.0 pm was obtained, and the deposition rate was lowered to 1/1O compared to Example 1.
(実施例2)
前記実施例1において、基板にWC−Go(Co量12
%)を用い′るとともに、基板温度800℃、圧力40
torr、一酸化炭素の流130sccm、水素の流量
70xccmの条件下に1時間反応を行なってダイヤモ
ンドを合成したところ、基板上に厚み6終mの堆積物を
得た。(Example 2) In Example 1, WC-Go (Co amount 12
%), and the substrate temperature was 800°C and the pressure was 40°C.
torr, carbon monoxide flow rate of 130 sccm, and hydrogen flow rate of 70 x cm, the reaction was carried out for 1 hour to synthesize diamond, and a deposit with a thickness of 6 m was obtained on the substrate.
得られた堆積物について、ラマン分光分析を行なったと
ころ、ラマン散乱スペクトルの1333cm−1付近に
ダイヤモンドに起因するピークが見られ。When the obtained deposit was subjected to Raman spectroscopic analysis, a peak attributed to diamond was observed near 1333 cm-1 in the Raman scattering spectrum.
不純物のないダイヤモンドであることを確認した。It was confirmed that the diamond was free of impurities.
(比較例2)
前記実施例2において、一酸化炭素に代えてメタンガス
と一酸化炭素とを用い、メタンガスの流量5 sccm
、一酸化炭素のlIl、量3 sccmとしたほかは前
記実施例2と同様にしてダイヤモンドの合成を行なった
。(Comparative Example 2) In Example 2, methane gas and carbon monoxide were used instead of carbon monoxide, and the flow rate of methane gas was 5 sccm.
Diamond was synthesized in the same manner as in Example 2 except that the amount of carbon monoxide was 3 sccm.
その結果、厚み3日mの堆積物しか得られず。As a result, only a deposit with a thickness of 3 days was obtained.
その堆桔速度は前記実施例2に比較して1/2であった
。The sedimentation rate was 1/2 compared to that of Example 2.
(実施例3)
前記実施例1において、シリコンの基板を用い、マイク
ロ波出力を400Wにし、基板温度を800℃にし、圧
力を40torrにし、一酸化炭素の流量を80scc
mにし、水素の流量を20gcc腸にした条件下に1時
間の反応を行なった他は前記実施例1と同様にしてダイ
ヤモンドを合成したところ、基板上に厚み12μmの堆
積物を得た。(Example 3) In Example 1, a silicon substrate was used, the microwave output was set to 400 W, the substrate temperature was set to 800°C, the pressure was set to 40 torr, and the flow rate of carbon monoxide was set to 80 sc.
Diamond was synthesized in the same manner as in Example 1, except that the reaction was carried out for 1 hour under conditions where the hydrogen flow rate was 20 gcc, and a deposit with a thickness of 12 μm was obtained on the substrate.
得られた堆積物について、ラマン分光分析を行なったと
ころ、ラマン散乱スペクトルの1333cm−’付近に
ダイヤモンドに起因するピークが見られ、不純物のない
ダイヤモンドであることを確認した。When the obtained deposit was subjected to Raman spectroscopic analysis, a peak attributed to diamond was observed near 1333 cm-' in the Raman scattering spectrum, confirming that it was diamond without impurities.
(比較例3)
前記実施例3において、一酸化炭素の流儀を0゜5sc
c厘に代えると共に水素の流量を100+cc璽にした
他は前記実施例3と同様にしてダイヤモンドの合成を行
なった。(Comparative Example 3) In Example 3, the carbon monoxide method was changed to 0°5sc.
Diamond was synthesized in the same manner as in Example 3, except that the flow rate of hydrogen was changed to 100+cc.
その結果、1時間の反応を行っても基板の表面手続補正
書
昭和62年12月 9日
昭和62年特許願第109193号
2 発明の名称
ダイヤモンドの合成方法
3 補正をする者
事件との関係 特許出願人
住所 東京都千代田区丸の内三丁目1番1号名
称 出光石油化学株式会社
代表者 水郷 睦
4 イ犬flノ(
住所 東京都新宿区西新宿八丁目9番5号セン
トラル西新宿三階
氏名 弁理士(8759)福村直樹5 補正命
令の日付 なし:自発
6 補正により増加する発明の数 07 補正の対
象 明細1tJの「発明の詳細な説明」の欄8
補正の内容
(1) 明細書の第4ページ第12行および第5ペー
ジ第13行に記載の「水素ガス」を「一酸化炭素」に補
正する。As a result, even after one hour of reaction, the surface procedure of the substrate was not corrected. December 9, 1988 Patent Application No. 109193 of 1988 2 Title of Invention Method for Synthesizing Diamond 3 Relationship with the Amendment Person Case Patent Applicant address: 3-1-1 Marunouchi, Chiyoda-ku, Tokyo Name: Idemitsu Petrochemical Co., Ltd. Representative: Mutsumi Suigo 4 Iinuflno (Address: 3rd floor, Central Nishi-Shinjuku, 8-9-5 Nishi-Shinjuku, Shinjuku-ku, Tokyo Name: Patent attorney Specialist (8759) Naoki Fukumura 5 Date of amendment order None: spontaneous 6 Number of inventions increased by amendment 07 Target of amendment Column 8 of “Detailed explanation of the invention” of specification 1tJ
Contents of amendment (1) "Hydrogen gas" described in page 4, line 12 and page 5, line 13 of the specification is corrected to "carbon monoxide."
(2) 明細書の第4ページ第19〜20行に記載の
「ものを用いることができる。」をrもの、酸化亜鉛、
酸化亜鉛と酸化クロム、酸化亜鉛と酸化鉄、酸化亜鉛と
酸化マグネシウム、酸化亜鉛と酸化銅と酸化クロムなど
を相持したシリカ触媒の存在下にメタノールを分解して
得られるもの、あるいはボンベに充填された市原の一酸
化炭素ガスを用いることができる。」に補正する。(2) The phrase “can be used” on page 4, lines 19 to 20 of the specification can be replaced with “r”, zinc oxide,
It is obtained by decomposing methanol in the presence of a silica catalyst containing zinc oxide and chromium oxide, zinc oxide and iron oxide, zinc oxide and magnesium oxide, zinc oxide, copper oxide, and chromium oxide, or it is filled in a cylinder. Ichihara's carbon monoxide gas can be used. ”.
(3) 明細書の第5ページ第5行に記載のrものを
用いることができる。」をrもの、あるいは、酸化夏鉛
、酸化亜鉛と酸化クロムl化亜鉛と酸化鉄、#化夏鉛と
酸化マグネシウム、酸化亜鉛と酸化銅と酸化クロムなど
を担持したシリカ触媒の存在下にメタノールを分解して
得られるものを用いることができる。」に補正する。(3) It is possible to use the material described in the fifth line of page 5 of the specification. methanol in the presence of a silica catalyst supporting lead oxide, zinc oxide and chromium oxide, zinc oxide and iron oxide, lead oxide and magnesium oxide, zinc oxide, copper oxide, chromium oxide, etc. The product obtained by decomposing can be used. ”.
(0明細書の第5ページ第16行と17行との間に以下
の記載を挿入する。(Insert the following statement between lines 16 and 17 on page 5 of the 0 specification.
記
「 前記混合ガスは前記一酸化炭素と水素とを前記所定
の混合比となるように7A製して混合することにより得
ることができる。メタノールを前記シリカ触媒の存在下
に分解して得た生成ガスを使用する場合、その生成ガス
は通常一酸化炭素と水素との混合物となっているので1
本発明における混合ガスとするために、前記生成ガスに
さらに一酸化炭素あるいは水素を添加しても良い、なお
、この生成ガスを使用すると、市販の一酸化炭素ガスを
使用する際の危険性を回避することができる。」
(5) 明細書の第6ページ第5行に記載の「前記原
料ガス」を「混合ガス」に補正する。Note: The mixed gas can be obtained by mixing the carbon monoxide and hydrogen at the predetermined mixing ratio.Methanol is obtained by decomposing methanol in the presence of the silica catalyst. When using generated gas, the generated gas is usually a mixture of carbon monoxide and hydrogen, so
In order to obtain a mixed gas in the present invention, carbon monoxide or hydrogen may be further added to the generated gas. Note that using this generated gas reduces the danger of using commercially available carbon monoxide gas. can be avoided. (5) "The raw material gas" described in the fifth line of page 6 of the specification is corrected to "mixed gas."
(6) 明細書の第6行に記載の「原料ガス」を「ガ
ス」に補正する。(6) “Raw material gas” stated in line 6 of the specification shall be amended to “gas”.
(7) 明細書の第12ページ第12行の次に以下の
記載を追加する。(7) Add the following statement after the 12th line of the 12th page of the specification.
[(実施例4)
実施例1において1反応室内に一酸化炭素を流bt5s
ccmおよび水素をmi95gccmで導入する代りに
、シリカ触媒の存在下にメタノールを分解して得た一酸
化炭素と水素とを含有する生成ガスを流量50gccm
および水素を流量50scc讃で導入した(Co/Hy
’B量比= 14/86 )ほかは前記実施例1と同様
に実施した。[(Example 4) In Example 1, carbon monoxide was flowed into one reaction chamber bt5s
ccm and hydrogen at mi95 gccm, a product gas containing carbon monoxide and hydrogen obtained by decomposing methanol in the presence of a silica catalyst was introduced at a flow rate of 50 gccm.
and hydrogen were introduced at a flow rate of 50scc (Co/Hy
'Amount ratio of B = 14/86) was carried out in the same manner as in Example 1 above.
その結果、厚み5Bmの堆積物を得た。As a result, a deposit with a thickness of 5 Bm was obtained.
その堆積物について、ラマン分光分析を行なったところ
、ラマン散乱スペクトルの1333cm−’付近にダイ
ヤモンドに起因するピークが見られ不純物のないダイヤ
モンドであることを確認した。」以上When the deposit was subjected to Raman spectroscopic analysis, a peak attributed to diamond was observed near 1333 cm-' in the Raman scattering spectrum, and it was confirmed that the deposit was diamond free of impurities. "that's all
Claims (1)
上となる割合で、含有する混合ガスを励起して得られる
ガスを、基板に接触させることを特徴とするダイヤモン
ドの合成方法。(1) A diamond synthesis method characterized by bringing a substrate into contact with a gas obtained by exciting a mixed gas containing carbon monoxide and hydrogen at a ratio of carbon monoxide of 1% by volume or more. .
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10919387A JPS63274692A (en) | 1987-05-02 | 1987-05-02 | Synthesis of diamond |
EP88106419A EP0288065B1 (en) | 1987-04-22 | 1988-04-21 | Method for synthesis of diamond |
US07/184,561 US4985227A (en) | 1987-04-22 | 1988-04-21 | Method for synthesis or diamond |
NO881723A NO881723L (en) | 1987-04-22 | 1988-04-21 | PROCEDURE AND DEVICE FOR DIAMOND MANUFACTURING. |
DE88106419T DE3884658T2 (en) | 1987-04-22 | 1988-04-21 | Diamond synthesis process. |
KR1019880004591A KR910008728B1 (en) | 1987-04-22 | 1988-04-22 | Apparatus and method for synthesis of diamond |
CA000564794A CA1327772C (en) | 1987-04-22 | 1988-04-22 | Method for synthesis of diamond |
US07/308,087 US4984534A (en) | 1987-04-22 | 1989-02-09 | Method for synthesis of diamond |
KR1019910008772A KR910008729B1 (en) | 1987-04-22 | 1991-05-29 | Method for synthesis of diamond |
NO940494A NO940494D0 (en) | 1987-04-22 | 1994-02-14 | Diamond synthesis method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10919387A JPS63274692A (en) | 1987-05-02 | 1987-05-02 | Synthesis of diamond |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63274692A true JPS63274692A (en) | 1988-11-11 |
JPH042556B2 JPH042556B2 (en) | 1992-01-20 |
Family
ID=14503987
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10919387A Granted JPS63274692A (en) | 1987-04-22 | 1987-05-02 | Synthesis of diamond |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63274692A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02167892A (en) * | 1988-12-21 | 1990-06-28 | Ishizuka Kenkyusho:Kk | Synthetic device of diamond by gas-phase reaction |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62265198A (en) * | 1986-05-14 | 1987-11-18 | Hitachi Ltd | Method for synthesizing diamond |
-
1987
- 1987-05-02 JP JP10919387A patent/JPS63274692A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62265198A (en) * | 1986-05-14 | 1987-11-18 | Hitachi Ltd | Method for synthesizing diamond |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02167892A (en) * | 1988-12-21 | 1990-06-28 | Ishizuka Kenkyusho:Kk | Synthetic device of diamond by gas-phase reaction |
Also Published As
Publication number | Publication date |
---|---|
JPH042556B2 (en) | 1992-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4985227A (en) | Method for synthesis or diamond | |
JPS61158899A (en) | Production of diamond film | |
JPH04958B2 (en) | ||
JPS63274692A (en) | Synthesis of diamond | |
JPS6054996A (en) | Diamond synthesis method | |
JPH0361633B2 (en) | ||
JPH01197391A (en) | Method for synthesizing diamond | |
JPS61222915A (en) | Diamond vapor phase synthesis method | |
KR910008729B1 (en) | Method for synthesis of diamond | |
JP2585342B2 (en) | Diamond vapor phase synthesis | |
JPS63274693A (en) | Production of diamond | |
JPH01141897A (en) | Method for synthesizing diamond | |
JPS63277767A (en) | Vapor phase synthesis method of high pressure phase boron nitride | |
JPH01246195A (en) | Synthesis of diamond | |
JPH0449518B2 (en) | ||
JPH01317198A (en) | Method for synthesizing diamond or the like | |
JPS593016A (en) | Manufacture of diamond | |
JPH01201098A (en) | Synthesis of diamond | |
JP3093836B2 (en) | Diamond film fabrication method | |
JPS63297299A (en) | Method for vapor synthesis of diamond | |
JP2581330B2 (en) | Synthesis method of diamond by combustion flame | |
JPH0814024B2 (en) | High-pressure phase boron nitride vapor phase synthesis method | |
JPS62280364A (en) | Method for synthesizing hard boron nitride | |
JPH01201479A (en) | Diamond coated hydrogen brittle metal and its manufacturing method | |
JPH01290592A (en) | Method for synthesizing diamond |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |