[go: up one dir, main page]

JPS63271096A - Thermal accumulation system - Google Patents

Thermal accumulation system

Info

Publication number
JPS63271096A
JPS63271096A JP62104652A JP10465287A JPS63271096A JP S63271096 A JPS63271096 A JP S63271096A JP 62104652 A JP62104652 A JP 62104652A JP 10465287 A JP10465287 A JP 10465287A JP S63271096 A JPS63271096 A JP S63271096A
Authority
JP
Japan
Prior art keywords
thermal
thermal accumulation
agent
gas
heat storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62104652A
Other languages
Japanese (ja)
Inventor
Yoshinori Oki
大木 良典
Takashi Kobayashi
隆 小林
Yasumasa Ishibashi
石橋 康正
Masaki Minemoto
雅樹 峯元
Naoyuki Uejima
直幸 上島
Toshio Funakoshi
船越 俊夫
Akira Kakimoto
朗 柿本
Hiroshi Kasahara
笠原 広
Yoshimasa Ando
喜昌 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUUPAA HIITO PUMP ENERG SHIYUUSEKI SYST GIJUTSU KENKYU KUMIAI
Original Assignee
SUUPAA HIITO PUMP ENERG SHIYUUSEKI SYST GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUUPAA HIITO PUMP ENERG SHIYUUSEKI SYST GIJUTSU KENKYU KUMIAI filed Critical SUUPAA HIITO PUMP ENERG SHIYUUSEKI SYST GIJUTSU KENKYU KUMIAI
Priority to JP62104652A priority Critical patent/JPS63271096A/en
Publication of JPS63271096A publication Critical patent/JPS63271096A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

PURPOSE:To enable a temperature taken out from a thermal accumulation tank to be selected at will during a heat discharging operation by a method wherein a proper amount of additive agent is added to a thermal accumulation tank in a thermal accumulation system in which a clathrate compound generated under a reaction between host agent and a guest agent is used as a thermal accumulation agent. CONSTITUTION:During a thermal accumulating operation, an operation of a thermal discharging cycle is terminated through a stopped condition of a pump 7 and the thermal accumulation cycle is operated under an energization of a compressor 2. Freon gas is taken out from a gas region 12 within the thermal accumulation tank 1, sucked and compressed by a compressor 2, condensed within a condensor 5. The gas changes into a freon liquid and enters an expansion valve 9 and then adiabatically expands and enters the thermal accumulation tank 1. The freon liquid compounds with water acting as a host agent within the thermal accumulation tank 1 to generate a clathrate of gas. Guest agent for producing the gas clathrate compound i.e. a latent heat of the freon is stored in the thermal accumulation tank 1. During a thermal discharging operation, the pump 7 is started to operate to form a thermal discharging cycle. A cold heat temperature taken out can be freely selected according to an amount of added additive agent in advance in the thermal accumulation tank 1.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はガスクラスレート(包接化合物)を利用した蓄
熱装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat storage device using gas clathrates (clathrate compounds).

[従来の技術] 例えば水等のホスト剤の原子又は分子が結合してできた
三次元構造の骨組み内部に形成された空隙内に、メタン
、エタン、プロパン等の炭化水素やR−11,R,−1
2,R−21等のフレオン等のガス状ゲスト剤を取り込
んで特定の結晶構造を構成するガスクラスレートは蓄熱
容量が多い等の理由で、従来はこれを蓄熱に利用するこ
とが試みられている。
[Prior Art] For example, hydrocarbons such as methane, ethane, propane, R-11, R-11, etc. ,-1
2. Gas clathrates, which incorporate gaseous guest agents such as Freon such as R-21 to form a specific crystal structure, have a large heat storage capacity, and conventionally attempts have been made to use them for heat storage. There is.

[発明が解決しようとする問題点] しかしながら、前記ゲスト剤とホスト剤を冷却してガス
クラスレートを生成することにより蓄熱操作を行ない、
その後前記ガスクラスレートを分解することにより取り
出すことか可能な温度は、前記ガスクラスレートの臨界
分解温度となる。この臨界分解温度以下の温度を取り出
すためには、蓄熱装置内の圧力を引き下げることにより
、可能ではあるが、より低温度を取り出すためには、コ
ンプレッサの所要動力が増大するために、このクラスレ
ートを用いた蓄熱装置の経済性を損なうことになる。ま
た、前記蓄熱装置内の圧力を調節しなければ、ガスクラ
スレートの臨界分解温度の温度一点しか利用できないの
で、蓄熱装置として取り出し可能な温度範囲が限定され
るという問題点があった。
[Problems to be Solved by the Invention] However, the heat storage operation is performed by cooling the guest agent and the host agent to generate gas clathrate,
The temperature at which the gas clathrate can then be extracted by decomposition is the critical decomposition temperature of the gas clathrate. In order to extract a temperature below this critical decomposition temperature, it is possible to reduce the pressure inside the heat storage device, but in order to extract a lower temperature, the required power of the compressor increases, so the clathrate This will impair the economic efficiency of heat storage devices using In addition, unless the pressure within the heat storage device is adjusted, only one temperature point, the critical decomposition temperature of the gas clathrate, can be used, so there is a problem that the temperature range that can be taken out as a heat storage device is limited.

本発明は上記従来の問題点を解消し、蓄熱槽から取出す
温度を任意に制御できる蓄熱装置を提供することを目的
とする。
An object of the present invention is to solve the above-mentioned conventional problems and provide a heat storage device that can arbitrarily control the temperature taken out from a heat storage tank.

[問題点を解決するための手段] 本発明による蓄熱装置は、蓄熱槽内に収容されたゲスト
剤とホスト剤とを冷却することにより、ガスクラスレー
トを生成して蓄熱する蓄熱装置において、前記蓄熱槽内
に添加剤を混入し、その混入割合を調整して前記蓄熱槽
から取出す温度を制御する手段を具備してなることを特
徴とする。即ち本発明においては、蓄熱槽内に、ホスト
剤及びゲスト剤に例えば、エタノール、エチレングリコ
ール等の添加剤を加え、その添加量を調節することによ
り、ガスクラスレートの分解温度すなわち蓄熱槽からの
取り出し温度を任意に選択することを可能とし、例えば
、通常では第2図中に示す臨界分解点でガスクラスレー
トの分解が行なわれるが、添加剤の添加量を加えること
によりB点→C点のようにガスクラスレートの分解温度
を下げることが可能となるようになされている。なお、
添加剤としてはエタノール、エチレングリコール等凝固
点を下げるものであれば、任意に選択可能である。
[Means for Solving the Problems] A heat storage device according to the present invention generates gas clathrate and stores heat by cooling a guest agent and a host agent housed in a heat storage tank. It is characterized by comprising means for mixing an additive into the heat storage tank, adjusting the mixing ratio thereof, and controlling the temperature taken out from the heat storage tank. That is, in the present invention, by adding additives such as ethanol, ethylene glycol, etc. to the host agent and the guest agent in the heat storage tank and adjusting the amount of addition, the decomposition temperature of the gas clathrate, that is, the decomposition temperature of the gas clathrate from the heat storage tank, can be adjusted. For example, gas clathrate is normally decomposed at the critical decomposition point shown in Figure 2, but by adding the amount of additive, the temperature can be changed from point B to point C. It has been made possible to lower the decomposition temperature of gas clathrates. In addition,
As the additive, any additive can be selected as long as it lowers the freezing point, such as ethanol and ethylene glycol.

[作用] 本発明によれば、蓄熱槽内にホスト剤及びゲスト剤に前
記添加剤を加え、かつその添加剤の添加量を調節するこ
とにより、ガスクラスレートの分解温度を前記ガスクラ
スレートの臨界分解温度以外に任意の分解温度を選択す
ることが可能となる。
[Function] According to the present invention, the decomposition temperature of the gas clathrate can be adjusted by adding the additive to the host agent and the guest agent in the heat storage tank and adjusting the amount of the additive added. It becomes possible to select any decomposition temperature other than the critical decomposition temperature.

[実施例] 第1図は、本発明の一実施例の構成を示す図であり、第
1図において1は蓄熱槽、2は圧縮機、5は凝縮器、1
0は仕切弁、9は膨張弁で、これら1,2,5,10.
9をこの順に配管で連結することによって蓄熱サイクル
が構成されている。
[Embodiment] FIG. 1 is a diagram showing the configuration of an embodiment of the present invention. In FIG. 1, 1 is a heat storage tank, 2 is a compressor, 5 is a condenser, 1
0 is a gate valve, 9 is an expansion valve, and these 1, 2, 5, 10.
A heat storage cycle is constructed by connecting 9 in this order with piping.

7はポンプ、8は空気調和機、6は熱交換コイルでこれ
ら7,8.6をこの順に配管で連結することによって放
熱サイクルが構成されている。蓄熱槽1の中には、ホス
ト剤としての水とゲスト剤としてのフロン及び添加剤1
1が貯蔵されている。
7 is a pump, 8 is an air conditioner, 6 is a heat exchange coil, and a heat radiation cycle is constructed by connecting these 7 and 8.6 in this order with piping. In the heat storage tank 1, water as a host agent, fluorocarbon as a guest agent, and additive 1 are contained.
1 is stored.

なお第1図において12はガス域である。Note that in FIG. 1, 12 is a gas region.

第1図において、蓄熱運転時には、ポンプ7を停止する
ことによって放熱サイクルの運転を停止し、圧縮機2を
起動することによって蓄熱サイクルを運転する。すると
蓄熱槽1のガス域12からフロンガスが取り出され、圧
縮機2にて吸引、圧縮される。圧縮されたフロンガスは
凝縮器5内に入り、ここで凝縮してフロン液となって膨
張弁9に入り、ここで断熱膨張して蓄熱槽1内に入る。
In FIG. 1, during heat storage operation, the pump 7 is stopped to stop the heat radiation cycle, and the compressor 2 is started to operate the heat storage cycle. Then, fluorocarbon gas is taken out from the gas region 12 of the heat storage tank 1, and is sucked and compressed by the compressor 2. The compressed fluorocarbon gas enters the condenser 5, where it is condensed to become a fluorocarbon liquid and enters the expansion valve 9, where it undergoes adiabatic expansion and enters the heat storage tank 1.

そして、蓄熱槽1内でホスト剤としての水と化合してガ
スクラスレートを生成し、ガスクラスレートを生成する
ためのゲスト剤すなわちフロンの潜熱が蓄熱槽1内に蓄
えられる。
Then, it combines with water as a host agent in the heat storage tank 1 to generate gas clathrate, and the latent heat of the guest agent, that is, fluorocarbon, for generating the gas clathrate is stored in the heat storage tank 1.

放熱運転時には、ポンプ7を起動し、放熱サイクルを形
成するが、蓄熱l8Iill内にあらかじめ添加した添
加剤の添加量によって、第2図に示す如く、その取り出
す冷熱の温度を自由に選択可能である。
During heat dissipation operation, the pump 7 is started to form a heat dissipation cycle, and the temperature of the cold heat taken out can be freely selected depending on the amount of additive added in advance into the heat storage l8Ill, as shown in Fig. 2. .

[発明の効果] 本発明によればホスト剤とゲスト剤の化合によって生成
されるガスクラスレートを蓄熱剤として用いる蓄熱装置
において、あらかじめ蓄熱槽内に=  5 − 適当な量の添加剤を添加しておくことにより、放熱時に
蓄熱槽から取り出せる温度を任意に選択することが可能
となり、これにより、熱負荷に見合った最適な熱量が、
蓄熱槽から取り出すことができ、省エネルギに効果的で
あるとともに、温度むらのない快適な空調機を提供する
ことかできる等の優れた効果が奏せられる。
[Effects of the Invention] According to the present invention, in a heat storage device that uses gas clathrate produced by the combination of a host agent and a guest agent as a heat storage agent, an appropriate amount of = 5 - additive is added in advance to the heat storage tank. This makes it possible to arbitrarily select the temperature that can be extracted from the heat storage tank during heat dissipation.
It can be taken out from the heat storage tank, and has excellent effects such as being effective for energy saving and providing a comfortable air conditioner without temperature unevenness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例としての蓄熱装置の構成図、
第2図は本発明の一実施例における、ガスクラスレート
の生成・分解平衡圧力と温度の関係及びゲスト剤の蒸気
圧と温度の関係を添加剤量をパラメータとして示す図で
ある。 1・・・蓄熱槽、2・・・圧縮機、5・・・凝縮器、8
・・・空気調和機、1]・・・ホスト剤+ゲスト剤+添
加剤。
FIG. 1 is a configuration diagram of a heat storage device as an embodiment of the present invention,
FIG. 2 is a diagram showing the relationship between gas clathrate production/decomposition equilibrium pressure and temperature and the relationship between guest agent vapor pressure and temperature using the amount of additive as a parameter in one embodiment of the present invention. 1... Heat storage tank, 2... Compressor, 5... Condenser, 8
... Air conditioner, 1] ... Host agent + guest agent + additive.

Claims (1)

【特許請求の範囲】[Claims] 蓄熱槽内に収容されたゲスト剤とホスト剤とを冷却する
ことにより、ガスクラスレートを生成して蓄熱する蓄熱
装置において、前記蓄熱槽内に添加剤を混入し、その混
入割合を調整して前記蓄熱槽から取出す温度を制御する
手段を具備してなることを特徴とする蓄熱装置。
In a heat storage device that generates gas clathrate and stores heat by cooling a guest agent and a host agent contained in a heat storage tank, an additive is mixed in the heat storage tank and the mixing ratio is adjusted. A heat storage device comprising means for controlling the temperature taken out from the heat storage tank.
JP62104652A 1987-04-30 1987-04-30 Thermal accumulation system Pending JPS63271096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62104652A JPS63271096A (en) 1987-04-30 1987-04-30 Thermal accumulation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62104652A JPS63271096A (en) 1987-04-30 1987-04-30 Thermal accumulation system

Publications (1)

Publication Number Publication Date
JPS63271096A true JPS63271096A (en) 1988-11-08

Family

ID=14386391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62104652A Pending JPS63271096A (en) 1987-04-30 1987-04-30 Thermal accumulation system

Country Status (1)

Country Link
JP (1) JPS63271096A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040084574A (en) * 2003-03-28 2004-10-06 이숙희 A liquid cooling device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS594894A (en) * 1982-06-30 1984-01-11 Agency Of Ind Science & Technol Low temperature heat-accumulating device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS594894A (en) * 1982-06-30 1984-01-11 Agency Of Ind Science & Technol Low temperature heat-accumulating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040084574A (en) * 2003-03-28 2004-10-06 이숙희 A liquid cooling device

Similar Documents

Publication Publication Date Title
Razmi et al. Energy and exergy analysis of an environmentally-friendly hybrid absorption/recompression refrigeration system
US8506839B2 (en) Absorption cycle utilizing ionic liquids and water as working fluids
Zhang et al. Performance analysis of hydrate-based refrigeration system
Chen et al. Conventional and advanced exergy analysis of an air-cooled type of absorption-ejection refrigeration cycle with R290-mineral oil as the working pair
US20110017941A1 (en) Refrigerant Composition
Arora et al. Energy and exergy analysis of a double effect parallel flow LiBr/H2O absorption refrigeration system
Luo et al. Experimental and theoretical assessments on the systematic performance of a single-stage air-source heat pump using ternary mixture in cold regions
JP2576162B2 (en) Working medium mixture
Shamim et al. Concept of a hybrid compression-adsorption heat pump cycle
Yosaf et al. Effect of ejector location in absorption refrigeration cycles using different binary working fluids
Ji et al. Optimizing working fluids for advancing industrial heating performance of compression-absorption cascade heat pump
JPWO2004055453A1 (en) Heat pump and heat utilization device using gas hydrate
Soli et al. Thermodynamic feasibility study of absorption diffusion machine working with hydrocarbons
Liu et al. The occurrence of pinch point and its effects on the performance of high temperature heat pump
JPS63271096A (en) Thermal accumulation system
Antoine et al. Thermodynamic performance’s analysis of a cold production by hybrid compressor-based thermochemical sorption processes using ammoniated salts
Neverov et al. Development of an Energy Efficient Refrigeration Unit Using Carbon Dioxide as a Natural Refrigerant.
KR20080080576A (en) Refrigerant composition
Fedosov et al. Approximate calculation of a theoretical cycle of a vapor-compression freon loop in an air heat pump
Qian et al. Thermal analysis of a novel single-effect absorption refrigeration system using water/ionic liquid as working fluids
Alsaqoor et al. Performance evaluation for a low temperature heat powered for 3-beds with dual evaporators silica gel water adsorption chillers
JPH0835736A (en) Compression and absorption type compound refrigerator
JPH0617040A (en) Refrigerant for refrigerator
JP2004101140A (en) Heat pump using gas hydrate and heat using device
JP2002243218A (en) Refrigeration equipment