[go: up one dir, main page]

JPS6326796B2 - - Google Patents

Info

Publication number
JPS6326796B2
JPS6326796B2 JP57214708A JP21470882A JPS6326796B2 JP S6326796 B2 JPS6326796 B2 JP S6326796B2 JP 57214708 A JP57214708 A JP 57214708A JP 21470882 A JP21470882 A JP 21470882A JP S6326796 B2 JPS6326796 B2 JP S6326796B2
Authority
JP
Japan
Prior art keywords
metal
fatty acid
carbon number
coating
saturated fatty
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57214708A
Other languages
Japanese (ja)
Other versions
JPS59105094A (en
Inventor
Katsuhiro Imazu
Akihiko Morofuji
Hisao Iwamoto
Seishichi Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP57214708A priority Critical patent/JPS59105094A/en
Publication of JPS59105094A publication Critical patent/JPS59105094A/en
Publication of JPS6326796B2 publication Critical patent/JPS6326796B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、飲料金属容器の成形方法に関するも
ので、より詳細には、内容物への金属溶出や罐体
腐食等のトラブルがなく、内容物のフレーバー
(香味)保持性に優れ、しかも絞り率の高い飲料
金属容器を、良好な加工作業性をもつて製造する
方法に関する。 飲料用の金属容器としては、アルミ、ブリキ等
の金属素材を深絞り加工或いは絞り−しごき加工
に付してフランジ付のコツプ状罐体とし、これと
罐蓋とを二重巻締して成るツーピース罐や、或い
は上記素材をプレス加工に付してカツプ状の有底
下部体と、カツプ状の注ぎ口付上体部とを製造
し、これら下部体及び上部体を、その周状の開口
端部において重ね合せ接合して、ピン状の容器と
したものが使用されている。 この絞り加工乃至はプレス加工においては、加
工に先立つて、金属素材上に予じめ有機塗膜を設
けておくことが、絞り加工性や作業性の点でも、
また加工後の罐体に塗装を施こすという煩わしさ
がない点でも好ましいが、塗装金属素材を数段の
プレス加工によつて深絞りを行おうとする時には
未だ次の欠点がみられる。 即ち、公知の塗装金属素材では自ら一定の絞り
限界があり、この絞り限界を越えると、頭或いは
フランジの部分で該素材の破断を生じ易く、従つ
て径当りの高さの比率の大きい飲料罐を製造する
ことが困難となる。 また、このプレス加工に際して、絞り比が大き
くなると、素材上の塗膜に剥離や破断、クラツ
ク、ピンホール等の塗膜欠陥が生じ易くなり、内
容物への金属溶出(特に鉄溶出)や罐体の孔食等
の腐食が生じ易くなる。 更に、塗膜上にそれ自体公知の滑剤を塗布して
絞り加工性を向上させることも考えられるが、こ
の場合には塗膜上の滑剤を脱脂することが困難と
なり、また塗膜上に残存する滑剤が、微妙な風味
を生命とする飲料のフレーバーを損い易いという
致命的な欠点がある。 本発明者等は、グリセリンと炭素数2乃至18の
飽和脂肪酸とから成り且つ飽和脂肪酸の合計炭素
数が10乃至25であるトリグリセリドを主体とする
滑剤を、塗装金属素材の塗膜面に、溶液の形でし
かも絞り成形に先立つて施こすときには、上述し
た諸欠点が全て解消された飲料用金属容器が得ら
れることを見出した。 即ち、本発明の目的は、上述した諸欠点が解消
された飲料金属容器の成形法を提供するにある。 本発明の他の目的は、従来の成形法に比して絞
り限界を顕著に向上させた飲料金属容器の成形法
を提供するにある。 本発明の更に他の目的は、絞り加工中に素材上
の塗膜に欠陥を生ずることがなく、成形後には脱
脂洗浄も容易で、しかも塗膜上に滑剤が残存する
ときにも内容物のフレーバーを殆んど損わないよ
うな飲料金属容器の成形法を提供するにある。 本発明によれば、ポンチとダイとの相対的軸方
向運動によつて有機塗膜を形成させた金属素材を
冷間中の多段のプレス加工で金属容器に成形する
方法において、グリセリンと炭素数2乃至18の飽
和脂肪酸とから成り且つ飽和脂肪酸の合計炭素数
が10乃至25であるトリグリセリドを主体とする液
体滑剤を、溶液の形で、素材の有機塗膜面に常温
で塗布し、均一な滑剤層を形成させた後、該素材
をプレス加工に賦することを特徴とする飲料金属
容器の成形方法が提供される。 本発明を以下に詳細に説明する。 プレス成形に付する金属素材の断面構造を示す
第1図において、この成形用金属素材1は、アル
ミ板、ブリキ等から成る金属基質2、該基質の両
表面に設けられた有機塗膜3a,3bから成つて
いる。 本発明の重要な特徴は、これら有機塗膜3a,
3bの表面に、プレス加工に先立つて、グリセリ
ンと炭素数2乃至18の飽和脂肪酸とから成り且つ
飽和脂肪酸の合計炭素数が10乃至25であるトリグ
リセリドを主体とする液体滑剤の溶液層4a,4
bを一様に設けることに存する。即ち、本発明に
用いる滑剤は、通常の動植物油脂と同様にトリグ
リセリドを主体とするものであるが、このトリグ
リセリドを構成する脂肪酸が炭素数2乃至18の飽
和脂肪酸であり、しかもこの飽和脂肪酸の合計炭
素数が10乃至35の範囲にあることがこれらの油脂
類と顕著に相違する点である。 先ず、このトリグリセリドは飽和脂肪酸から構
成されていながら、上述した炭素数を有すること
に関連して適切な粘度を有する液体であるという
特徴を有する。このため、この液体滑剤は素材上
の有機塗膜面に保持されて油膜強度の大きい潤滑
面を形成し、高絞り率の加工に際しても、特定の
部分、即ち頭やフランジ部への応力集中を緩和し
て、絞り加工性を向上させ、絞り限界をも顕著に
向上させ得るという利点をもたらす。また、この
塗膜上の滑剤は本質的に液体であるため、固体状
の滑剤に比して脱脂操作も容易であるという利点
をもたらす。更に、トリグリセリドを構成する脂
肪酸が飽和脂肪酸であることから、この脂肪酸が
不飽和脂肪酸からものに比して無味無臭であり、
塗膜上にこのものが残存しても、内容物に異味、
異臭を与えることがないという利点をもたらす。
のみならず、上述した炭素数を有する飽和脂肪酸
から形成されたトリグリセリドは、素材上の有機
塗膜面の均一塗布性乃至は濡れ性にも際立つて優
れており、これを更に溶液の形で有機塗膜面に施
こすことにより、一層優れた濡れ性乃至は均一塗
布性が得られる。しかも、上述した種々の利点が
組合されたことの結果として、本発明によればト
リグリセリド系液体滑剤の塗布量が著しく少ない
場合でさえも、高度の絞り加工が至つて円滑にし
かも高速で可能になるという利点も達成されるも
のである。 本発明において、トリグリセリド構成飽和脂肪
酸の合計炭素数が10乃至25、特に15乃至25の範囲
にあることも重要であり、この合計炭素数が上記
範囲よりも小さいときには、潤滑性の点で上述し
た利点は達成されず、一方上記範囲よりも大きい
ときには、潤滑性能の点でも、また脱脂性能の点
でも不都合となる。 本発明に用いるトリグリセリドを構成する3個
の飽和脂肪酸は、前記要件を満足する範囲内にお
いて、同一でも互いに異なつていてもよい。ま
た、この飽和脂肪酸は直鎖脂肪酸であることが望
ましいが、分岐鎖脂肪酸であることもできる。適
当な構成脂肪酸の例は、酢酸、酪酸、カプロン
酸、カプリン酸、ラウリン酸、ミリスチン酸、パ
ルミチン酸、ステアリン酸等である。 トリグリセリドの適当な例は、これに限定され
るものでないが、次のようなものである。 トリブチン、 トリカプロイン、 トリカプリリン、 1,2−ジアセト−3−パルミチン、 1,2−ジアセト−3−ステアリン、 1,2−ジアセト−3−ミリスチン、 1,2−ジラクト−3−ラウリン、 1,2−ジラクト−3−ミリスチン、 1−アセト−2−ラクト−3−ラウリン。 本発明において、液体滑剤としては、上述した
飽和脂肪酸トリグリセリド単独から成るものが好
適に使用されるが、このものが50重量%よりも多
い量で、特に70重量%以上の飽和脂肪酸トリグリ
セリドを含有し且つ全体として液体であるという
条件下で、他の滑剤との組合せで用いることも可
能である。組合せで使用し得る滑剤としては、他
の脂肪酸グリセリド、脂肪酸、脂肪酸エステル、
脂肪酸アミド、高級アルコール、パラフイン類等
を挙げることができる。 これらの液体滑剤は、溶液の形で素材の有機塗
膜面への塗布に用いる。溶液形成用の溶媒として
は、液体滑剤を実質的に溶解するが、有機塗膜を
溶解したり、これを膨潤したりしないものであ
り、例えばメタノール、エタノール等の低級アル
コール;メチルエーテル、エチルエーテル等のエ
ーテル類;ベンゼン、トルエン、キシレン等の炭
化水素溶媒等を挙げることができるが、使用し得
る溶媒は、勿論これに限定されない。溶液中の液
体滑剤の濃度は、一般的に言つて、1乃至20重量
%、特に1乃至10重量%の範囲にあれば、塗布性
と潤滑性とに関して満足すべき結果が得られる。 液体滑剤溶液の素材有機塗膜面への塗布量は、
著しく少ない量で顕著な効果が得られるのが本発
明の利点の一つでもあり、例えば一般的に言つ
て、不揮発性成分基準で、5乃至70mg/m2、特に
5乃至50mg/m2の塗布量で満足すべき結果が得ら
れる。この塗布量が上記範囲よりも少ないと、潤
滑性能が不満足となり、一方上記範囲よりも脱脂
操作に負担がかかり、経済性の上でも、フレーバ
ー特性の点でも不利となり易い。 本発明において、液体滑剤溶液の塗膜面への塗
布は、ローラ塗布、スプレー塗布、浸漬塗布、泡
塗布等のそれ自体公知の手段で行われる。 尚、本発明に用いる塗装金属素材はそれ自体公
知のものであり、例えば金属素材としては、未処
理の鋼板(ブラツクプレート)、各種表面処理鋼
板、例えば錫メツキ鋼板(ブリキ)、亜鉛メツキ
鋼板、アルミメツキ鋼板、クロムメツキ鋼板等の
メツキ鋼板;電解クロム酸処理鋼板等の電解処理
鋼板;リン酸及び/又はクロム酸処理鋼板等の化
学処理鋼板や、アルミニウム等の軽金属板或いは
これらの複合材等が使用される。好適な金属素材
として、純アルミ或いはアルミ合金から成る圧延
アルミ素材があり、これらは絞り加工条件や目的
によつても相違するが、一般に0.15乃至0.80mm、
特に0.17乃至0.50mmの素材厚で使用される。好適
な他の金属素材として、鍍錫量、即ちベース・ボ
ツクス当りの錫ポンド数が0.1乃至1.0、特に0.15
乃至0.75の範囲にあるものが使用される。この錫
メツキ層は、電解メツキされたままのノーリフロ
ー板(マツト板)でもよいし、また電解メツキ層
を熱溶融処理したリフロー板(ブライト板)でも
よい。素板厚は、一般に0.15乃至0.5mm、特に0.15
乃至0.35mmの範囲にあるものが使用される。 一方保護塗料としては、熱硬化性及び熱可塑性
樹脂から成る任意の保護塗料;例えばフエノー
ル・エポキシ塗料、アミノ−エポキシ塗料等の変
性エポキシ塗料;例えば塩化ビニル−酢酸ビニル
共重合体、塩化ビニル−酢酸ビニル共重合体部分
ケン化物、塩化ビニル−酢酸ビニル−無水マレイ
ン酸共重合体、エポキシ変性−、エポキシアミノ
変性−或いはエポキシフエノール変性−ビニル樹
脂塗料等のビニル又は変性ビニル塗料;アクリル
樹脂系塗料;スチレン−ブタジエン系共重合体等
の合成ゴム系塗料等の単独又は2種以上の組合せ
が使用される。 これらの塗料は、エナメル或いはラツカー等の
有機溶媒溶液の形で、或いは水性分散液又は水溶
液の形で、ロール塗装、スプレー塗装、浸漬塗
装、静電塗装、電気泳動塗装等の形で金属素材に
施こす。勿論、前記樹脂塗料が熱硬化性の場合に
は、必要により塗料を焼付ける。 これら有機塗膜は、腐食防止及び絞り加工性向
上の見地から、一般に2乃至30μm、特に3乃至
20μmの厚み(乾燥状態)を有することが望まし
い。 本発明によれば、第2図に示す通り、液体滑剤
を塗布した塗装金属素材10を、しわ押え11で
押えた状態で、相対的に軸方向運動可能なポンチ
12とダイ13との間でプレス加工に付し、有底
の無継目カツプの形に形成する。この際、液体滑
剤の溶液層を乾燥した後、プレス加工に賦しても
よいが、一般には、塗布量が極めて少ないこと及
び後での脱脂操作が容易なことから、塗布後の溶
液層をそのままの形、即ち湿潤状態でプレス加工
に付するのがよい。 本発明においては、プレス加工は、所望の形状
及び所望の高さ/径比率となる迄、ポンチ及びダ
イスの径を段々小さくしながら、数次にわたつて
プレス加工を行う。 この際、下記式 絞り比=加工前の径/加工後の径 で定義される絞り比を、一段のプレス加工で1.20
乃至2.10、特に1.30乃至1.90となるように、また
全体としての絞り比を、1.50乃至3.00、特に1.80
乃至2.70となるように行うことが望ましい。 絞り成形後のカツプ体は、トリミングを行つた
後、それ自体公知の脱脂操作、例えば湯洗滌、溶
剤洗滌、フロンガス洗滌等に付した後、以後の製
罐操作に賦する。 即ち、ツーピース構造の通常の深絞り罐では、
必要によりネツクイン加工、フランジ加工を行
い、内容物を充填した後、罐蓋と二重巻締して罐
体とする。 また、周状側面継目を有するビン状の金属容器
の場合には、第3図に示す有底カツプから成る下
部体2と、開口を設けた逆向きカツプから成る上
部体21とを形成し、これら両者を第4図に示す
ように、接着剤層22を介して重ね合せ接合し
て、ビン状容器とする。 本発明を次の例で説明する。 実施例 1 素板厚0.23mmのアルミ板(3004H19材)の内外
面に変性ビニル系塗料をそれぞれ全体の塗膜量が
150mg/dm2、60mg/dm2となるように塗布・焼
付を行なつた後にトリカプリリン〔記号L−1〕
(脂肪酸炭素数8,脂肪酸合計炭素数24)をエタ
ノールを用いて5重量%濃度に稀釈した液体滑剤
を内、外の塗膜表面上に常温中でロール方式によ
つて35mg/m2になるように均一に塗布した。 その後、直径250mmの円板に打抜き、総絞り比
が2.26になるように通常のプレス加工で絞り成形
を行ない、接合部端縁の内径が110.6mmのカツプ
にした後、更に多段プレス加工によつて中心部に
直径30mmの注ぎ口を有する上部体を作製した。 一方、同じ液体滑剤を塗布した塗装板より上部
体同様の総絞り比2.26の絞り成形を行ない、更に
ネツキング加工によつて接合部端縁の外径が
110.6mmになるように下部体を作製した。 しかる後に、両部体共温湯(70℃)でスプレー
洗滌を行ない、次いでオーブンで乾燥した。この
上部体と下部体を熱融着の接着剤を用いて加熱接
合し、容量約2の飲料金属容器を作製した。 これらの金属容器を作製する過程でプレス成形
性を評価する一方で、合成炭酸飲料を充填した後
注ぎ口を密栓し、62℃10分の殺菌を施した上で室
温3ケ月経時させ、金属溶出量の測定及びフレー
バー(香味)の評価を行なつた。その結果を表1
に示す。 実施例 2〜5 液体滑剤としてはトリブチレン〔記号L−2〕
(脂肪酸炭素数4、脂肪酸合計炭素数12)、トリカ
プロイン〔記号L−3〕(脂肪酸炭素数6、脂肪
酸合計炭素数18)、1,2−ジラクト−3−ラウ
リン〔記号L−4〕(脂肪酸炭素数4,12,脂肪
酸合計炭素数20)、トリカプリリン(脂肪酸炭素
数8、脂肪酸合計炭素数24)80重量%と、1,2
−ジアセト−3−オレイン(不飽和脂肪酸成分含
有)20重量%の混合物〔記号L−5〕をエタノー
ルを用いて5重量%濃度に稀釈し塗膜表面に供す
る以外はいずれも実施例1と同様に多段のプレス
成形を行ない、金属容器を作製した。 これらのプレス成形性、金属溶出量、フレーバ
ーの評価結果を表1に示す。 比較例 1〜3 比較のために液体滑剤として、トリアセチン
〔記号L−6〕(脂肪酸炭素数2、脂肪酸合計炭素
数6)、トリラウリン〔記号L−7〕(脂肪酸炭素
数12、脂肪酸合計炭素数36)、1,2−ジアセト
−3−オレイン〔記号L−8〕の3種について実
施例1と同様の方法で調製し、塗装板に塗布した
後、冷間中の多段プレスに供し飲料金属容器を作
製した。 これらの容器についても実施例1同様に内容物
を充填し、各特性の評価を実施した。その結果を
表1に示す。 実施例 6 素板厚0.20mmの錫メツキ鋼板(ぶりき材、メツ
キ量#25/25、テンパーT−2)の内、外面にエ
ポキシ系塗料をそれぞれ全体の塗膜量が100mg/
dm2、50mg/dm2となるように塗布・焼付を行な
つた以外は実施例1と同様の液体滑剤を用いて、
プレス成形を行ない、上部体及び下部体のプレス
成形性と金属容器にしての特性の評価を実施し
た。 その結果、エポキシ系塗料を塗布した錫メツキ
鋼板の場合にも、本発明の液体滑剤を形成させる
成形方法によれば、プレス成形性においては勿論
のこと、金属溶出及びフレーバー(香味)の点で
も何ら異常はなく、実施例1〜5と同様の良好な
飲料金属容器を得ることが判つた。
The present invention relates to a method for forming a metal beverage container, and more specifically, it is free from problems such as metal elution into the contents and corrosion of the container, has excellent flavor retention of the contents, and has a squeezing rate. The present invention relates to a method for manufacturing a metal beverage container with high processability and good processing workability. Metal containers for beverages are made by deep-drawing or drawing-ironing a metal material such as aluminum or tin to form a pot-shaped case with a flange, and double-sealing this with a can lid. A two-piece can, or a cup-shaped lower body with a cup-shaped spout and a cup-shaped upper body with a spout, are manufactured by press-working the above-mentioned material, and these lower and upper bodies are formed with a circumferential opening. A pin-shaped container is used by overlapping and joining the ends. In this drawing or pressing process, it is recommended to provide an organic coating film on the metal material before processing, in terms of drawing processability and workability.
It is also advantageous in that it does not require the trouble of painting the housing after processing, but the following drawbacks still occur when attempting to deep draw a coated metal material through several stages of press working. In other words, known coated metal materials have a certain drawing limit, and if this drawing limit is exceeded, the material is likely to break at the head or flange. It becomes difficult to manufacture. In addition, when the drawing ratio increases during this press processing, coating defects such as peeling, breakage, cracks, and pinholes are likely to occur in the coating film on the material, and metal elution into the contents (especially iron elution) and can Corrosion such as pitting corrosion on the body becomes more likely to occur. Furthermore, it may be possible to improve the drawing processability by applying a known lubricant on the paint film, but in this case, it becomes difficult to degrease the lubricant on the paint film, and the lubricant remaining on the paint film may A fatal drawback is that the lubricant tends to spoil the flavor of the beverage, which relies on a delicate flavor. The present inventors applied a lubricant mainly consisting of triglyceride, which is composed of glycerin and a saturated fatty acid having 2 to 18 carbon atoms, and the total carbon number of the saturated fatty acids is 10 to 25, to the coating surface of a painted metal material in a solution. It has been found that when applied in the form of , and prior to drawing, a metal container for beverages is obtained in which all of the above-mentioned disadvantages are eliminated. That is, an object of the present invention is to provide a method for molding metal beverage containers in which the above-mentioned drawbacks are eliminated. Another object of the present invention is to provide a method for molding metal beverage containers that has a significantly improved drawing limit compared to conventional molding methods. Still other objects of the present invention are that the coating film on the material does not become defective during the drawing process, that it is easy to degrease and clean after molding, and that even when lubricant remains on the coating film, the contents can be removed. To provide a method for molding metal containers for beverages that hardly impairs flavor. According to the present invention, in a method of forming a metal material on which an organic coating film is formed by relative axial movement of a punch and a die into a metal container by cold multi-stage press working, glycerin and a carbon number A liquid lubricant mainly composed of triglycerides, which consists of 2 to 18 saturated fatty acids and the total number of carbon atoms in the saturated fatty acids is 10 to 25, is applied in the form of a solution to the organic coating surface of the material at room temperature. A method for forming a metal beverage container is provided, which comprises forming a lubricant layer and then subjecting the material to press working. The invention will be explained in detail below. In FIG. 1 showing the cross-sectional structure of a metal material to be press-formed, the metal material 1 for forming includes a metal substrate 2 made of an aluminum plate, tinplate, etc., an organic coating 3a provided on both surfaces of the substrate, It consists of 3b. An important feature of the present invention is that these organic coating films 3a,
3b, prior to pressing, a solution layer 4a, 4 of a liquid lubricant mainly composed of triglyceride, which is composed of glycerin and a saturated fatty acid having 2 to 18 carbon atoms, and the total number of carbon atoms in the saturated fatty acid is 10 to 25.
b is uniformly provided. That is, the lubricant used in the present invention is mainly composed of triglycerides like ordinary animal and vegetable fats and oils, but the fatty acids constituting the triglycerides are saturated fatty acids having 2 to 18 carbon atoms, and the total amount of these saturated fatty acids is It is significantly different from these oils and fats in that the number of carbon atoms is in the range of 10 to 35. First, although this triglyceride is composed of saturated fatty acids, it is a liquid having an appropriate viscosity in relation to having the above-mentioned number of carbon atoms. Therefore, this liquid lubricant is retained on the organic coating surface of the material and forms a lubricating surface with a high oil film strength, preventing stress concentration on specific parts, such as the head and flange, even when machining with a high drawing ratio. This has the advantage of improving drawing workability and significantly improving the drawing limit. Furthermore, since the lubricant on the coating film is essentially liquid, it has the advantage that degreasing is easier than with solid lubricants. Furthermore, since the fatty acids that make up triglycerides are saturated fatty acids, they are tasteless and odorless compared to those made from unsaturated fatty acids.
Even if this substance remains on the paint film, the contents may have an unpleasant taste or
This has the advantage of not giving off any unpleasant odor.
In addition, triglycerides formed from saturated fatty acids having the above-mentioned number of carbon atoms have outstanding uniformity and wettability on the organic coating surface of materials. By applying it to the coating surface, even more excellent wettability or uniform application can be obtained. Moreover, as a result of the combination of the various advantages mentioned above, according to the present invention, even when the amount of triglyceride-based liquid lubricant applied is extremely small, high-level drawing processing can be performed very smoothly and at high speed. The advantage of becoming more efficient is also achieved. In the present invention, it is also important that the total carbon number of the saturated fatty acids constituting the triglyceride is in the range of 10 to 25, particularly 15 to 25. When this total carbon number is smaller than the above range, the above-mentioned No advantage is achieved, whereas if it is larger than the above range, it becomes disadvantageous both in terms of lubrication performance and also in terms of degreasing performance. The three saturated fatty acids constituting the triglyceride used in the present invention may be the same or different from each other within the range that satisfies the above requirements. Moreover, although this saturated fatty acid is preferably a straight chain fatty acid, it can also be a branched chain fatty acid. Examples of suitable constituent fatty acids are acetic acid, butyric acid, caproic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, etc. Suitable examples of triglycerides include, but are not limited to: Tributin, tricaproin, tricaprylin, 1,2-diaceto-3-palmitine, 1,2-diaceto-3-stearin, 1,2-diaceto-3-myristin, 1,2-dilacto-3-laurin, 1,2 -dilacto-3-myristin, 1-aceto-2-lacto-3-laurin. In the present invention, as the liquid lubricant, one consisting of the above-mentioned saturated fatty acid triglyceride alone is preferably used, but this lubricant contains more than 50% by weight, especially 70% by weight or more of saturated fatty acid triglyceride. It is also possible to use it in combination with other lubricants, provided that it is entirely liquid. Lubricants that can be used in combination include other fatty acid glycerides, fatty acids, fatty acid esters,
Examples include fatty acid amides, higher alcohols, paraffins, and the like. These liquid lubricants are applied in the form of solutions to organic coatings on materials. The solvent for forming the solution is one that substantially dissolves the liquid lubricant but does not dissolve or swell the organic coating, such as lower alcohols such as methanol and ethanol; methyl ether and ethyl ether. and hydrocarbon solvents such as benzene, toluene, and xylene; however, the solvents that can be used are of course not limited to these. The concentration of liquid lubricant in the solution is generally in the range from 1 to 20% by weight, in particular from 1 to 10% by weight, to give satisfactory results in terms of spreadability and lubricity. The amount of liquid lubricant solution applied to the organic coating surface of the material is:
One of the advantages of the present invention is that a remarkable effect can be obtained with a significantly small amount . Satisfactory results can be obtained with the amount of application. If the coating amount is less than the above range, the lubrication performance will be unsatisfactory, and on the other hand, the degreasing operation will be more burdensome than the above range, which is likely to be disadvantageous in terms of economy and flavor characteristics. In the present invention, the liquid lubricant solution is applied to the coating surface by means known per se, such as roller coating, spray coating, dip coating, and foam coating. The coated metal materials used in the present invention are known per se. Examples of the metal materials include untreated steel plates (black plates), various surface-treated steel plates, such as tin-plated steel plates (tin plate), galvanized steel plates, Plated steel sheets such as aluminized steel sheets and chrome-plated steel sheets; electrolytically treated steel sheets such as electrolytic chromic acid treated steel sheets; chemically treated steel sheets such as phosphoric acid and/or chromic acid treated steel sheets, light metal sheets such as aluminum, or composite materials thereof. be done. Suitable metal materials include rolled aluminum materials made of pure aluminum or aluminum alloys, which generally have a diameter of 0.15 to 0.80 mm, although they differ depending on the drawing conditions and purpose.
It is especially used in material thicknesses of 0.17 to 0.50 mm. Other suitable metal materials include those having a tin content, i.e. pounds of tin per base box, of 0.1 to 1.0, especially 0.15.
A value in the range of 0.75 to 0.75 is used. This tin plating layer may be a no-reflow board (matte board) that has been electrolytically plated, or may be a reflow board (bright board) in which the electrolytically plated layer has been heat-melted. The thickness of the base plate is generally 0.15 to 0.5mm, especially 0.15mm.
A material in the range of 0.35 mm to 0.35 mm is used. On the other hand, the protective coatings include any protective coatings made of thermosetting and thermoplastic resins; for example, modified epoxy coatings such as phenolic epoxy coatings and amino-epoxy coatings; for example, vinyl chloride-vinyl acetate copolymers, vinyl chloride-acetic acid copolymers, etc. Vinyl or modified vinyl paints such as partially saponified vinyl copolymers, vinyl chloride-vinyl acetate-maleic anhydride copolymers, epoxy-modified, epoxyamino-modified, or epoxyphenol-modified vinyl resin paints; acrylic resin paints; Synthetic rubber paints such as styrene-butadiene copolymers may be used alone or in combination of two or more. These paints can be applied to metal materials in the form of organic solvent solutions such as enamel or lacquer, or in the form of aqueous dispersions or solutions, in the form of roll coating, spray coating, dip coating, electrostatic coating, electrophoretic coating, etc. Apply. Of course, if the resin paint is thermosetting, the paint may be baked if necessary. These organic coatings generally have a thickness of 2 to 30 μm, particularly 3 to 30 μm, from the viewpoint of preventing corrosion and improving drawing workability.
It is desirable to have a thickness (dry state) of 20 μm. According to the present invention, as shown in FIG. 2, a painted metal material 10 coated with a liquid lubricant is held down by a wrinkle presser 11 between a punch 12 and a die 13 that are relatively movable in the axial direction. It is pressed and formed into a seamless cup with a bottom. At this time, the solution layer of the liquid lubricant may be dried and then subjected to press processing, but in general, the solution layer after application is It is preferable to press it in its original form, that is, in a wet state. In the present invention, press working is performed several times while gradually decreasing the diameter of the punch and die until the desired shape and desired height/diameter ratio are achieved. At this time, the drawing ratio defined by the following formula: Drawing ratio = Diameter before processing / Diameter after processing is 1.20 in one press processing.
to 2.10, especially 1.30 to 1.90, and the overall aperture ratio to 1.50 to 3.00, especially 1.80.
It is desirable to do this so that the ratio is between 2.70 and 2.70. After the drawn cup is trimmed, it is subjected to a degreasing operation known per se, such as hot water washing, solvent washing, and fluorocarbon gas washing, and is then used for subsequent can manufacturing operations. In other words, in a normal deep-drawn can with a two-piece structure,
If necessary, neck-in processing and flange processing are performed, and after filling with the contents, the can is double-sealed with the can lid to form the can. In addition, in the case of a bottle-shaped metal container having a circumferential side seam, a lower body 2 consisting of a bottomed cup shown in FIG. 3 and an upper body 21 consisting of an inverted cup with an opening are formed, As shown in FIG. 4, these two pieces are overlapped and bonded via the adhesive layer 22 to form a bottle-shaped container. The invention is illustrated by the following example. Example 1 Modified vinyl paint was applied to the inner and outer surfaces of an aluminum plate (3004H19 material) with a base thickness of 0.23 mm, and the total coating amount was
Tricaprylin [symbol L-1] after coating and baking to give 150 mg/dm 2 and 60 mg/dm 2
A liquid lubricant prepared by diluting (fatty acid carbon number 8, total fatty acid carbon number 24) with ethanol to a concentration of 5% by weight is applied to the inner and outer coating surfaces at room temperature using a roll method to give a concentration of 35mg/ m2 . It was applied evenly. After that, it was punched into a disc with a diameter of 250 mm, and drawn using normal press processing so that the total drawing ratio was 2.26. After forming a cup with an inner diameter of 110.6 mm at the edge of the joint, it was further subjected to multi-stage press processing. An upper body having a spout with a diameter of 30 mm in the center was manufactured. On the other hand, a painted plate coated with the same liquid lubricant was drawn with a total drawing ratio of 2.26 similar to the upper body, and the outside diameter of the joint edge was further reduced by a netting process.
The lower body was made to have a diameter of 110.6 mm. Afterwards, both parts were spray washed with hot water (70°C) and then dried in an oven. The upper body and the lower body were heat-bonded using a heat-sealing adhesive to produce a metal beverage container with a capacity of about 2. In the process of manufacturing these metal containers, we evaluated their press formability, and after filling them with synthetic carbonated beverages, we sealed the spouts, sterilized them at 62°C for 10 minutes, and left them at room temperature for 3 months to evaluate metal elution. The amount was measured and the flavor was evaluated. Table 1 shows the results.
Shown below. Examples 2 to 5 Tributylene [symbol L-2] as liquid lubricant
(fatty acid carbon number 4, fatty acid total carbon number 12), tricaproin [symbol L-3] (fatty acid carbon number 6, fatty acid total carbon number 18), 1,2-dilacto-3-laurin [symbol L-4] (fatty acid 80% by weight of tricaprylin (fatty acid carbon number 8, fatty acid total carbon number 24), 1,2
- Same as Example 1 except that a 20% by weight mixture of diaceto-3-olein (containing unsaturated fatty acid component) [symbol L-5] was diluted with ethanol to a concentration of 5% by weight and applied to the coating surface. A metal container was produced by performing multi-stage press forming. Table 1 shows the evaluation results of these press formability, amount of metal elution, and flavor. Comparative Examples 1 to 3 For comparison, as liquid lubricants, triacetin [symbol L-6] (fatty acid carbon number 2, fatty acid total carbon number 6), trilaurin [symbol L-7] (fatty acid carbon number 12, fatty acid total carbon number 36), 1,2-diaceto-3-olein [symbol L-8] were prepared in the same manner as in Example 1, and after coating them on a painted plate, they were subjected to a cold multistage press to form beverage metals. A container was made. These containers were also filled with contents in the same manner as in Example 1, and each characteristic was evaluated. The results are shown in Table 1. Example 6 Epoxy paint was applied to the inner and outer surfaces of a tin-plated steel plate (tinplate material, plating amount #25/25, tempered T-2) with a base plate thickness of 0.20 mm, each with a total coating amount of 100 mg/
Using the same liquid lubricant as in Example 1 , except that the coating and baking were performed so that the lubricant was 50 mg/dm 2 ,
Press molding was performed to evaluate the press formability of the upper and lower bodies and their properties as metal containers. As a result, even in the case of tin-plated steel sheets coated with epoxy paint, the forming method for forming the liquid lubricant of the present invention not only improves press formability but also improves metal elution and flavor. It was found that there were no abnormalities and that good metal beverage containers similar to Examples 1 to 5 were obtained.

〔金属容器の評価〕[Evaluation of metal containers]

上記実施例、比較例に於ては、次に述べる方法
に従つて金属容器の評価を行つた。 (イ) 塗膜損傷 金属容器に、1%塩化ナトリウム水溶液を満
たし、7Vの電圧をかけ、その時流れた電流値
(mA)で評価した。各々10個ずつ測定し、そ
れらの算術平均値を結果として採用した。 (ロ) 金属溶出 金属容器に合成炭酸飲料を充填し、室温で3
ケ月経時した後、原子吸光法により溶出金属量
を測定した。各々10個ずつ測定し、それらの算
術平均値を結果として採用した。 (ハ) フレーバー試験 金属容器に合成炭酸飲料を充填し、室温で3
ケ月経時した後、20人のパネルによつてフレー
バー試験を行つた。結果は5点法で評価し、5
(良)〜1(悪)として示した。
In the above Examples and Comparative Examples, the metal containers were evaluated according to the method described below. (a) Paint film damage A metal container was filled with a 1% aqueous sodium chloride solution, a voltage of 7V was applied, and the current value (mA) that flowed at that time was evaluated. Ten pieces of each were measured, and their arithmetic mean value was used as the result. (b) Metal elution Fill a metal container with synthetic carbonated drink and let it cool for 30 minutes at room temperature.
After several months, the amount of eluted metal was measured by atomic absorption spectrometry. Ten pieces of each were measured, and their arithmetic mean value was used as the result. (c) Flavor test Fill a metal container with synthetic carbonated beverage and heat it at room temperature for 30 minutes.
After several months, a flavor test was conducted by a panel of 20 people. The results will be evaluated using a 5-point system.
It was indicated as (good) to 1 (bad).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はプレス成形に付する金属素材の構造を
示す断面図、第2図は金属素材の絞り工程を説明
するための断面図、第3乃至第4図は本発明によ
るプレス成形法を説明するための金属容器の一具
体例を示す図であつて、 引照数字1は金属素材、2は金属基質、3a,
3bは有機塗膜、4a,4bは液体滑剤の溶液
層、10は塗装金属素材、11はしわ押え、12
はポンチ、13はダイ、20は下部体、21は上
部体、22は接着剤層、23は接合部端縁を夫々
示す。
Fig. 1 is a sectional view showing the structure of a metal material subjected to press forming, Fig. 2 is a sectional view illustrating the drawing process of the metal material, and Figs. 3 and 4 are illustrating the press forming method according to the present invention. 1 is a diagram illustrating a specific example of a metal container for storage, in which reference numeral 1 is a metal material, 2 is a metal substrate, 3a,
3b is an organic coating film, 4a and 4b are liquid lubricant solution layers, 10 is a painted metal material, 11 is a wrinkle suppressor, 12
13 is a punch, 20 is a lower body, 21 is an upper body, 22 is an adhesive layer, and 23 is a joint edge.

Claims (1)

【特許請求の範囲】 1 ポンチとダイとの相対的軸方向運動によつて
有機塗膜を形成させた金属素材を冷間中の多段の
プレス加工で金属容器に成形する方法において、
グリセリンと炭素数2乃至18の飽和脂肪酸とから
成り且つ飽和脂肪酸の合計炭素数が10乃至25であ
るトリグリセリドを主体とする液体滑剤を、溶液
の形で、素材の有機塗膜面に常温で塗布し、均一
な滑剤層を形成させた後、該素材をプレス加工に
賦することを特徴とする飲料金属容器の成形方
法。 2 前記液体滑剤の溶液を、不揮発性成分基準で
5乃至70mg/m2の量で素材有機塗膜面に施こす特
許請求の範囲第1項記載の方法。
[Scope of Claims] 1. A method for forming a metal material on which an organic coating film is formed by relative axial movement between a punch and a die into a metal container by cold multi-stage press working,
A liquid lubricant mainly composed of triglyceride, which is composed of glycerin and a saturated fatty acid with a carbon number of 2 to 18, and the total carbon number of the saturated fatty acids is 10 to 25, is applied in the form of a solution to the organic coating surface of the material at room temperature. A method for forming a metal beverage container, which comprises forming a uniform lubricant layer and then subjecting the material to press working. 2. A method according to claim 1, wherein the liquid lubricant solution is applied to the organic coating surface of the material in an amount of 5 to 70 mg/m 2 based on non-volatile components.
JP57214708A 1982-12-09 1982-12-09 Forming of metallic container for drinks Granted JPS59105094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57214708A JPS59105094A (en) 1982-12-09 1982-12-09 Forming of metallic container for drinks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57214708A JPS59105094A (en) 1982-12-09 1982-12-09 Forming of metallic container for drinks

Publications (2)

Publication Number Publication Date
JPS59105094A JPS59105094A (en) 1984-06-18
JPS6326796B2 true JPS6326796B2 (en) 1988-05-31

Family

ID=16660292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57214708A Granted JPS59105094A (en) 1982-12-09 1982-12-09 Forming of metallic container for drinks

Country Status (1)

Country Link
JP (1) JPS59105094A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61263746A (en) * 1985-05-17 1986-11-21 日本製箔株式会社 Metallic sheet for molding
JPS62131734U (en) * 1986-02-07 1987-08-20
JPH0819431B2 (en) * 1988-06-09 1996-02-28 日本パーカライジング株式会社 Lubricant for cold rolling
JPH0459894A (en) * 1990-06-29 1992-02-26 Nippon Oil Co Ltd Lubrication oil composition
US5284508A (en) * 1990-07-05 1994-02-08 Kirin Brewery Company Ltd. Coating composition for glass containers
JP3186189B2 (en) * 1992-04-03 2001-07-11 日本ペイント株式会社 Surface treatment agent for metal cans, method of using the same, and concentrated liquid for metal can surface treatment
JPH06220472A (en) * 1993-01-29 1994-08-09 Nippon Paint Co Ltd Surface treatment for metallic can

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4834658A (en) * 1971-09-08 1973-05-21

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4834658A (en) * 1971-09-08 1973-05-21

Also Published As

Publication number Publication date
JPS59105094A (en) 1984-06-18

Similar Documents

Publication Publication Date Title
JPH01258822A (en) Redrawing method and drawing/redrawing can
JPH07108706B2 (en) Method for manufacturing thinned cans
JPS6326796B2 (en)
US4477501A (en) Welded can and process for preparation thereof
US5191779A (en) Method of producing a metallic can using a saturated branched chain containing hydrocarbon lubricant
JPH0136519B2 (en)
US2288182A (en) Container manufacture
US4160056A (en) Steel sheet for DrD cans and DI cans
US4407149A (en) Process for forming a drawn and ironed container
US2335933A (en) Drawing metal
JPS6058098B2 (en) Welded tin can with covered seams
AU651411B2 (en) Deeply drawn can and method of producing the same
US4457450A (en) Nickel-zinc alloy coated drawn and ironed can
JPH0137428B2 (en)
JP2532002B2 (en) Resin coated metal plate for thin-walled deep drawing
US4454960A (en) Draw-ironed can formed of surface-treated steel plate and process for preparation thereof
JP2748856B2 (en) Iron drawn iron can
JP3611605B2 (en) Method for manufacturing aluminum can body
JPS6330218B2 (en)
US2801604A (en) Processed drawn implement
JPS5933046B2 (en) Netsuking forming method for metal cans
JPH03226319A (en) Manufacture of metallic can
JPH0317283A (en) Surface treated steel sheet for can
JPS6397316A (en) Surface treated steel sheet for di-can
JPH0230939B2 (en) GAIMENTOSOIKEIKANTAI