JPS63270472A - Manufacturing method of superconducting oxide thin film - Google Patents
Manufacturing method of superconducting oxide thin filmInfo
- Publication number
- JPS63270472A JPS63270472A JP62102039A JP10203987A JPS63270472A JP S63270472 A JPS63270472 A JP S63270472A JP 62102039 A JP62102039 A JP 62102039A JP 10203987 A JP10203987 A JP 10203987A JP S63270472 A JPS63270472 A JP S63270472A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- organic compound
- oxide thin
- superconducting oxide
- copper
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/1204—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
- C23C18/1208—Oxides, e.g. ceramics
- C23C18/1216—Metal oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/125—Process of deposition of the inorganic material
- C23C18/1254—Sol or sol-gel processing
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N60/00—Superconducting devices
- H10N60/01—Manufacture or treatment
- H10N60/0268—Manufacture or treatment of devices comprising copper oxide
- H10N60/0296—Processes for depositing or forming copper oxide superconductor layers
- H10N60/0324—Processes for depositing or forming copper oxide superconductor layers from a solution
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Dispersion Chemistry (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Chemically Coating (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は電子材料などに用いられる超伝導性酸化物の薄
膜を製造する方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a superconducting oxide thin film used for electronic materials and the like.
[従来の技術および発明が解決しようとする問題点]
従来から超伝導性を示す多元金属酸化物として、銅と希
土類金属および周期律表の第II族金属からなるものが
知られている。((1) J、 G。[Prior Art and Problems to be Solved by the Invention] Conventionally, as multi-metal oxides exhibiting superconductivity, those consisting of copper, rare earth metals, and Group II metals of the periodic table have been known. ((1) J, G.
Bednortz and に、^、Muller
、 Zeitshrlft fuerphysik
B64 (1986) 189. (2)
S、Uchida、S。Bednortz and ni, ^, Muller
, Zeitshrlft fuelphysik
B64 (1986) 189. (2)
S, Uchida, S.
Tanaka et al、 Japanese
Journal of applied9hy
sics 26 (1987)1.1 (3)P
、H,)for、C,W。Tanaka et al, Japanese
Journal of applied9hy
sics 26 (1987) 1.1 (3)P
,H,)for,C,W.
Chu et al、 Physical r
eview 1etters 58 (1987
)908)。Chu et al., Physical r.
view 1etters 58 (1987
)908).
ところが、このような多元金属酸化物はセラミック貿で
あり、成形加工性に劣るため、この素材を用いた薄膜を
製造することは極めて困難である。However, such multi-metal oxides are ceramic materials and have poor moldability, making it extremely difficult to produce thin films using this material.
[問題点を解決するための手段]
本発明者らは、上記多元金属酸化物からなる薄膜を容易
に製造する方法について鋭意研究を重ねた。その結果、
この多元金属酸化物を直接成形するのではなく、その前
駆体を用いて成形する方法につき検討した結果、本発明
の手法によれば容易に薄膜が得られることを見出し、本
発明を完成した。[Means for Solving the Problems] The present inventors have conducted extensive research on a method for easily producing a thin film made of the above multi-metal oxide. the result,
As a result of investigating a method of molding this multi-element metal oxide using its precursor instead of directly molding it, it was discovered that a thin film could be easily obtained by the method of the present invention, and the present invention was completed.
すなわち、本発明は[A]銅の有機化合物、[B]希土
類金属の有機化合物およびEC]周期律表の第n族金属
の有機化合物の混合物を溶媒に溶解し、水を反応させて
ゾル化し、生成したゾルを基板上に塗布あるいは流延し
て薄膜を形成し、ついで焼成することを特徴とする超伝
導性酸化物薄膜の製造法を提供するものである。That is, the present invention involves dissolving a mixture of [A] an organic compound of copper, [B] an organic compound of a rare earth metal, and EC] an organic compound of a group N metal of the periodic table, and reacting with water to form a sol. The present invention provides a method for producing a superconducting oxide thin film, which is characterized in that the produced sol is coated or cast onto a substrate to form a thin film, and then fired.
本発明では[^1成分として銅の有機化合物を用いる。In the present invention, an organic compound of copper is used as the [^1 component].
有機化合物としては特に制限はないが好適なものとして
メトキシド、エトキシド、イソプロポキシドなどのアル
コキシド類、アセトキシドなどのアジロキシド類、アセ
チルアセトナートなどのキレート化合物が用いられる。The organic compound is not particularly limited, but suitable examples include alkoxides such as methoxide, ethoxide, and isopropoxide, azyloxides such as acetoxide, and chelate compounds such as acetylacetonate.
次に[B]酸成分して希土類金属有機化合物を用いる。Next, a rare earth metal organic compound is used as the [B] acid component.
希土類金属としては特に制限はないが、好ましくはラン
タン、イツトリウム、イッテルビウムなどが用いられ、
有機化合物として好適なものは、これらのメトキシド、
エトキシド、イソプロポキシドなどのアルコキシド類、
アセトキシドなどのアジロキシド類、アセチルアセトナ
ートなどのキレ−トイ1合物が用いられる。There are no particular restrictions on the rare earth metal, but lanthanum, yttrium, ytterbium, etc. are preferably used.
Suitable organic compounds include these methoxides,
Alkoxides such as ethoxide and isopropoxide,
Azyloxides such as acetoxide and chelate compounds such as acetylacetonate are used.
また[C]酸成分しては周期律表の第II族金属有機化
合物が用いられる。第II族金属としては特に制限はな
いが、好ましくはバリウム、ストロンチウム、カルシウ
ムなどが用いられ、有機化合物として好適なものとして
、これらのメトキシド、エトキシド、イソプロポキシド
などのアルコキシド類、アセトキシドなどのアジロキシ
ド類、アセチルアセトナートなどのキレート化合物が用
いられる。Further, as the acid component [C], a group II metal organic compound of the periodic table is used. The Group II metal is not particularly limited, but barium, strontium, calcium, etc. are preferably used, and preferred organic compounds include alkoxides of these metals such as methoxide, ethoxide, and isopropoxide, and azyloxides such as acetoxide. Chelate compounds such as acetylacetonate, etc. are used.
本発明の方法はまず上記[A]銅の有機化合物。The method of the present invention begins with the above-mentioned [A] organic compound of copper.
[B]希土類金属有機化合物および[C]周期律表第I
I族の有機化合物の混合物を溶媒に溶解して溶液を得る
。その溶媒として好適なものは、エチルアルコール、イ
ソプロピルアルコール、ブチルアルコール、ジオキサン
、テトラヒドロフラン、ベンゼン、トルエン、キシレン
、エチルベンゼンなどである。[B] Rare earth metal organic compound and [C] Periodic table I
The mixture of Group I organic compounds is dissolved in a solvent to obtain a solution. Suitable solvents include ethyl alcohol, isopropyl alcohol, butyl alcohol, dioxane, tetrahydrofuran, benzene, toluene, xylene, and ethylbenzene.
次いで、この溶液に水を加えてゾル化させる。Next, water is added to this solution to form a sol.
その水の量は金属元素の合計量に対して0.2〜5当量
であり、好ましく、は0.5〜1当量である。水分量が
5当量を越えると溶液はゲル化し成形が困難となる。こ
の場合、必要に応じて、酸化触媒として塩酸や酢酸など
を加えてもよい。The amount of water is 0.2 to 5 equivalents, preferably 0.5 to 1 equivalent, based on the total amount of metal elements. If the water content exceeds 5 equivalents, the solution will gel and become difficult to mold. In this case, hydrochloric acid, acetic acid, or the like may be added as an oxidation catalyst, if necessary.
さらにこのゾル状溶液を空気中などの酸化性雰囲気の下
に基板上に塗布あるいは流延して前駆体薄膜を得る。Further, this sol-like solution is coated or cast onto a substrate in an oxidizing atmosphere such as air to obtain a precursor thin film.
次いでこの前駆体薄膜を、少くとも5容量%の酸素を含
み、残余は窒素、アルゴンなど不活性気体からなる酸化
性雰囲気、たとえば空気中で焼成する。焼成温度は70
0〜1.500℃、好ましくは800〜1,200℃で
ある。この焼成温度は700℃未満の温度では有機物の
除去が十分でなく、また1、500℃を越えるとボイド
などの欠陥を生じやすく、いずれも好ましくない。The precursor film is then fired in an oxidizing atmosphere, such as air, containing at least 5% by volume of oxygen, with the balance being an inert gas such as nitrogen or argon. Firing temperature is 70
The temperature is 0 to 1.500°C, preferably 800 to 1,200°C. If the firing temperature is less than 700°C, the removal of organic matter will not be sufficient, and if it exceeds 1,500°C, defects such as voids will likely occur, both of which are not preferred.
このようにして本発明の薄膜を得ることができる。ここ
で薄膜の膜厚はO01〜1100pが望ましいが、0.
5〜10pmが好適である。膜厚が0.1μm未満では
機械的強度が不十分であり、1100pを越えると酸化
が不十分となり均質な膜が得られない。In this way, the thin film of the present invention can be obtained. Here, the thickness of the thin film is desirably 001 to 1100p, but 0.
5 to 10 pm is suitable. If the film thickness is less than 0.1 μm, the mechanical strength will be insufficient, and if it exceeds 1100p, oxidation will be insufficient and a homogeneous film will not be obtained.
なお、本発明においてはこのようにして得られる酸化物
が下記のような組成比が得られるように成分、配合を選
定する必要がある。In the present invention, it is necessary to select the components and blends so that the oxide thus obtained has the following composition ratio.
(M’+−x・M”x)n−CL104−y式中M1は
希土類金属 M2は周期律表の第1f族金属、Xは0,
05〜0.95. nは1〜3.3Fは0〜2を示すも
のであり、好ましくはXは0.1〜0.9゜nは2〜3
.yは0〜1である。(M'+-x・M”x)n-CL104-y In the formula, M1 is a rare earth metal, M2 is a metal from group 1f of the periodic table, X is 0,
05-0.95. n is 1 to 3.3F is 0 to 2, preferably X is 0.1 to 0.9゜n is 2 to 3
.. y is 0-1.
このようにして得られた薄膜は、さらに必要に応じて、
還元性雰囲気において熱処理を施して用いるとよい。The thin film obtained in this way can be further processed as necessary.
It is preferable to perform heat treatment in a reducing atmosphere before use.
[実施例] 次に、本発明を実施例により詳しく説明する。[Example] Next, the present invention will be explained in detail with reference to examples.
実施例1
銅アセチルアセトナート13.0gと、ランタンドqレ
リイソブロボキシド18.9gおよびストロンチウムイ
ソプロポキシド8.2gを溶媒のイソプロピルアルコー
ル500gに溶解し、水2.15gを加えて相対湿度4
0%の空気中20℃において2日間静置した。Example 1 13.0 g of copper acetylacetonate, 18.9 g of lanthanide q-reli isopropoxide, and 8.2 g of strontium isopropoxide were dissolved in 500 g of isopropyl alcohol as a solvent, and 2.15 g of water was added to the solution at a relative humidity of 4.
It was left standing at 20° C. in 0% air for 2 days.
この結果、粘度20ボイズのゾルが得られた。As a result, a sol with a viscosity of 20 voids was obtained.
つぎに、このゾルを平板上に塗布し、肉厚50gmの薄
膜を得た。この薄膜を空気中で24時間乾燥したのち、
空気中900 t:で焼成することにより、肉厚30p
mの銅−ランタン−ストロンチウムの三元酸化物の薄膜
を得た。Next, this sol was applied onto a flat plate to obtain a thin film with a thickness of 50 gm. After drying this thin film in air for 24 hours,
By firing in air at 900 t: thickness of 30p
A thin film of copper-lanthanum-strontium ternary oxide of m was obtained.
この薄膜につき、電気抵抗値を測定したところ、32°
に以下の温度において、電気抵抗値が零となった。When we measured the electrical resistance value of this thin film, it was found to be 32°
The electrical resistance value became zero at the following temperatures.
実施例2
銅アセチルアセトナート13.0g 、 ランタントリ
イソプロポキシド18.9gおよびバリウムジイソプロ
ポキシド10.2gをイソプロピルアルコール500
gに溶解した事以外は、実施例1と同様にして肉厚20
ILmの銅−ランタン−バリウムの三元酸化物の薄膜を
得た。Example 2 13.0 g of copper acetylacetonate, 18.9 g of lanthanum triisopropoxide and 10.2 g of barium diisopropoxide were mixed with 500 g of isopropyl alcohol.
The wall thickness was 20 g in the same manner as in Example 1, except that it was dissolved in
A thin film of ILm copper-lanthanum-barium ternary oxide was obtained.
この薄膜は23°に以下の温度で電気抵抗値が零となっ
た。The electrical resistance value of this thin film became zero at a temperature below 23°.
実施例3
銅アセチルアセトナート13.0g 、イツトリウムト
リイソプロポキシド16.0gおよびバリウムジイソプ
ロポキシド10.2gをイソプロピルアルコール500
gに溶解した事以外は、°実施例1と同様にして肉厚1
5μmの銅−イツトリウム−バリウムの三元酸化物の薄
膜を得た。Example 3 13.0 g of copper acetylacetonate, 16.0 g of yttrium triisopropoxide and 10.2 g of barium diisopropoxide were mixed with 500 g of isopropyl alcohol.
The wall thickness was 1 in the same manner as in Example 1 except that it was dissolved in g.
A thin film of copper-yttrium-barium ternary oxide with a thickness of 5 μm was obtained.
この薄膜は37°に以下の温度において電気抵抗値が零
となった。The electrical resistance value of this thin film became zero at temperatures below 37°.
[発明の効果]
本発明の製造法によれば、超伝導性酸化物の薄膜を、従
来の方法に比べ一層容易に製造することができる。[Effects of the Invention] According to the manufacturing method of the present invention, a superconducting oxide thin film can be manufactured more easily than conventional methods.
Claims (1)
化合物および[C]周期律表の第II族金属の有機化合物
の混合物を溶媒に溶解し、水を反応させてゾル化し、生
成したゾルを基板上に塗布あるいは流延して薄膜を形成
し、ついで焼成することを特徴とする超伝導性酸化物薄
膜の製造法。(1) A mixture of [A] an organic compound of copper, [B] an organic compound of a rare earth metal, and [C] an organic compound of a group II metal of the periodic table is dissolved in a solvent, and the mixture is reacted with water to form a sol, A method for producing a superconducting oxide thin film, which comprises coating or casting the generated sol onto a substrate to form a thin film, and then firing it.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62102039A JPS63270472A (en) | 1987-04-27 | 1987-04-27 | Manufacturing method of superconducting oxide thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62102039A JPS63270472A (en) | 1987-04-27 | 1987-04-27 | Manufacturing method of superconducting oxide thin film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63270472A true JPS63270472A (en) | 1988-11-08 |
Family
ID=14316629
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62102039A Pending JPS63270472A (en) | 1987-04-27 | 1987-04-27 | Manufacturing method of superconducting oxide thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63270472A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6419783A (en) * | 1987-06-26 | 1989-01-23 | Hewlett Packard Yokogawa | Manufacture of superconductor film |
-
1987
- 1987-04-27 JP JP62102039A patent/JPS63270472A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6419783A (en) * | 1987-06-26 | 1989-01-23 | Hewlett Packard Yokogawa | Manufacture of superconductor film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4564490A (en) | Method of preparing sintered shapes of silicon carbide | |
JPS63270472A (en) | Manufacturing method of superconducting oxide thin film | |
JPH01131025A (en) | Production of oxide based superconducting material | |
JPS63269418A (en) | Manufacturing method of superconducting oxide wire | |
JP3434963B2 (en) | Aluminum nitride sintered body and method for producing the same | |
JPS63210003A (en) | Production of aluminum nitride powder | |
JPS63242972A (en) | Manufacture of aluminum nitride sintered body | |
JP3191826B2 (en) | Method of forming manganese cobalt oxide thin film | |
JP2627803B2 (en) | Method of forming metal nitride thin film | |
JPH02141419A (en) | Solution for producing oxide superconductors | |
JP2796587B2 (en) | Method for producing Bi-Pb-Sr-Ca-Cu-based oxide superconducting film | |
JP2825691B2 (en) | Method of removing binder from aluminum nitride ceramic | |
JPH0255225A (en) | Method for producing oxide containing bismuth | |
JPH0466803B2 (en) | ||
JP3450955B2 (en) | Method for producing aluminum nitride sintered body | |
JPH0256990A (en) | Manufacture of ceramic superconductor wiring board | |
JPH02192409A (en) | Production of aluminum nitride powder and aluminum nitride sintered compact | |
JPH0238359A (en) | Production of superconductor | |
WO1989002872A1 (en) | Paste for forming superconductive ceramic film | |
JPS63233089A (en) | Manufacture of ceramic thin film tightly adhered to substrate | |
JPS60215576A (en) | Manufacture of sialon sintered body | |
JPS59213665A (en) | Functional inorganic thin film and manufacture | |
JPS63310721A (en) | Production of solution of compound metal to be used for forming oxide superconducting compound | |
JPH0256816A (en) | Manufacture of ceramic superconductive paste, manufacture of superconductive thick film wiring plate and ceramic superconductive powder | |
JPS6163571A (en) | Manufacturing method of aluminum nitride sintered body |