[go: up one dir, main page]

JPS63267422A - Removing method for nitrogen oxide - Google Patents

Removing method for nitrogen oxide

Info

Publication number
JPS63267422A
JPS63267422A JP62101376A JP10137687A JPS63267422A JP S63267422 A JPS63267422 A JP S63267422A JP 62101376 A JP62101376 A JP 62101376A JP 10137687 A JP10137687 A JP 10137687A JP S63267422 A JPS63267422 A JP S63267422A
Authority
JP
Japan
Prior art keywords
isocyanuric acid
exhaust gas
nitrogen oxides
temperature
nox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62101376A
Other languages
Japanese (ja)
Inventor
Junji Nakagi
潤二 中木
Nobuo Nishida
信雄 西田
Mamoru Takada
守 高田
Makoto Hamazaki
浜崎 誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoku Chemicals Corp
Original Assignee
Shikoku Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Chemicals Corp filed Critical Shikoku Chemicals Corp
Priority to JP62101376A priority Critical patent/JPS63267422A/en
Publication of JPS63267422A publication Critical patent/JPS63267422A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To remove NOX efficiently by mixing isocyanuric acid of 10 mesh or less particle diameter in the floating state with high-temperature exhaust gas NOX. CONSTITUTION:Isocyanuric acid of 10 mesh or less particle diameter in the floating state fed from feed opening 8, 8' is mixed with high-temperature exhaust gas of 330 deg.C or more containing NOX generated in a combustion section 1 in the range of 0.5-10mol. per NOX 1mol. Isocyanuric acid is thermally decomposed and dissociated into NH radicals and CO radicals, and NH radicals are reacted with NOX to generate N2 and CO2. In case exhaust gas is 700 deg.C or more, residual time should be 30sec or less. After NOX is removed, exhaust gas is exhausted out of a stack 4 through a heat exchanger 3.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、ボイラー、焼却炉、加熱炉及び内燃機関等
において可燃性物質を燃焼させるときに発生する燃焼排
ガス中の窒素酸化物を除去する方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method for removing nitrogen oxides from flue gas generated when combustible substances are burned in boilers, incinerators, heating furnaces, internal combustion engines, etc. It is something.

従来の技術 燃焼排ガス中における窒素酸化物の除去は、アンモニア
を使用した無触媒還元法並びに接触還元法が広く知られ
ている。
BACKGROUND OF THE INVENTION A non-catalytic reduction method using ammonia and a catalytic reduction method are widely known for removing nitrogen oxides from combustion exhaust gas.

しかしながら、無触媒のアンモニア還元法によれば処理
温度が900℃を下回ると脱硝率が急激に低下しまた酸
化鉄、五酸化バナジウム、アルミナ等の触媒を用いるア
ンモニア還元法は、設備高のほか処理操作が煩雑である
などいずれも満足しうる状態にあるとは云えない。
However, with the non-catalytic ammonia reduction method, the denitrification rate drops sharply when the treatment temperature drops below 900°C, and the ammonia reduction method that uses catalysts such as iron oxide, vanadium pentoxide, alumina, etc. It cannot be said that all of them are in a satisfactory state, as the operations are complicated.

近時このような燃焼排ガス中の窒素酸化物を減少させる
ために、イソシアヌル酸の熱分解によって生じるイソシ
アン酸ガスと窒素酸化物を接触する方法が提案されてい
る。〔マクミラン(Macmiltan)ジャーナルズ
(Journals)社発行、ネイチャー (Na t
ure)、第324巻、第6098号、657頁ないし
658頁〕、すなわち、この報文によれば内燃機関の燃
焼排ガスを処理するに当たり、イソシアヌル酸を蓄積し
た加熱浴を360℃以上の温度に加熱してイソシアン酸
ガスを発生させ、このガスを窒素酸化物を含む燃焼排ガ
スと共にステンレス球を充填した450〜900℃の反
応層を通過させる方法が開示されている。
Recently, in order to reduce nitrogen oxides in such combustion exhaust gas, a method has been proposed in which nitrogen oxides are brought into contact with isocyanate gas produced by thermal decomposition of isocyanuric acid. [Published by Macmiltan Journals, Nature
ure), Vol. 324, No. 6098, pp. 657-658], that is, according to this report, when treating combustion exhaust gas from an internal combustion engine, a heating bath in which isocyanuric acid has been accumulated is heated to a temperature of 360°C or higher. A method is disclosed in which isocyanate gas is generated by heating, and this gas is passed through a reaction bed at 450 to 900° C. filled with stainless steel bulbs together with combustion exhaust gas containing nitrogen oxides.

発明が解決しようとする問題点 ネイチャー誌に記載の方法によれば無触媒のアンモニア
還元法に比べてかなり低い温度で反応が進行し、且つほ
ぼ完璧に近い窒素酸化物の除去が行われている。
Problems that the invention aims to solve According to the method described in Nature magazine, the reaction proceeds at a much lower temperature than the non-catalytic ammonia reduction method, and nitrogen oxides are almost completely removed. .

しかしながら、この方法は内燃機関より発生した少量の
燃焼排ガスを対象とするものであり、殊に反応すべきガ
スをステンレス球を充填した反応層を通過させることを
要件としているため、このような反応形式をボイラー等
から発生する大量の燃焼排ガスの処理に適応させること
は不向きである。
However, this method targets a small amount of combustion exhaust gas generated from an internal combustion engine, and in particular requires that the gas to be reacted pass through a reaction layer filled with stainless steel bulbs. It is not suitable to adapt this type to the treatment of large amounts of combustion exhaust gas generated from boilers, etc.

問題点を解決するための手段 本発明者は窒素酸化物を含む燃焼排ガスをイソシアヌル
酸の熱分解生成ガスと反応させて窒素酸化物を除去する
方法について種々の試験を繰り返した結果、イソシアヌ
ル酸を加熱浴のように定置した状態で熱分解させた場合
には、発生するイソシアン酸ガスが分解温度より過熱さ
れて高温になり、且つその濃度が局部的に高まることに
よって、窒素酸化物を副生ずる反応が起こることを知見
し、これを回避すべく鋭意検討を重ねた結果、窒素酸化
物を含有する約330″Cより高温の燃焼排ガスの流れ
に、粒径を10メツシュより小さくしたイソシアヌル酸
を浮遊状態として混合することによって、第二次的に反
応処理を行わずに燃焼排ガス中の窒素酸化物を実質的に
除去しうる方法を見い出した。
Means for Solving the Problems The present inventor has repeatedly conducted various tests on a method for removing nitrogen oxides by reacting combustion exhaust gas containing nitrogen oxides with gas produced by thermal decomposition of isocyanuric acid. When thermal decomposition is performed in a fixed state such as in a heating bath, the generated isocyanate gas is overheated to a high temperature above the decomposition temperature, and its concentration increases locally, producing nitrogen oxides as a by-product. After discovering that a reaction occurs and conducting intensive studies to avoid this, we added isocyanuric acid with a particle size smaller than 10 mesh to the flow of combustion exhaust gas containing nitrogen oxides at a temperature higher than approximately 330"C. We have discovered a method that can substantially remove nitrogen oxides from combustion exhaust gas by mixing them in a suspended state without performing a secondary reaction treatment.

本発明方法の実施に当たっては、粒径が10メツシュよ
り小さいイソシアヌル酸を温度が約330〜1500℃
の範囲にある燃焼排ガスが、燃焼炉本体では約0.15
〜20m/秒、煙道では約0.3〜20m/秒の流速で
移動する燃焼炉本体あるいは煙道に投入すべきである。
In carrying out the method of the present invention, isocyanuric acid having a particle size of less than 10 mesh is heated at a temperature of about 330 to 1500°C.
The combustion exhaust gas in the range of about 0.15 in the combustion furnace body
It should be introduced into the combustion furnace body or flue moving at a flow rate of ~20 m/sec, and in the flue at a flow rate of about 0.3-20 m/sec.

本発明において使用するイソシアヌル酸は尿素を熱分解
して工業的に生産されており、鉱酸によって処理された
精製品あるいはアンメリン、アンメリド等の副生物を含
む粗製品のいずれでも良い。
The isocyanuric acid used in the present invention is industrially produced by thermally decomposing urea, and may be either a purified product treated with a mineral acid or a crude product containing by-products such as ammeline and ammelide.

本発明方法において、イソシアヌル酸の粒径がlOメツ
シュより大きくなると燃焼排ガスとの混合が難しくなる
ばかりでな(、燃焼排ガスと接触の際に粒子表面が分解
温度より過熱され局部的に高濃度のイソシアン酸を生じ
て、窒素酸化物を生じる好ましからぬ副反応を伴う。
In the method of the present invention, if the particle size of isocyanuric acid is larger than the 1O mesh, it will not only be difficult to mix it with the combustion exhaust gas (also, the particle surface will be heated above the decomposition temperature when it comes into contact with the combustion exhaust gas, resulting in a locally high concentration). It produces isocyanic acid, with undesirable side reactions producing nitrogen oxides.

窒素酸化物を含有する燃焼排ガスに対するイソシアヌル
酸の供給量は、窒素酸化物1モル当たり0.5〜10モ
ル、好ましくは1〜5モルの範囲であり、イソシアヌル
酸の供給量を必要以上に増加しても効果はほとんど変化
せず、未反応のイソシアヌル酸によって白煙を生じる。
The amount of isocyanuric acid supplied to the combustion exhaust gas containing nitrogen oxides is in the range of 0.5 to 10 mol, preferably 1 to 5 mol, per 1 mol of nitrogen oxides, and the amount of isocyanuric acid supplied is increased more than necessary. However, the effect remains almost unchanged, and unreacted isocyanuric acid produces white smoke.

イソシアヌル酸の供給方法としては、自然落下させる方
法又は定量供給機を用いて燃焼炉本体あるいは煙道に落
下させる方法、送風ファンやスプレーガン等を用いて空
気、酸素、アンモニア、窒素などのキャリアガスに同伴
させて噴霧混合する方法が代表的である。
Isocyanuric acid can be supplied by allowing it to fall naturally, by dropping it into the combustion furnace body or flue using a quantitative feeder, or by using a blower fan or spray gun to supply air, a carrier gas such as oxygen, ammonia, nitrogen, etc. A typical method is to spray and mix the mixture by entraining it with water.

本発明における処理条件は、反応温度がイソシアヌル酸
の分解温度から約700℃を超えない範囲では特に制限
を受けないが、燃焼排ガスとイソシアヌル酸あるいはそ
の熱分解生成物を約700“C以上の温度で接触させる
場合は、窒素酸化物を副生ずるので熱交換させたり低温
ガスを混合するなどの手段によってガス温度を30秒以
内にすべきである。
The treatment conditions in the present invention are not particularly limited as long as the reaction temperature does not exceed about 700°C from the decomposition temperature of isocyanuric acid. If the gas is brought into contact with the gas, nitrogen oxides are produced as a by-product, so the gas temperature should be kept within 30 seconds by heat exchange or by mixing low-temperature gas.

作用 イソシアヌル酸の熱分解によって生じたイソシアン酸が
N)1ラジカルとCOラジカルに解離し、NHラジカル
が窒素酸化物と反応して、最終的に窒素と炭酸ガスに変
化する。
Function Isocyanic acid produced by thermal decomposition of isocyanuric acid dissociates into N)1 radicals and CO radicals, and NH radicals react with nitrogen oxides to finally change into nitrogen and carbon dioxide gas.

熱 11NcONII+CO−・−・−・−−−−・−・・
(1)NII+NO−〉  H+N、0 −・−・−−
一・・−・・ (2)旧+1NCO−一→Ntb4CO
−−−−−−−−−(3)011+CO−一→ lI+
CO,−一−−−・−・−−−−−−(4)N112+
NO→NZII+011−+Nz+HzO−・ (5)
N 2 II        Nz + II  −・
−−−−−−−−−一−・・・・−・ (6)しかしな
がら、イソシアヌル酸を加熱浴のように定置した状態で
熱分解すると、生じたイソシアン酸ガスは分解温度より
過熱されて高温になり且つ局部的にその濃度が高まり、
次式で示されるようなNHラジカルと酸素の高温反応が
起こり、逆に窒素酸化物を生成する。
Heat 11NcONII+CO−・−・−・−−−−・−・・
(1) NII+NO-> H+N, 0 −・−・−−
1...-... (2) Old +1NCO-1 → Ntb4CO
−−−−−−−−(3)011+CO−1 → lI+
CO, −1−−−・−・−−−−−−(4) N112+
NO→NZII+011-+Nz+HzO-・ (5)
N 2 II Nz + II −・
−−−−−−−−−−・・・・・−・ (6) However, when isocyanuric acid is thermally decomposed in a fixed state such as in a heating bath, the generated isocyanate gas is heated above the decomposition temperature. The temperature becomes high and its concentration locally increases,
A high-temperature reaction between NH radicals and oxygen occurs as shown in the following formula, and nitrogen oxides are produced.

N II + 0□ −−→ NO+011−−−−−
−−−−−・−・・・・(7)これに対して燃焼排ガス
の流れに粒径の小さいイソシアヌル酸を浮遊状態に混合
して熱分解させると、発生したイソシアン酸ガスは比較
的低い温度になり、窒素酸化物を副生ずる反応がほとん
ど起こらないものと推測される。
N II + 0□ −−→ NO+011−−−−−
−−−−・−・・・・(7) On the other hand, when isocyanuric acid with small particle size is mixed in a suspended state in the flow of combustion exhaust gas and thermally decomposed, the amount of isocyanate gas generated is relatively low. It is assumed that the reaction that produces nitrogen oxides as a by-product hardly occurs due to the temperature.

実施例1 図面に示した燃焼部1.35nf、煙道部約0.3nf
、熱交換部約0.3n(からなる燃焼炉において、灯油
を毎時平均14fの割合で燃焼し、燃焼部における供給
口から粉体用定量供給機を用いて、100メツシュより
小さい粒子を90%以上含む純度99.7%粉末状イソ
シアヌル酸を連続的に自然落下させて供給した。
Example 1 Combustion part 1.35nf and flue part approximately 0.3nf shown in the drawing
In a combustion furnace consisting of a heat exchange section of about 0.3n, kerosene is burned at an average rate of 14f per hour, and a powder metering machine is used from the supply port in the combustion section to remove 90% of particles smaller than 100 mesh. The powdered isocyanuric acid containing the above with a purity of 99.7% was continuously allowed to fall naturally.

なお、本例における平均的な処理温度と滞留時間は、燃
焼部約1200℃12,9秒、煙道部約820℃10,
6秒、熱交換部約510℃10,9秒であり、窒素酸化
物の濃度は常圧化学発光式NOx測定計を用いて連続的
に調べた。
Note that the average treatment temperature and residence time in this example are: approximately 1200°C for the combustion section, 12.9 seconds, and approximately 820°C for the flue section, 10 seconds.
The temperature of the heat exchange section was 510° C. for 10.9 seconds, and the concentration of nitrogen oxides was continuously measured using an atmospheric chemiluminescence NOx meter.

この試験の結果は表1に示したとおりであった。The results of this test were as shown in Table 1.

*注1:未処理排ガス中の窒素酸化物に対する供給4イ
ソシアヌル酸のモル比によって表示した。
*Note 1: Expressed by the molar ratio of the supplied 4-isocyanuric acid to the nitrogen oxides in the untreated exhaust gas.

実施例2 実施例1において、イソシアヌル酸の定量供給機を送風
機を備えたものに代え、粉末状イソシアヌル酸を毎時1
00Nrrfの割合で送風した空気に同伴して燃焼部に
噴霧混合して、同様の試験を行ったところ、表2に示し
たとおりの結果であった。
Example 2 In Example 1, the isocyanuric acid quantitative feeder was replaced with one equipped with a blower, and powdered isocyanuric acid was fed once per hour.
A similar test was conducted by spraying and mixing the mixture into the combustion section along with air blown at a rate of 00 Nrrf, and the results were as shown in Table 2.

なお、本例における処理温度と滞留時間は、燃焼部約1
000℃13,9秒、煙道部約730℃10,9秒、熱
交換部約460℃,1,2秒であった。
The processing temperature and residence time in this example are approximately 1
000°C for 13.9 seconds, the flue section at about 730°C for 10.9 seconds, and the heat exchange section at about 460°C for 1.2 seconds.

表2 参考例1 実施例1において、燃焼部における供給口から所定量の
アンモニアガスを供給して同様の試験を行ったところ、
表3に示した結果であった。
Table 2 Reference Example 1 In Example 1, a similar test was conducted by supplying a predetermined amount of ammonia gas from the supply port in the combustion section.
The results are shown in Table 3.

なお、本例における処理条件は、燃焼部約1000“C
14,2秒、煙道部約770℃、0.9秒、熱交換部約
480℃、1.3秒であった。
The processing conditions in this example are approximately 1000"C
The temperature was 14.2 seconds, the flue section was at about 770°C for 0.9 seconds, and the heat exchange section was at about 480°C for 1.3 seconds.

表3 実施例3 実施例1において、イソシアヌル酸を煙道部の供給口か
ら供給した以外は全く同様の方法で試験を行った。
Table 3 Example 3 A test was conducted in exactly the same manner as in Example 1 except that isocyanuric acid was supplied from the supply port of the flue section.

本例における平均的な処理温度と滞留時間は、煙道部6
57℃,0,8秒、熱交換部488℃,1,0秒であっ
た。
The average processing temperature and residence time in this example are as follows:
The temperature was 57°C for 0.8 seconds, and the heat exchange section was 488°C for 1.0 seconds.

試験の結果は表4に示したとおりであった。The results of the test were as shown in Table 4.

実施例4 実施例1において、イソシアヌル酸の定量供給機を送風
機を備えたものとし且つこれを煙道部の供給口に設けて
、粉末状イソシアヌル酸を毎時100Nrrfの割合で
送風した空気に同伴して、煙道部に噴霧混合させて、同
様の試験を行った。
Example 4 In Example 1, the isocyanuric acid quantitative feeder was equipped with a blower, and this was installed at the supply port of the flue section, and powdered isocyanuric acid was entrained in the air blown at a rate of 100 Nrrf per hour. A similar test was conducted by spraying and mixing the mixture into the flue.

この試験結果は、表5に示したとおりであった。The test results were as shown in Table 5.

なお、本例における処理条件は煙道部554℃10,9
秒、熱交換部385℃、1.1秒であった。
The processing conditions in this example are: 554°C 10.9°C in the flue section;
The heat exchange section was heated at 385° C. for 1.1 seconds.

実施例5 実施例4において、粉末状イソシアヌル酸の代わりに粒
度12〜35メツシュの顆粒状イソシアヌル酸(純度9
9.7%)を用いて同様の試験を行ったところ、試験の
結果は表6に示したとおりであった。
Example 5 In Example 4, granular isocyanuric acid with a particle size of 12 to 35 mesh (purity 9) was used instead of powdered isocyanuric acid.
When a similar test was conducted using 9.7%), the test results were as shown in Table 6.

なお、本例における処理条件は煙道部687℃10,8
秒、熱交換部510℃11,0秒であった。
Note that the processing conditions in this example are: flue part 687°C 10.8°C;
The temperature was 11.0 seconds at 510° C. in the heat exchange section.

表6 実施例6 実施例4において、アンメリン、アンメリドを含む純度
70%のイソシアヌル酸(粒度は100メツシュより小
さい粒子を90%以上含む)を用いた以外は全(同様と
して試験を行ったところ、表7に示したとおりの結果で
あった。
Table 6 Example 6 In Example 4, except for using 70% pure isocyanuric acid containing ammeline and ammelide (the particle size contains 90% or more of particles smaller than 100 mesh), all (the same tests were conducted) The results were as shown in Table 7.

なお、本例における処理条件は煙道697℃10,8秒
、熱交換部517℃,1,0秒であった。
The processing conditions in this example were: 697°C in the flue for 10.8 seconds, and 517°C in the heat exchange section for 1.0 seconds.

表7 実施例7 実施例3において、灯油の代わりに重油を燃焼させたと
ころ、排ガス中の窒素酸化物は95PPmであり、粉末
状イソシアヌル酸を窒素酸化物に対して5モル倍となる
割合で供給し、煙道部における温度を約750℃、滞留
時間1秒として同様の試験を行った結果、排ガス中の窒
素酸化物の濃度は5PPa+に低下した。(窒素酸化物
の除去率は94.7%であった。) 参考例2 実施例1において、粉末状1ソシアヌル酸を定量供給機
によって浮遊混合する代わりに、粉末状イソシアヌル酸
30gを金網製容器に入れ、これを約1200℃のガス
温度を示す燃焼部に懸架して、同様の試験を行ったとこ
ろ、イソシアヌル酸を用いないブランクテストにおける
排ガス中の窒素酸化 4゜物は62PPmであったが、
イソシアヌル酸を用いた場合の排ガス中の窒素酸化物は
80PPraに増加した。
Table 7 Example 7 In Example 3, when heavy oil was burned instead of kerosene, the nitrogen oxides in the exhaust gas were 95 PPm. As a result of conducting a similar test at a temperature of about 750° C. and a residence time of 1 second in the flue, the concentration of nitrogen oxides in the exhaust gas decreased to 5PPa+. (The removal rate of nitrogen oxides was 94.7%.) Reference Example 2 In Example 1, instead of floating-mixing powdered 1-socyanuric acid using a quantitative feeder, 30 g of powdered isocyanuric acid was mixed in a wire mesh container. When a similar test was conducted by suspending this in a combustion section with a gas temperature of approximately 1200°C, the nitrogen oxide 4° content in the exhaust gas was 62 PPm in a blank test without using isocyanuric acid. ,
When using isocyanuric acid, nitrogen oxides in the exhaust gas increased to 80PPra.

参考例3 参考例2において、粉末状イソシアヌル酸30gを入れ
た金網製容器を約720℃Oガス温度を示す煙道部に懸
架して同様の試験を行ったところ、イソシアヌル酸を用
いないブランクテストにおける排ガス中の窒素酸化物は
52PPmであり、イソシアヌル酸を用いた場合の排ガ
ス中の窒素酸化物は68PPmに増加した。
Reference Example 3 In Reference Example 2, a similar test was conducted by suspending a wire mesh container containing 30 g of powdered isocyanuric acid in the flue section showing a gas temperature of approximately 720°C; a blank test without isocyanuric acid was performed. The nitrogen oxides in the exhaust gas were 52PPm, and when isocyanuric acid was used, the nitrogen oxides in the exhaust gas increased to 68PPm.

発明の効果 この発明によれば、イソシアヌル酸の分解温度を超える
比較的低い温度の燃焼排ガスにおいて卓越した窒素酸化
物の除去効果があり、また窒素酸化物を含有する燃焼排
ガスの流れにイソシアヌル酸を浮遊混合すれば良いから
、処理装置が簡単で安価に製作でき、且つ既存の燃焼装
置に容易に繰り込むことができるなど実践面の効果は多
大である。
Effects of the Invention According to the present invention, there is an excellent nitrogen oxide removal effect in combustion exhaust gas at a relatively low temperature exceeding the decomposition temperature of isocyanuric acid, and isocyanuric acid is added to the flow of combustion exhaust gas containing nitrogen oxides. Since it is sufficient to carry out floating mixing, the processing equipment can be manufactured easily and inexpensively, and it can be easily integrated into existing combustion equipment, which has great practical effects.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明方法の実施に適する燃焼装置の一例を示す
ものであり、図中(1)は燃焼部、(2)は煙道部、(
3)は熱交換部、(4)は煙突、(5)はバーナー、(
6)は燃焼供給管、(7)は空気供給管、(8)及び(
8”)は−イソシアヌル酸供給口、(9)及び(9°)
は送風ファン、平材ε(甫正四(自発) 昭和62年6月g口 1、事件の表示 昭和62年特A1願第101376号 事件との関係:特許出願人 4、補正の対象 明細書の発明の詳細な説明の欄及び図面の簡単な説明の
欄 5、補正の内容 (1)明細36頁第10行口に記載の「によってガス温
度を」を「によって約700℃以上゛の温度域にむける
接触時間を」に補正する。 (2)明細書16頁第9行口に記載の「燃焼供給管Jを
r !l!、t’+供給管」に補正する。
The drawing shows an example of a combustion apparatus suitable for carrying out the method of the present invention, in which (1) shows a combustion part, (2) shows a flue part, and (
3) is the heat exchange part, (4) is the chimney, (5) is the burner, (
6) is a combustion supply pipe, (7) is an air supply pipe, (8) and (
8”) is -isocyanuric acid supply port, (9) and (9°)
is a blower fan, flat material ε (Shoji Ho (spontaneous), June 1988, g. 1, display of the case.Relationship with the case of Patent Application No. 101376 of 1988: Patent applicant 4, of the specification to be amended. Detailed Description of the Invention Column and Brief Description of Drawings Column 5, Contents of Amendment (1) In the beginning of line 10 on page 36 of the specification, the phrase “gas temperature by” has been changed to “by a temperature range of approximately 700°C or more.” (2) Correct the combustion supply pipe J to "r!l!, t'+supply pipe" as stated in the beginning of line 9 on page 16 of the specification.

Claims (4)

【特許請求の範囲】[Claims] (1)窒素酸化物を含有する約330℃より高温の燃焼
排ガスの流れに、粒径が10メッシュより小さいイソシ
アヌル酸を浮遊状態として混合することを特徴とする窒
素酸化物の除去方法。
(1) A method for removing nitrogen oxides, which comprises mixing isocyanuric acid having a particle size of less than 10 mesh in a suspended state into a stream of combustion exhaust gas containing nitrogen oxides and having a temperature higher than about 330°C.
(2)窒素酸化物を含有する燃焼排ガスの流れに、イソ
シアヌル酸をキャリアガスに同伴させて噴霧混合する特
許請求の範囲(1)に記載の方法。
(2) The method according to claim (1), wherein isocyanuric acid is mixed with a carrier gas by spraying into a stream of combustion exhaust gas containing nitrogen oxides.
(3)窒素酸化物を含有する燃焼排ガスの温度をイソシ
アヌル酸の分解温度より高く且つ約700℃を超えない
範囲として処理する特許請求の範囲(1)に記載の方法
(3) The method according to claim (1), wherein the temperature of the combustion exhaust gas containing nitrogen oxides is controlled to be higher than the decomposition temperature of isocyanuric acid and not to exceed about 700°C.
(4)窒素酸化物を含有する燃焼排ガスとイソシアヌル
酸あるいはその熱分解生成物との約700℃以上の温度
域における滞留時間を30秒以下として処理する特許請
求の範囲(1)に記載の方法。
(4) The method according to claim (1), wherein the combustion exhaust gas containing nitrogen oxides is treated with isocyanuric acid or its thermal decomposition product so that the residence time in a temperature range of about 700°C or higher is 30 seconds or less. .
JP62101376A 1987-04-23 1987-04-23 Removing method for nitrogen oxide Pending JPS63267422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62101376A JPS63267422A (en) 1987-04-23 1987-04-23 Removing method for nitrogen oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62101376A JPS63267422A (en) 1987-04-23 1987-04-23 Removing method for nitrogen oxide

Publications (1)

Publication Number Publication Date
JPS63267422A true JPS63267422A (en) 1988-11-04

Family

ID=14299083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62101376A Pending JPS63267422A (en) 1987-04-23 1987-04-23 Removing method for nitrogen oxide

Country Status (1)

Country Link
JP (1) JPS63267422A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5518702A (en) * 1986-05-05 1996-05-21 Perry; Robert A. No reduction using sublimination of cyanuric acid
JP2013167492A (en) * 2012-02-14 2013-08-29 Horiba Ltd Exhaust gas sampling device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428771A (en) * 1977-08-08 1979-03-03 Asahi Fibreglass Co Waste gas treatment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428771A (en) * 1977-08-08 1979-03-03 Asahi Fibreglass Co Waste gas treatment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5518702A (en) * 1986-05-05 1996-05-21 Perry; Robert A. No reduction using sublimination of cyanuric acid
JP2013167492A (en) * 2012-02-14 2013-08-29 Horiba Ltd Exhaust gas sampling device
US9335235B2 (en) 2012-02-14 2016-05-10 Horiba, Ltd. Exhaust gas sampling device

Similar Documents

Publication Publication Date Title
US3900554A (en) Method for the reduction of the concentration of no in combustion effluents using ammonia
US4751065A (en) Reduction of nitrogen- and carbon-based pollutants
WO1993012036A1 (en) Aqueous ammonia injection scheme
JP2006507124A (en) Selective non-catalytic reduction of NOx
US4927612A (en) Reduction of nitrogen- and carbon-based pollutants
AU2528688A (en) Process for the reduction of nitrogen oxides in an effluent
JPH03504819A (en) NO reduction using cyanuric acid sublimation
US5240690A (en) Method of removing NH3 and HCN from and FCC regenerator off gas
US4113838A (en) Method of treating combustion exhaust gas containing nitrogen oxides
US5087431A (en) Catalytic decomposition of cyanuric acid and use of product to reduce nitrogen oxide emissions
EP0237568A4 (en) Reduction of nitrogen- and carbon-based pollutants.
AU626448B2 (en) Method for reducing nox in a combustion process
JPS63267422A (en) Removing method for nitrogen oxide
AU2012378238A1 (en) Ammonia gas generation from urea for low temperature process requirements
KR20040026653A (en) Method for Treating Flue Gases Containing Ammonia
US5171558A (en) Catalytic decomposition of cyanuric acid and use of product to reduce nitrogen oxide emissions
JP3029512B2 (en) Method for removing nitrous oxide from combustion gas
JP3790890B2 (en) Production inhibitor and production inhibition method for chlorinated aromatic compounds
JPS63315134A (en) Method for removing nitrogen oxide
WO1992016454A1 (en) Reduction of nitrogen oxide in effluent gases using nco free radicals
JPS63283724A (en) Method of removing nitrogen oxide
JPH02191524A (en) Method for removing nitrogen oxide
JPH02115023A (en) Removal of nitrogen oxide
JP4701847B2 (en) Method for inhibiting formation of organochlorine compound and method for producing cement
US6294097B1 (en) Method for treating waste water containing nitrate ions