[go: up one dir, main page]

JPS6327041B2 - - Google Patents

Info

Publication number
JPS6327041B2
JPS6327041B2 JP57060090A JP6009082A JPS6327041B2 JP S6327041 B2 JPS6327041 B2 JP S6327041B2 JP 57060090 A JP57060090 A JP 57060090A JP 6009082 A JP6009082 A JP 6009082A JP S6327041 B2 JPS6327041 B2 JP S6327041B2
Authority
JP
Japan
Prior art keywords
evaporation
brine
raised bottom
evaporation chamber
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57060090A
Other languages
Japanese (ja)
Other versions
JPS58177105A (en
Inventor
Hideo Suematsu
Teizo Hirao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanadevia Corp
Original Assignee
Hitachi Shipbuilding and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Shipbuilding and Engineering Co Ltd filed Critical Hitachi Shipbuilding and Engineering Co Ltd
Priority to JP6009082A priority Critical patent/JPS58177105A/en
Publication of JPS58177105A publication Critical patent/JPS58177105A/en
Publication of JPS6327041B2 publication Critical patent/JPS6327041B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/06Flash distillation
    • B01D3/065Multiple-effect flash distillation (more than two traps)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

【発明の詳細な説明】 本発明は多段フラツシユ蒸発装置における蒸発
促進方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for promoting evaporation in a multi-stage flash evaporator.

多段フラツシユ蒸発装置は海水淡水化の手段と
してよく利用されている。海水淡水化以外には不
純物の混入する温廃水または温排水から清浄な水
蒸気を得る場合や地熱水のような有毒成分を含む
熱水から清浄な水蒸気をとり出す場合などに使わ
れる。とくに海水淡水化に使われる場合は海水中
のスケール析出の問題と、冷却水としての海水温
度からフラツシユ蒸発温度に制限をうけ、一般に
はフラツシユ蒸発温度は110℃〜30℃と比較的低
温である。
Multi-stage flash evaporators are often used as a means of seawater desalination. In addition to seawater desalination, it is also used to obtain clean steam from heated wastewater or wastewater that contains impurities, and to extract clean steam from hot water that contains toxic components such as geothermal water. In particular, when used for seawater desalination, there are restrictions on the flash evaporation temperature due to the problem of scale precipitation in the seawater and the temperature of the seawater used as cooling water, and the flash evaporation temperature is generally relatively low at 110°C to 30°C. .

ところで海水淡水化装置として用いられる多段
フラツシユ蒸発装置は、年々装置が大型化する傾
向にあり、これに伴つて取り扱う海水量すなわち
ブライン流量も多くなつて来ている。ブライン流
量が多くなると、多段フラツシユ蒸発室でのブラ
インレベルも上昇する傾向をもつことになり、そ
の際ブライン上層とブライン下層間に蒸発速度の
差異が生じる。しかし従来の多段フラツシユ蒸発
装置によると、蒸発温度が80℃以上では蒸発速度
の差は大きくないが、低温になるに従つてその差
が増大し、50℃以下ではその差はかなり大きくな
つて、蒸発を抑制してしまうという問題を起こす
ほどになる。このようになる理由は、低温では蒸
気圧が小さいため上層ブラインの液水頭を受ける
下層ブラインの蒸発が著しく抑制され、従来の多
段フラツシユ蒸発装置によれば、この蒸発が抑制
される下層に蒸発能力をもつブラインが潜り込ん
でしまうためである。
Incidentally, multi-stage flash evaporators used as seawater desalination devices tend to become larger year by year, and the amount of seawater to be handled, that is, the flow rate of brine, is also increasing accordingly. As the brine flow rate increases, the brine level in the multi-stage flash evaporation chamber also tends to increase, resulting in a difference in evaporation rate between the upper brine layer and the lower brine layer. However, according to the conventional multistage flash evaporator, the difference in evaporation rate is not large when the evaporation temperature is 80°C or higher, but the difference increases as the temperature decreases, and the difference becomes quite large below 50°C. This can cause problems such as inhibiting evaporation. The reason for this is that at low temperatures, the vapor pressure is small, so the evaporation of the lower brine that receives the liquid head of the upper brine is significantly suppressed. This is because the brine with a .

本発明はこのような問題を解決することを目的
とし、多段フラツシユ蒸発室の段間オリフイスの
下流側でブライン流れ方向長さが蒸発室の長さの
1/3〜1/5の範囲にわたつて設けられた上げ底部ま たは堰部により蒸発を促進することを特徴とする
多段フラツシユ蒸発装置における蒸発促進方法を
提供することによつて、その目的を達成するもの
であり、これにより蒸発温度が高い場合はもちろ
ん、蒸発温度が低い場合でも至つて良好にブライ
ンの蒸発を促進することができるものである。
The purpose of the present invention is to solve this problem, and the present invention aims to provide a multi-stage flash evaporation chamber in which the length of the brine in the flow direction is in the range of 1/3 to 1/5 of the length of the evaporation chamber on the downstream side of the interstage orifice of the multi-stage flash evaporation chamber. This object is achieved by providing a method for promoting evaporation in a multi-stage flash evaporator, which is characterized by promoting evaporation using a raised bottom section or weir section provided with a raised bottom section or weir section. Of course, even when the evaporation temperature is low, the evaporation of brine can be promoted very well.

以下本発明の方法をその一実施例を示す図面に
基づいて詳細に説明する。第1図は本発明方法に
係る海水淡水化に用いる多段フラツシユ蒸発装置
の主要部を示し、装置内空間が下部を開口した仕
切板1により長手方向適当間隔おきに仕切られ、
複数の蒸発室2,3,4が形成されている。5は
前記仕切板1の下端に設けられた段間オリフイス
である。6は各蒸発室2,3,4の底に設けられ
た矩形状の上げ底部で、段間オリフイス5の下流
側に位置し、ブライン7の流れ方向に所定の長さ
を有せしめられている。なお、図面上、上流側蒸
発室2および下流側蒸発室4に設けられる上げ底
部6は省略した。
The method of the present invention will be explained in detail below based on the drawings showing one embodiment thereof. FIG. 1 shows the main parts of a multi-stage flash evaporation device used for seawater desalination according to the method of the present invention, in which the internal space of the device is partitioned at appropriate intervals in the longitudinal direction by partition plates 1 with openings at the bottom.
A plurality of evaporation chambers 2, 3, 4 are formed. Reference numeral 5 denotes an interstage orifice provided at the lower end of the partition plate 1. Reference numeral 6 denotes a rectangular raised bottom part provided at the bottom of each evaporation chamber 2, 3, 4, located downstream of the interstage orifice 5, and having a predetermined length in the flow direction of the brine 7. . In the drawing, the raised bottom portions 6 provided in the upstream evaporation chamber 2 and the downstream evaporation chamber 4 are omitted.

前記矩形状の上げ底部6の蒸発室3における位
置および大きさは、厳密にはブライン7の流量や
蒸発温度等のプロセス条件と関連するため簡明な
規定をするのは困難であるが、本実施例において
は次の範囲内にあらしめた。すなわちブライン流
量600〜1000t/m.h、蒸発温度80〜35℃を条件
に、位置については蒸発室3の中心より上流側と
し、大きさについては長さが蒸発室3長さの1/3 〜1/5の範囲、高さが蒸発室3の出口ブライン7 レベルの40〜70%の範囲とした。なお標準的に述
べると、上げ底部6の位置は蒸発室3長さの1/3 付近、長さは蒸発室3長さの1/4程度、高さは蒸 発室3の出口ブライン7レベルの55%付近がそれ
ぞれ最適といえる。
Strictly speaking, the position and size of the rectangular raised bottom part 6 in the evaporation chamber 3 are related to the process conditions such as the flow rate of the brine 7 and the evaporation temperature, so it is difficult to specify them clearly. In the example, it is within the following range. In other words, the brine flow rate is 600 to 1000 t/mh, the evaporation temperature is 80 to 35°C, the position is upstream from the center of the evaporation chamber 3, and the length is 1/3 to 1 of the length of the evaporation chamber 3. /5, and the height was in the range of 40 to 70% of the outlet brine 7 level of the evaporation chamber 3. In standard terms, the position of the raised bottom 6 is approximately 1/3 of the length of the evaporation chamber 3, the length is approximately 1/4 of the length of the evaporation chamber 3, and the height is at the level of the outlet brine 7 of the evaporation chamber 3. It can be said that around 55% is optimal for each.

係る構成で、図中矢印に示すようにブライン7
を流すと、該ブライン7は上流側仕切板1の下部
開口を通り、このとき段間オリフイス5に規制さ
れて蒸発室3へと放出されるように流入せしめら
れ、蒸発室3内で上げ底部6に衝突してその一部
が蒸発する。蒸気は適宜の手段で冷却凝縮され利
用される。残りのブライン7は上げ底部6を乗り
越えた後、下流側仕切板1の下部開口をくぐつて
下流側蒸発室4へと進み、さらに蒸発せしめられ
る。
With such a configuration, as shown by the arrow in the figure, the brine 7
When flowing, the brine 7 passes through the lower opening of the upstream partition plate 1, and at this time, it is regulated by the interstage orifice 5 and flows into the evaporation chamber 3 so as to be released into the evaporation chamber 3. 6 and some of it evaporates. The steam is cooled and condensed by appropriate means and then used. After the remaining brine 7 climbs over the raised bottom part 6, it passes through the lower opening of the downstream partition plate 1 and advances to the downstream evaporation chamber 4, where it is further evaporated.

次に、上げ底部6を設けた場合と上げ底部6を
設けない場合の蒸発完了の度合がどれだけ違うか
実験したので、その結果を第2図に基づいて説明
する。第2図は、ブライン流量(蒸発室単位幅当
りの流量として表示)を800t/m.hで一定とし、
蒸発温度を変化させてその効果をみたものであ
る。図中NETDというのは蒸発完了の度合を示
す一つの指標で、蒸発室3を出るブライン7の温
度と蒸発温度の温度差で定義される。NETDが
小さいほど蒸気が完了していることを示す。第2
図からも明らかなように、本発明に係る上げ底部
6を設けたものは、上げ底部6を設けていないも
のに比較して著しくNETDを小さくすることが
できる。その差は80℃付近でもかなりみられる
が、蒸発温度50℃以下で特に発揮されていること
が分かる。このことから、本発明に係るものは、
ブライン7の蒸発温度が低温になつてその上層と
下層間に蒸発速度の差異が生じた場合でも、蒸発
が抑制される下層に蒸発能力をもつブライン7が
潜り込むのを防ぐことが可能なものであることが
明らかである。
Next, an experiment was conducted to determine the degree of completion of evaporation when the raised bottom part 6 was provided and when the raised bottom part 6 was not provided, and the results will be explained based on FIG. 2. Figure 2 shows the brine flow rate (displayed as flow rate per unit width of the evaporation chamber) constant at 800t/mh.
The effect was examined by varying the evaporation temperature. In the figure, NETD is an index indicating the degree of completion of evaporation, and is defined as the difference between the temperature of the brine 7 exiting the evaporation chamber 3 and the evaporation temperature. The smaller the NETD, the more complete the steam is. Second
As is clear from the figure, the device provided with the raised bottom portion 6 according to the present invention can significantly reduce NETD compared to the device not provided with the raised bottom portion 6. Although the difference can be seen even around 80℃, it is especially noticeable at evaporation temperatures of 50℃ or lower. From this, the present invention relates to
Even if the evaporation temperature of the brine 7 becomes low and a difference in evaporation rate occurs between the upper layer and the lower layer, it is possible to prevent the brine 7 with evaporation ability from penetrating into the lower layer where evaporation is suppressed. One thing is clear.

第3図〜第5図は、前記上げ底部6の形状を変
化させた他の実施例を示す。図中に示される矢印
はそれぞれブライン7の流動方向をあらわす。第
3図のものは上げ底部8の下流側端部に傾斜9を
つけたもの、また第4図のものは上げ底部10の
上流側端部に傾斜11をつけたもの、さらに第5
図のものは上げ底部12の上流側および下流側の
両端部に傾斜13をつけたものであり、それぞれ
係る構成でブライン7をスムーズに流して流動抵
抗を小さくするようになされている。これにより
蒸発が抑制される下層に蒸発能力をもつブライン
7がより効果的に潜り込むのを防ぐことができる
ものである。
3 to 5 show other embodiments in which the shape of the raised bottom portion 6 is changed. The arrows shown in the figure each represent the flow direction of the brine 7. The one in FIG. 3 has a slope 9 on the downstream end of the raised bottom part 8, and the one in FIG. 4 has a slope 11 on the upstream end of the raised bottom part 10.
The one shown has slopes 13 on both the upstream and downstream ends of the raised bottom portion 12, and these configurations allow the brine 7 to flow smoothly and reduce flow resistance. This makes it possible to more effectively prevent the brine 7 having evaporation ability from penetrating into the lower layer where evaporation is to be suppressed.

第6図〜第9図は、前記上げ底部6に代えて、
矩形状の堰部を設けたものである。第6図のもの
は堰部14の下流側端面下端部に例えば水抜き
用、計測用、補強用等の貫通穴15が設けられて
おり、該貫通穴15の構造はその中を大量のブラ
イン7が通過できないようにされている。このよ
うに多少の貫通穴15を設けても、ブライン7が
該貫通穴15に大量に流れ込むことがないので、
前述の上げ底部6と同じ作用効果を得ることがで
きる一方、貫通穴15を用いて所要の目的を達す
ることができるもののである。第7図の堰部16
はその下流側端面の部材17の一部を第8図に示
すように幅方向適当間隔おきに取り除いた状態で
構成されたものであり、また第9図の堰部18は
下流側端面の部材を全く取り除いて構成されたも
のである。このように堰部16,18の部材を一
部少なくしまたはなくすことによつて、前述の上
げ底部6と同じ作用効果を得ることができる一
方、コスト低減を図ることができるものである。
In FIGS. 6 to 9, instead of the raised bottom part 6,
A rectangular weir is provided. In the one shown in FIG. 6, a through hole 15 is provided at the lower end of the downstream end face of the weir section 14 for, for example, water drainage, measurement, and reinforcement purposes. 7 is not allowed to pass. Even if some through holes 15 are provided in this way, a large amount of brine 7 will not flow into the through holes 15, so
While the same effects as the above-mentioned raised bottom part 6 can be obtained, the required purpose can be achieved by using the through hole 15. Weir section 16 in Fig. 7
is constructed by removing a part of the member 17 on the downstream end face at appropriate intervals in the width direction as shown in FIG. 8, and the weir part 18 in FIG. It is constructed by completely removing the . By reducing or eliminating some of the members of the weir parts 16 and 18 in this way, it is possible to obtain the same effects as the above-mentioned raised bottom part 6, while reducing costs.

なお、上記各実施例は海水の淡水化を中心に説
明したが、地熱水や他の温廃水または温排水につ
いても同様に適用することができることは明らか
である。
Although each of the above embodiments has been described with a focus on desalination of seawater, it is clear that the invention can be similarly applied to geothermal water, other hot wastewater, or hot wastewater.

以上本発明の方法によれば、ブラインの蒸発温
度が高い場合はもちろんブラインの蒸発温度が低
い場合でも、上層ブラインの液水頭により蒸発が
抑制される下層に蒸発能力をもつブラインが潜り
込んでしまうのを防ぐことができるので、至つて
良好にブラインの蒸発を促進することができる。
しかも、上げ底部または堰部のブライン方向長さ
を蒸発室の長さの1/3〜1/5の範囲にわたるように したので、前記上げ底部または堰部上のブライン
が浅くなり、優れた蒸発性能を得ることができ
る。
As described above, according to the method of the present invention, even when the evaporation temperature of the brine is high as well as when the evaporation temperature of the brine is low, the brine with evaporation ability can sneak into the lower layer where evaporation is suppressed by the liquid head of the upper layer brine. Since the evaporation of brine can be prevented, the evaporation of brine can be promoted extremely well.
In addition, since the length of the raised bottom or weir in the brine direction is set to range from 1/3 to 1/5 of the length of the evaporation chamber, the brine on the raised bottom or weir becomes shallow, resulting in excellent evaporation. performance can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明方法の一実施例を示し、第1図は
本発明に係る多段フラツシユ蒸発装置の要部拡大
縦断側面図、第2図はNETDと蒸発温度の関係
をあらわす図、第3図〜第5図はそれぞれ上げ底
部の他の実施例を示す縦断側面図、第6図〜第7
図は堰部の実施例を示し、第6図および第7図は
矩形状の堰部の縦断側面図、第8図は第7図のA
−A断面図、第9図は矩形状の堰部の縦断側面図
である。 5……段間オリフイス、6,8,10,12…
…上げ底部、7……ブライン、14,16,18
……堰部。
The drawings show an embodiment of the method of the present invention; FIG. 1 is an enlarged vertical sectional side view of the main parts of the multi-stage flash evaporator according to the present invention, FIG. 2 is a diagram showing the relationship between NETD and evaporation temperature, and FIGS. FIG. 5 is a vertical sectional side view showing other embodiments of the raised bottom portion, and FIGS.
The figure shows an example of the weir part, FIGS. 6 and 7 are longitudinal sectional side views of the rectangular weir part, and FIG. 8 is the A of FIG.
-A sectional view and FIG. 9 are longitudinal sectional side views of a rectangular dam. 5... Interstage orifice, 6, 8, 10, 12...
...Raised bottom, 7...Brine, 14, 16, 18
...Weir.

Claims (1)

【特許請求の範囲】 1 多段フラツシユ蒸発室の段間オリフイスの下
流側でブライン流れ方向長さが蒸発室の長さの
1/3〜1/5の範囲にわたつて設けられた上げ底部ま たは堰部により蒸発を促進することを特徴とする
多段フラツシユ蒸発装置における蒸発促進方法。
[Claims] 1. A raised bottom or weir provided on the downstream side of the interstage orifice of the multi-stage flash evaporation chamber so that the length in the brine flow direction ranges from 1/3 to 1/5 of the length of the evaporation chamber. A method for promoting evaporation in a multi-stage flash evaporator, characterized in that evaporation is promoted by a portion of the flash evaporator.
JP6009082A 1982-04-09 1982-04-09 Method for promotion evaporation in multi-stage flash evaporation apparatus Granted JPS58177105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6009082A JPS58177105A (en) 1982-04-09 1982-04-09 Method for promotion evaporation in multi-stage flash evaporation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6009082A JPS58177105A (en) 1982-04-09 1982-04-09 Method for promotion evaporation in multi-stage flash evaporation apparatus

Publications (2)

Publication Number Publication Date
JPS58177105A JPS58177105A (en) 1983-10-17
JPS6327041B2 true JPS6327041B2 (en) 1988-06-01

Family

ID=13132040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6009082A Granted JPS58177105A (en) 1982-04-09 1982-04-09 Method for promotion evaporation in multi-stage flash evaporation apparatus

Country Status (1)

Country Link
JP (1) JPS58177105A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5538161A (en) * 1978-09-13 1980-03-17 Hitachi Ltd Thickkbedquilt dryer
JPS5597283A (en) * 1979-01-19 1980-07-24 Mitsubishi Heavy Ind Ltd Evaporating type sea water desalination apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5538161A (en) * 1978-09-13 1980-03-17 Hitachi Ltd Thickkbedquilt dryer
JPS5597283A (en) * 1979-01-19 1980-07-24 Mitsubishi Heavy Ind Ltd Evaporating type sea water desalination apparatus

Also Published As

Publication number Publication date
JPS58177105A (en) 1983-10-17

Similar Documents

Publication Publication Date Title
US2830797A (en) Refrigerant condenser
US3664928A (en) Dimpled heat transfer walls for distillation apparatus
US4107241A (en) Contacting arrangement for mass transfer operations
DE1517379B2 (en) MULTI-STAGE EXPANSION EVAPORATOR
US3975241A (en) Distillation apparatus
DE1915197A1 (en) capacitor
KR100194778B1 (en) Avenger
JPS6327041B2 (en)
KR830000249B1 (en) Multistage flash evaporator
US3911067A (en) Direct contact gas condenser
US3385770A (en) Apparatus for use in evaporative processes
DD235105A5 (en) METHOD AND APPARATUS FOR USING THE FREEZER OF WATER AS A HEAT SOURCE FOR A WATER PUMP
JP3831830B2 (en) Multistage flash evaporator
JPS60501746A (en) Thermal thin film distillation system
US3973624A (en) Condenser
JP2003190701A (en) Evaporator
JPS6036854A (en) Condenser
US3515645A (en) Evaporator-condenser unit for a distillation system
JPS5922601A (en) Accelerating method of evaporation in flash evaporator
SU990246A1 (en) Film-type evaporation apparatus
US3684661A (en) Desalination of sea or brackish water by multi-stage flash evaporation
Van Der Mast et al. Boiling of natural sea water in falling film evaporators
US3801471A (en) Multi-stage flash distillation plant
SU802190A1 (en) Thearmal deaerator
DE1133743B (en) Device for freezing constituents out of a gas mixture