[go: up one dir, main page]

JPS63266720A - Contact for vacuum switch gear - Google Patents

Contact for vacuum switch gear

Info

Publication number
JPS63266720A
JPS63266720A JP10158487A JP10158487A JPS63266720A JP S63266720 A JPS63266720 A JP S63266720A JP 10158487 A JP10158487 A JP 10158487A JP 10158487 A JP10158487 A JP 10158487A JP S63266720 A JPS63266720 A JP S63266720A
Authority
JP
Japan
Prior art keywords
vapor pressure
alloy
region
contact
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10158487A
Other languages
Japanese (ja)
Other versions
JPH0777101B2 (en
Inventor
Isao Okutomi
功 奥富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10158487A priority Critical patent/JPH0777101B2/en
Publication of JPS63266720A publication Critical patent/JPS63266720A/en
Publication of JPH0777101B2 publication Critical patent/JPH0777101B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/664Contacts; Arc-extinguishing means, e.g. arcing rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/664Contacts; Arc-extinguishing means, e.g. arcing rings
    • H01H33/6644Contacts; Arc-extinguishing means, e.g. arcing rings having coil-like electrical connections between contact rod and the proper contact

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Contacts (AREA)

Abstract

PURPOSE:To realize a low surge function and a large current interrupting function which are functions contrary to each other by forming a boundary region of a material, which is composed to make a height of a vapor pressure become continuously different in the radial direction, between both alloy regions which consist of materials different in the height of vapor pressure to each other, with respect to a contact. CONSTITUTION:With respect to a contact, either one of two alloy regions 21 and 23 consists of a high vapor pressure material and the other one consists of a low vapor pressure material. When the alloy region 21 consists of the high vapor pressure material, the height value of the vapor pressure of a material in an intermediate region 22 ranges in the middle of the respective height values of the alloy regions 21 and 23, and a radial distribution of the height of the vapor pressure of this material in the intermediate region becomes smaller toward the inner peripheral side from the outer peripheral side. Hence, forced transfer of an arc by the control of a vertical magnetic field is easily performed without stagnation from the alloy region, which consists of the high vapor pressure material, to the alloy region which consists of the low vapor pressure material. Accordingly, two contrary needs which are a low surge function and a large current interrupting function can be satisfied at the same time.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、真空開閉器における真空バルブ用接点に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a contact for a vacuum valve in a vacuum switch.

(従来の技術) 真空開閉器は、他の開閉器に比較し、小型、軽量、メン
テナンスフリー、環境調和等種々の優れた特徴を有する
ため、近年次第にその適用範囲が拡大されてきた。真空
しゃ断器は、真空中でのアーク拡散性を利用して高真空
中で電流しゃ断を行なうものであり、その側断面を示し
た第4図を参照し説明する。
(Prior Art) Vacuum switches have various superior features compared to other switches, such as being small, lightweight, maintenance-free, and environmentally friendly, so their range of application has been gradually expanded in recent years. A vacuum breaker interrupts current in a high vacuum by utilizing arc diffusivity in a vacuum, and will be explained with reference to FIG. 4, which shows a side cross section of the vacuum breaker.

真空しゃ断器は真空気密に保たれたしゃ断器1を有し、
これは絶縁材料によりほぼ円筒状に形成された絶縁容器
2と、この両端に封止金具3a。
The vacuum breaker has a breaker 1 kept vacuum-tight,
This includes an insulating container 2 formed of an insulating material into a substantially cylindrical shape, and sealing fittings 3a at both ends of the insulating container 2.

3bを介して設けた金属製の蓋体4a、4bとで構成さ
れている。
It is composed of metal lids 4a and 4b provided through a lid 3b.

しゃ断器1内には、導電棒5,6の対向する端部に取付
けられた一対の固定電極7、可動電極8が配設される。
A pair of fixed electrodes 7 and a movable electrode 8 attached to opposite ends of conductive rods 5 and 6 are disposed within the circuit breaker 1.

可動電極8の導電棒6にはベローズ9が取付けられ、し
ゃ断器1内の真空気密を保持しつつ可動電極8が軸方向
に移動する。ベローズ9の上部には金属製のアークシー
ルド10が設けられ、ベローズ9がアーク蒸気で覆われ
ることを防止している。同様に金属製のアークシールド
11は、しゃ断器1内において固定電極7および可動電
極8を覆うように設けられ、絶縁容器2がアーク蒸気で
覆われることを防止している。通電中は固定接′点13
bに可動接点13aが接触しており、電流のしゃ断は導
電棒を下方向へ移動させ、この両接点の接触を断つこと
により行なう。
A bellows 9 is attached to the conductive rod 6 of the movable electrode 8, and the movable electrode 8 moves in the axial direction while maintaining vacuum tightness within the breaker 1. A metal arc shield 10 is provided above the bellows 9 to prevent the bellows 9 from being covered with arc vapor. Similarly, a metal arc shield 11 is provided in the breaker 1 to cover the fixed electrode 7 and the movable electrode 8, and prevents the insulating container 2 from being covered with arc vapor. Fixed contact 13 when energized
A movable contact 13a is in contact with b, and the current is cut off by moving the conductive rod downward to break contact between these two contacts.

次に、導電棒5,6と電極7,8、電極7,8と接点1
3a、13bとの相互の固定構造について、第4図にお
ける可動電極8周辺の詳細を示した第5図を参照し説明
する。可動電極8は導電棒6に符号12で示されたろう
付または図示しないかしめ等により固定され、可動接点
13aは可動電極8に符号14で示されたろう付または
図示しないかしめ等により固定される。固定側の固定電
極7と接点13bとの固定方法も同様である。
Next, conductive rods 5, 6 and electrodes 7, 8, electrodes 7, 8 and contact 1
The mutual fixing structure with 3a and 13b will be explained with reference to FIG. 5, which shows details of the area around the movable electrode 8 in FIG. 4. The movable electrode 8 is fixed to the conductive rod 6 by brazing 12 or by caulking (not shown), and the movable contact 13a is fixed to the movable electrode 8 by brazing 14 or caulking (not shown). The method of fixing the fixed electrode 7 and the contact 13b on the fixed side is also the same.

(発明が解決しようとする問題点) 真空開閉器用接点に要求される要件として、(1)溶着
性が少ないこと、(2)耐電圧が高いこと、(3)耐消
耗性に優れること、(4)接触抵抗が低く安定している
こと、等がある。この他に最近の真空開閉装置に対する
期待が一層高まり、(5)低サージ機能を有すること、
(6)大電流しゃ断機能を有することが要求されるが、
この二つの要求は相反するものである。
(Problems to be Solved by the Invention) Requirements for contacts for vacuum switches include (1) low weldability, (2) high withstand voltage, (3) excellent wear resistance, ( 4) Low and stable contact resistance. In addition, expectations for recent vacuum switchgears have increased even further, including (5) low surge functionality;
(6) It is required to have a large current cutoff function, but
These two demands are contradictory.

まず、低サージ機能を有するための要件について説明す
る。電動機負荷等の誘導回路で電流をしゃ断する時など
において、過度のサージ電圧を発生させ、負荷機器の絶
縁を破壊させる恐れがある。
First, the requirements for having a low surge function will be explained. When cutting off current in an inductive circuit such as a motor load, excessive surge voltage may be generated and the insulation of the load equipment may be destroyed.

この異常サージ電圧の発生原因は、真空中におけるしゃ
断時に低電流側に発生する電流さい新現象(交流電流波
形の自然ゼロ点を待たずに強制的に電流しゃ断が行なわ
れること。)によるものである。異常サージ電圧の値V
 は回路のサージインピーダンスZ と電流さい断値I
 の積、すなわOC ちV  −22φI で表わされ、異常サージ電8  
     0e 圧■ を低くするためには、つまり低サージ機能を有す
るためには、電流さい断値I を小さくしなければなら
ない。従って、しゃ断時において、アークによって可動
接点13aと固定接点13bの各表面からイオン、金属
粒子が多く蒸発して両接点間に浮遊し、アークが容易に
接続されなければならない。従って、接点13a、13
bに用いられる材料は、大電流をしゃ断する時のみなら
ず、開閉電流が小さくて接点の温度上昇が小さい場合で
あっても蒸発性の高い高蒸気圧性を有することが要求さ
れる。
The cause of this abnormal surge voltage is a current phenomenon that occurs on the low current side when shutting off in a vacuum (current shutoff is forcibly performed without waiting for the natural zero point of the AC current waveform). be. Abnormal surge voltage value V
are the circuit surge impedance Z and current cutoff value I
The product of OC, that is, V -22φI, is expressed as
In order to lower the 0e pressure (i.e., to have a low surge function), the current cutoff value I must be reduced. Therefore, when the contact is cut off, many ions and metal particles must be evaporated from the surfaces of the movable contact 13a and the fixed contact 13b by the arc and float between the two contacts, so that the arc can be easily connected. Therefore, the contacts 13a, 13
The material used for b is required to have a high vapor pressure property with high evaporability not only when cutting off a large current, but also when the switching current is small and the temperature rise at the contact point is small.

このような低サージ機能を満たすものとして、高蒸気圧
性材料であるAgを含有したAg−WC合金が知られて
いる。この合金から成る接点は、(1)  WCの介在
が接点表面からのイオンの放射を容易にさせること、 (2) 電界放射電子の衝突による電極面の加熱に基づ
く接点表面から金属粒子の蒸発を促進させること、 (3) 接点材料中の炭化物がアークにより分解し、荷
電体を生成すること、等により、優れた低サージ機能を
有している。この他にこの機能を有する材料として、高
蒸気圧性材料であるCuを含有したCu−Cr合金、C
u−B1合金等が知られている。
An Ag-WC alloy containing Ag, which is a high vapor pressure material, is known as a material that satisfies such a low surge function. Contacts made of this alloy have the following properties: (1) The presence of WC facilitates the emission of ions from the contact surface, and (2) The evaporation of metal particles from the contact surface is caused by the heating of the electrode surface due to the collision of field emission electrons. (3) The carbide in the contact material is decomposed by the arc and generates a charged body, so it has an excellent low surge function. Other materials that have this function include Cu-Cr alloy containing Cu, which is a high vapor pressure material;
U-B1 alloy etc. are known.

これに対し、もう一方の相反する要件である大電流しゃ
断機能を有するためには接点が低蒸気圧性の材料から成
ることが要求される。大電流をしゃ断する場合には接点
の表面温度は極めて高温となるが、このような場合であ
ってもアークによる接点表面からの蒸発量が少なく、両
接点間にイオン、金属粒子がほとんど浮遊しない状態で
なければしゃ断性が損われることとなる。従って一般に
どちらか一方の機能の向上を追及すると、もう一方の機
能が低下する。
On the other hand, in order to have a large current interrupting function, which is the other contradictory requirement, the contacts are required to be made of a material with low vapor pressure. When cutting off a large current, the surface temperature of the contact becomes extremely high, but even in such a case, the amount of evaporation from the contact surface due to the arc is small, and almost no ions or metal particles are suspended between the two contacts. If the condition is not met, the shutoff performance will be impaired. Therefore, generally pursuing improvements in one function will result in a decline in the other function.

この二つの箱反する要件を満たすための手段として、接
点を高蒸気圧性材料と低蒸気圧性材料の二種類の材料か
ら構成するものがある。電流をしゃ断するために通電中
接触していた両接点が離れる際において、初めに高蒸気
圧性材料から成る部分から多くのイオン、金属粒子が蒸
発して接点間に浮遊し、アークがこれに導かれて両接点
における高蒸気圧性材料同志に接続される。低サージ機
能が満たされるために必要な時間経過後両接点における
高蒸気圧性材料同志に接続されていたアークを両接点に
おける低蒸気圧性材料同志に接続さ、れるように、アー
クを移行させる。これは、第7図に示されたコイル電極
44、第8図に示されたスパイラル電極45等を用いて
縦磁界Hを制御することにより両接点間に浮遊するイオ
ン、金属粒子の分布を変えて強制的にアークを移行させ
るという方法等により行なうことができる。
As a means to satisfy these two contradictory requirements, there is a method in which the contact is made of two types of materials: a high vapor pressure material and a low vapor pressure material. When the contacts that were in contact during the current flow separate in order to cut off the current, many ions and metal particles first evaporate from the part made of the high vapor pressure material and float between the contacts, leading to an arc. and connected to the high vapor pressure materials at both contacts. After the time required for the low surge function to be satisfied, the arc is transferred so that the arc that was connected to the high vapor pressure materials at both contacts is connected to the low vapor pressure materials at both contacts. This changes the distribution of ions and metal particles floating between both contacts by controlling the vertical magnetic field H using the coil electrode 44 shown in FIG. 7, the spiral electrode 45 shown in FIG. 8, etc. This can be done by forcibly moving the arc.

しかし、低電流しゃ断時にも低サージ機能を有する高蒸
気圧性材料の物性と、大電流しゃ断機能を有する低蒸気
圧性材料の物性とでは蒸気圧性という点において大きく
異なる。このため、縦磁界により両接点間に浮遊するイ
オン、金属粒子の分布を変えても、アークが高蒸気圧性
材料から成る部分と低蒸気圧性材料から成る部分との境
界上に停滞し、容易に移行しない。従って、接点を高蒸
気圧性材料と低蒸気圧性材料とを単純に組み合せて構成
しただけでは低サージ機能と大電流しゃ断機能とを同時
に満たすことはできない。
However, the physical properties of a high vapor pressure material that has a low surge function even when cutting off a low current are significantly different from the physical properties of a low vapor pressure material that has a large current cutting function in terms of vapor pressure properties. For this reason, even if the distribution of ions and metal particles floating between the two contacts is changed by a vertical magnetic field, the arc will remain on the boundary between the part made of high vapor pressure material and the part made of low vapor pressure material, and it will easily occur. Does not migrate. Therefore, simply constructing a contact by combining a high vapor pressure material and a low vapor pressure material cannot simultaneously satisfy the low surge function and the large current cutoff function.

上述した事情に鑑み、電流しゃ断時における高蒸気圧性
材料から低蒸気圧性材料へのアークの移行が停滞せずに
容易に行なわれ、低サージ機能と大電流しゃ断機能とい
う二つの相反する機能を有した真空開閉器用接点を提供
することを目的とする。
In view of the above-mentioned circumstances, the transition of the arc from a high vapor pressure material to a low vapor pressure material at the time of current cutoff is carried out easily without stagnation, and it has two contradictory functions: a low surge function and a large current cutoff function. The purpose of the present invention is to provide a contact for a vacuum switch that has the following characteristics.

(発明の構成〕 (問題点を解決するための手段) 本発明の真空開閉器用接点は、2種類の合金領域とその
間にはさまれた境界領域が同心円状に配され、前記合金
領域の各々が蒸気圧の高さの異なる材料から成り、前記
境界領域が半径方向に蒸気圧の高さが連続して異なるよ
うに組成された材料から成ることを特徴としている。
(Structure of the Invention) (Means for Solving the Problems) In the vacuum switch contact of the present invention, two types of alloy regions and a boundary region sandwiched therebetween are arranged concentrically, and each of the alloy regions are made of materials having different vapor pressures, and the boundary region is made of a material whose composition is such that the vapor pressures are continuously different in the radial direction.

(作 用) 本発明の真空開閉器用接点において、外周側に位置した
合金領域が内周側に位置した合金領域よりも蒸気圧が高
い材料で構成されている場合には、境界領域(B1)を
構成する材料の蒸気圧の高さは半径方向に対して外周側
から内周側へ向かうに従って連続領域に低くなる。この
ため、材料の蒸気圧の高さは合金領域(A1)から境界
領域(B  )を経て合金領域(A2)へ向かうに従つ
で徐々に低くなることになる。このような真空開閉器用
接点を真空開閉器に用いて電流しゃ断を行なう場合、通
電中に接触していた両接点が離れる際に、接点を構成し
・ている領域のうち最も蒸気圧の高い材料から成る外周
側に位置した合金領域から多くのイオン、金属粒子が蒸
発して両接点のこの合金領域同志の間に浮遊し、アーク
がこれに導かれて両者の間に接続される。
(Function) In the vacuum switch contact of the present invention, if the alloy region located on the outer peripheral side is made of a material having a higher vapor pressure than the alloy region located on the inner peripheral side, the boundary region (B1) The vapor pressure of the material constituting the material decreases in a continuous region from the outer circumferential side to the inner circumferential side in the radial direction. Therefore, the vapor pressure of the material gradually decreases from the alloy region (A1) through the boundary region (B) to the alloy region (A2). When such vacuum switch contacts are used in a vacuum switch to cut off current, when both contacts that were in contact during energization separate, the material with the highest vapor pressure among the areas that make up the contacts Many ions and metal particles evaporate from the alloy region located on the outer circumferential side and float between the alloy regions of both contacts, and an arc is guided thereto and connected between the two.

この後、縦磁界の制御により両接点間に浮遊するイオン
、金属粒子の分布を変えると、外周側に位置した合金領
域から境界領域へアークが向かう。
Thereafter, by controlling the longitudinal magnetic field to change the distribution of ions and metal particles floating between both contacts, the arc moves from the alloy region located on the outer circumferential side to the boundary region.

材料の蒸気圧の高さは、外周側の合金領域から境界領域
を経て内周側の合金領域へ向かうに従って徐々に低くな
るため、アークは停滞することなく容易に境界領域へ移
行する。このようにして縦磁界の制御により、強制的に
アークを内周側の合金領域へ向かって移行させていく。
Since the vapor pressure of the material gradually decreases from the outer alloy region through the boundary region to the inner alloy region, the arc easily moves to the boundary region without stagnation. In this way, by controlling the longitudinal magnetic field, the arc is forcibly moved toward the inner alloy region.

そして低サージ機能が満たされるためにつまりアークが
両接点間に接続されているために必要な時間経過後、最
も蒸気圧が低くほとんどアーク、金属粒子が蒸発しない
内周側の合金領域へ移行させると、この瞬間にアークの
接続が断たれることとなる。
Then, after the time required for the low surge function to be satisfied, that is, for the arc to be connected between both contacts, the transition is made to the inner alloy region where the vapor pressure is lowest and most of the arc and metal particles do not evaporate. At this moment, the connection between the arcs is severed.

この場合とは逆に、内周側に位置した合金領域の方が外
周側に位置した合金領域よりも蒸気圧が高い材料で構成
されている場合には、境界領域の材料の蒸気圧の高さは
半径方向に対して内周側から外周側へ向かうに従って連
続的に低くなる。このため、材料の蒸気圧の高さは内周
側の合金領域から境界領域を経て外周側の合金領域へ向
かうに従って徐々に低くなることになる。この場合には
、まずアークは両接点における内周側の合金領域の間に
接続され、縦磁界の制御により境界領域を経て外周側の
合金領域へ向かってアークが移行し、アークの接続が断
たれる。
Conversely, if the inner alloy region is made of a material with a higher vapor pressure than the outer alloy region, the vapor pressure of the material in the boundary region will be higher. The height decreases continuously from the inner circumferential side toward the outer circumferential side in the radial direction. Therefore, the vapor pressure of the material gradually decreases from the inner alloy region through the boundary region to the outer alloy region. In this case, the arc is first connected between the inner alloy regions of both contacts, and by controlling the longitudinal magnetic field, the arc moves through the boundary region to the outer alloy region, and the arc connection is broken. drooping

(実施例) 本発明の一実施例として、接点が2種類の合金領域(A
  )および(A2)と境界領域(B1)からなる場合
について、接点を上部から見た第1図を用いて説明する
。第6図に示した従来の接点と比較し、合金領域(A、
)21と合金領域(A2)23との間に中間領域(B1
)22が配されている点が異なる。合金領域(A、)2
1と合金領域(A2)23とは、それぞれ含有量の異□
  なる同一の合金系材料からなる場合と、異なる合金
系材料からなる場合がある。中間領域(B1)22の合
金系材料は、合金領域(A、)21と合金領域(A2)
23のいずれとも異なる場合、または少なくともどちら
か一方の合金系材料と同一で含有量が異なる場合がある
(Example) As an example of the present invention, the contacts have two types of alloy regions (A
) and (A2) and the boundary region (B1) will be explained using FIG. 1, in which the contact point is seen from above. Compared to the conventional contact shown in Fig. 6, the alloy region (A,
) 21 and the alloy region (A2) 23 there is an intermediate region (B1
) 22 is arranged. Alloy area (A,)2
1 and alloy region (A2) 23 have different contents □
In some cases, they are made of the same alloy-based material, and in other cases, they are made of different alloy-based materials. The alloy material of the intermediate region (B1) 22 is the alloy material of the alloy region (A,) 21 and the alloy region (A2).
23, or it may be the same as at least one of the alloy materials but have a different content.

合金領域(A、)21と合金領域(A2)23との合金
系材料が同一の場合、例えばA g −WC系合金の場
合には、どちらか一方の領域には低サージ機能を有する
材料として蒸気圧の高い金属であるAgの含有量の多い
40Ag−WC−10Co(数値は重量%を示すものと
する。以下同様)を用い、もう一方の合金領域には大電
流しゃ断機能を有する材料としてAgの含有量の少ない
30Ag−WC−0,2Coを用いることができる。
When the alloy material of the alloy region (A,) 21 and the alloy region (A2) 23 is the same, for example, in the case of an A g -WC alloy, one of the regions is made of a material having a low surge function. 40Ag-WC-10Co (values indicate weight %, the same applies hereinafter), which has a high content of Ag, a metal with high vapor pressure, was used, and the other alloy region was made of a material with a large current cutting function. 30Ag-WC-0,2Co, which has a low Ag content, can be used.

この場合の境界領域には、両方の合金領域に用いられる
合金系つまりA g −WC系合金と異なる合金系を用
いる場合と、同一の合金系であるAg−WC系合金を用
いる場合があり、いずれにおいても材料の組成が半径方
向に対して連続して異なる分布となっており、これによ
り材料の蒸気圧の高さが半径方向に対し連続して異なる
In this case, in the boundary region, there are cases where an alloy system different from the alloy system used in both alloy regions, that is, the Ag-WC system alloy, and cases where the same alloy system, the Ag-WC system alloy, is used. In either case, the composition of the material has a distribution that varies continuously in the radial direction, and as a result, the height of the vapor pressure of the material varies continuously in the radial direction.

合金領域(A1)21と合金領域(A2)23は、いず
れか一方が高蒸気圧性材料からなり、もう一方が低蒸気
圧性材料からなるが、合金領域(A1)21が高蒸気圧
性材料からなる場合には、中間領域(B、)22の材料
の蒸気圧の高さの値の占める範囲は、合金領域(A、)
21の蒸気圧の高さの値と合金領域(A2)23の蒸気
圧の高さの値との間にあり、さらに材料の蒸気圧の高さ
の半径方向に対する分布が外周側から内周側へ向かって
連続して低くなる。合金領域(A1)21が低蒸気圧性
材料からなる場合にはこの逆であり、合金領域(A2)
23が高蒸気圧性材料からなり、中間領域(B、)22
の蒸気圧の高さの値の占める範囲は、合金領域(A1)
21の蒸気圧の高さの値と合金領域(A2)23の蒸気
圧の高さの値との間に・あり、さらに材料の蒸気圧の高
さの半径方向に対する分布は外周側から内周側へ向かヴ
て連続して高くなる。この二通りのいずれの組合せも可
能である。以下に合金領域(A2)23が高蒸気圧性材
料からなる場合について説明する。
One of the alloy region (A1) 21 and the alloy region (A2) 23 is made of a high vapor pressure material and the other is made of a low vapor pressure material, but the alloy region (A1) 21 is made of a high vapor pressure material. In this case, the range occupied by the vapor pressure height of the material in the intermediate region (B,) 22 is the alloy region (A,)
It is between the vapor pressure height value of No. 21 and the vapor pressure height value of alloy region (A2) 23, and furthermore, the distribution of the vapor pressure height of the material in the radial direction is from the outer circumferential side to the inner circumferential side. It decreases continuously towards . The opposite is true when the alloy region (A1) 21 is made of a low vapor pressure material, and the alloy region (A2)
23 is made of a high vapor pressure material, and the intermediate region (B,) 22
The range occupied by the vapor pressure height of is the alloy region (A1)
There is a value between the vapor pressure height of No. 21 and the vapor pressure height of alloy region (A2) 23, and furthermore, the distribution of the vapor pressure height of the material in the radial direction is from the outer circumference to the inner circumference. Continuously increases in height towards the sides. Any combination of these two is possible. The case where the alloy region (A2) 23 is made of a high vapor pressure material will be described below.

まず、このような組成を有する接点を製造する方法の一
例を示す。成型金型として、第2図に示した金型31、
第1のポンチ32、第2のポンチ35、金型台37を用
いる。
First, an example of a method for manufacturing a contact having such a composition will be described. As a molding die, a die 31 shown in FIG.
A first punch 32, a second punch 35, and a mold stand 37 are used.

第1のポンチ32を金型31から、取りはずし、第2の
ポンチ35をその底部35aが金型台37に接触した状
態となるように設置する。金型31と第2のポンチ35
との空間に合金領域(A1)21を形成するための粉末
を混合調製して充填し、第1のポンチ32により成型圧
力P1で加圧する。
The first punch 32 is removed from the mold 31, and the second punch 35 is installed so that its bottom 35a is in contact with the mold base 37. Mold 31 and second punch 35
The powder for forming the alloy region (A1) 21 is mixed and filled in the space between the two, and the first punch 32 presses the powder at a molding pressure P1.

次に第2のポンチ35をム旦金型31から抜き出し、そ
の空間38に合金領域(A2)23を形成するための粉
末を混合調製して充填し、第2のポンチ35により成型
圧力P2で加圧する。この場合の圧力P2は、合金領域
(A1)21と合金領域(A2)23に同一の合金系を
用いた場合には、合金領域(A2)23に後に多くのA
gを溶浸させるよう、Plよりも小さくして、空孔の占
める割合を多くする。合金領域(A1)21と合金領域
(A2)23に異なる合金系を用いる場合には、圧力P
2はPlと同一であってもよい。この場合の境界領域(
B1)22は、合金領域(A1)21と同一の粉末を混
合調製したものからなり、第1のポンチ32が有するテ
ーパ部32bにより加圧される圧力が半径方向に対して
異なり、合金領域(Al)21に近い外周側から合金領
域(A2)23に近い内周側へ近づくに従って低くなる
ため、空孔の示す割合が多くなる。
Next, the second punch 35 is extracted from the mold 31, and the space 38 is filled with mixed powder for forming the alloy region (A2) 23. Apply pressure. The pressure P2 in this case is such that when the same alloy system is used for the alloy region (A1) 21 and the alloy region (A2) 23, a large amount of A
In order to infiltrate g, it is made smaller than Pl to increase the proportion occupied by pores. When using different alloy systems for the alloy region (A1) 21 and the alloy region (A2) 23, the pressure P
2 may be the same as Pl. The boundary area in this case (
B1) 22 is made by mixing and preparing the same powder as the alloy region (A1) 21, and the pressure applied by the tapered part 32b of the first punch 32 is different in the radial direction, and the alloy region (A1) It decreases as it approaches from the outer circumferential side close to Al) 21 to the inner circumferential side close to the alloy region (A2) 23, so the ratio of pores increases.

このようにして得られたものを円板状に形状を整えると
、第3図において中心軸方向の断面を示した成型体39
を得る。さらにこの成型体39を非酸化性雰囲気中で焼
結するとスケルトンを得る。
When the thus obtained product is shaped into a disk shape, a molded product 39 whose cross section in the central axis direction is shown in FIG.
get. Further, this molded body 39 is sintered in a non-oxidizing atmosphere to obtain a skeleton.

このスケルトンの一方の面にAgまたはCuなどの高蒸
気圧性材料を接触させ、非酸化性雰囲気中でこれらの融
点以上の温度でスケルトンを加熱し、スケルトンの有す
る空孔中にAgまたはCuなどを溶浸させる。この方法
により、一定の組成を持ち低蒸気圧性材料からなる合金
領域(A1)21と、一定の組成を持ち高蒸気圧性材料
からなる合金領域(A2 ) 23と、半径方向に対し
てAgまたはCuの含有量の分布が異なり、外周側から
内周側へ向かうに従い含を量が多くなる、つまり内周側
へ向かうとともに蒸気圧が高くなる分布を有する材料か
らなる境界領域(B、)22を有した接点を得る。
A high vapor pressure material such as Ag or Cu is brought into contact with one side of the skeleton, and the skeleton is heated at a temperature above the melting point of the material in a non-oxidizing atmosphere, thereby injecting Ag or Cu into the pores of the skeleton. Infiltrate. By this method, an alloy region (A1) 21 made of a low vapor pressure material with a constant composition, an alloy region (A2) 23 made of a high vapor pressure material with a constant composition, and Ag or Cu in the radial direction are formed. The boundary region (B, ) 22 is made of a material that has a different content distribution, and the content increases from the outer circumferential side to the inner circumferential side, that is, the vapor pressure increases as you move toward the inner circumferential side. Obtain a contact point with

このようにして得られた接点を第7図に示すコイル電極
または第8図に示すスパイラル電極を有し、縦磁界の制
御を行なうことのできる第4図に示された真空開閉装置
の可動接点13aおよび固定接点13bに用いて電流し
ゃ断を行なう場合について説明する。通電中接触してい
た両接点13a、13bが離れる際に、両接点13a。
The contact thus obtained has a coil electrode as shown in FIG. 7 or a spiral electrode as shown in FIG. 8, and is used as a movable contact for the vacuum switchgear shown in FIG. 4, which can control the vertical magnetic field. 13a and the fixed contact 13b to cut off current will be described. When both contacts 13a and 13b, which were in contact during energization, separate, both contacts 13a.

13bを構成している各合金領域のうち、最も高い蒸気
圧材料からなる合金領域(A2)23から多くのイオン
、金属粒子が蒸発して両接点間に浮遊し、アークがこれ
に導かれて両接点上の合金領域(A2)23間に接続さ
れる。
Among the alloy regions composing the alloy region 13b, many ions and metal particles evaporate from the alloy region (A2) 23 made of the material with the highest vapor pressure and float between both contacts, and an arc is guided by this. Connected between alloy regions (A2) 23 on both contacts.

この後、縦磁界の制御により、両接点間に浮遊するイオ
ン、金属粒子の分布が変わり、合金領域(A2)23か
ら外周側に隣接した境界領域(B、)22へ向かってア
ークが移行する。境界領域(B1)22の材料の蒸気圧
の高さは半径方向に対して異なる分布を有し、内周側の
部分の蒸気圧は合金領域(A2)23の材料の蒸気圧の
高さよりやや低く、外周側へ向かうに従って徐々に高く
なり、この外周側の部分における蒸気圧の高さより、外
周側に隣接した合金領域(A1)21の材料の蒸気圧の
高さの方がやや高い。このため、縦磁界の制御により合
金領域(A2)23から境界領域(Bl)22へ向かっ
たアークは、各領域の境界に停滞することなく境界領域
(B1)22を経て合金領域(A、)21へ容易に移行
する。
After this, by controlling the longitudinal magnetic field, the distribution of ions and metal particles floating between both contacts changes, and the arc moves from the alloy region (A2) 23 to the boundary region (B, ) 22 adjacent to the outer circumference. . The height of the vapor pressure of the material in the boundary region (B1) 22 has a different distribution in the radial direction, and the vapor pressure in the inner circumference side is slightly higher than that of the material in the alloy region (A2) 23. The vapor pressure of the material in the alloy region (A1) 21 adjacent to the outer circumference is slightly higher than the vapor pressure in the outer circumference. Therefore, by controlling the longitudinal magnetic field, the arc from the alloy region (A2) 23 to the boundary region (Bl) 22 passes through the boundary region (B1) 22 and returns to the alloy region (A,) without being stagnant at the boundaries of each region. 21 easily.

ここで、低サージ機能が満たされるために必要な時間が
経過するまでの間、材料の蒸気圧が高く両接点間に多く
のイオン、金属粒子が浮遊してアークが接続される合金
領域または境界領域の間にアークが接続されつつ移行す
るようにし、その後大電流しゃ断機能を満たすべく最も
蒸気圧が低くイオン、金属粒子がほとんど蒸発しない材
料から成る合金領域(A、)21へアークを移行させる
とその瞬間に両接点間のアークの接続が断たれる。
Here, the alloy region or boundary where the vapor pressure of the material is high and many ions and metal particles are suspended between the contacts and the arc connects until the time required for the low surge function to be met. The arc is connected and transferred between the regions, and then the arc is transferred to the alloy region (A,) 21 made of a material with the lowest vapor pressure and almost no evaporation of ions and metal particles in order to satisfy the large current cutoff function. At that moment, the arc connection between both contacts is broken.

接点が2種類の合金領域(A1)および(A2)とこれ
ら両領域の間の境界領域(B1)からなる場合について
説明したが、合金領域が3種類以上存在し、それぞれの
合金領域の間に境界領域が存在する場合には、接点の半
径方向に対する蒸気圧の高さの分布の変化がより緩かな
ものとなるため、アークの移行がより容易に行なわれ、
停滞することがない。
Although we have explained the case where the contact point consists of two types of alloy regions (A1) and (A2) and a boundary region (B1) between these two regions, there are three or more types of alloy regions and there are When a boundary region exists, the change in the vapor pressure height distribution in the radial direction of the contact point becomes more gradual, and the arc transition occurs more easily.
Never stagnate.

次に、本発明に係る接点の低サージ性および大電流しゃ
断性について試験評価した結果について説明する。それ
ぞれの接点の有する低サージ機能、大電流しゃ断機能を
比較対照するため、両接点間を接触した状態における接
点圧、この状態から離していくときの開極スピード、真
空度を同一条件とした。
Next, the results of testing and evaluation of the low surge property and large current interrupting property of the contact according to the present invention will be explained. In order to compare and contrast the low surge function and high current cutoff function of each contact, the contact pressure when both contacts are in contact, the opening speed when they are separated from this state, and the degree of vacuum were set to the same conditions.

低サージ性の優劣は、離れている両接点間にアークが接
続されるために必要な電流さい断値の大小により評価す
ることができ、この値が小さいほど低サージ性に優れる
こととなる。LC回路を介し、44AのAC電流を与え
たとき、真空しゃ断器に直列に挿入した同軸シャントの
電圧降下をオシロスコープで測定し、電流さい断値を算
出した。
The superiority or inferiority of low surge properties can be evaluated by the magnitude of the current cutting value required to connect an arc between two distant contacts, and the smaller this value is, the better the low surge properties are. When an AC current of 44 A was applied through the LC circuit, the voltage drop across the coaxial shunt inserted in series with the vacuum breaker was measured with an oscilloscope, and the current cutoff value was calculated.

大電流しゃ断性の優劣は、しゃ断直後におけるしゃ断性
を阻害するアークが発生しない場合における、電流の最
大値により評価することができ、この値が大きいほど大
電流しゃ断性に優れることとなる。接点表面をベーキン
グ、電圧エージング等によりクリーニングして条件を一
定にした後、7.2KV、50HzでIKAずつ電流を
増加しながらしゃ断限界時における電流の最大値を測定
し、所定の標準値に対する倍率をしゃ断倍率として算出
した。
The superiority or inferiority of the large current interrupting property can be evaluated by the maximum value of the current when no arc that inhibits the interrupting property occurs immediately after the interrupting, and the larger this value is, the better the large current interrupting property is. After cleaning the contact surface by baking, voltage aging, etc. to keep the conditions constant, increase the current by IKA at 7.2 KV and 50 Hz, measure the maximum value of the current at the cutoff limit, and calculate the magnification to the specified standard value. was calculated as the cutoff factor.

以上の各接点に対するサージ電流値およびしゃ断倍率を
示した表1を参照し、本発明による接点の存する効果に
ついて説明する。実施例1および従来例1はいずれも低
蒸気圧性材料の30Ag−WC−,0,2Coを合金領
域(A1)に、高蒸気圧性材料の40Ag−WC−10
Coを合金領域(A2)に用いており、実施例1のみ境
界領域(B1)を有する。この結果しゃ断する際に最初
にアークが接続されるのは、実施例1と従来例1の両者
とも同一材料からなる合金領域(A2)であるため、電
流さい断値は同一であり、低サージ性に差異は見られな
い。ところが、実施例1は従来N1と異なり境界領域(
B1)を有するため、合金領域(A2)から合金領域(
At)へのアークの移行が停滞することなく容易に行な
われ、しゃ断倍率が1.0から164へ向上している。
The effects of the contact according to the present invention will be explained with reference to Table 1 showing the surge current value and cutoff magnification for each contact. In both Example 1 and Conventional Example 1, 30Ag-WC-,0,2Co, which is a low vapor pressure material, is used in the alloy region (A1), and 40Ag-WC-10, which is a high vapor pressure material, is used in the alloy region (A1).
Co is used in the alloy region (A2), and only Example 1 has a boundary region (B1). As a result, when breaking, the arc is first connected to the alloy region (A2) made of the same material in both Example 1 and Conventional Example 1, so the current cutting value is the same and the arc is low. There are no differences in gender. However, in Example 1, unlike the conventional N1, the boundary area (
B1), the alloy region (A2) to the alloy region (
The transition of the arc to At) is easily carried out without stagnation, and the cutoff factor is improved from 1.0 to 164.

このことは実施例2と従来例2、実施例3と従来例3、
実施例4と従来例4のいずれの関係についてもあてはま
る。以上の試験結果から、蒸気圧の高さの異なる材料を
用いた合金領域を単に二種類量」−有するだけでなく、
各合金領域の間に蒸気圧の高さが半径方向に対して連続
して異なる分布ををする境界領域を有した本発明による
接点は、低サージ機能のみならず、大電流しゃ断機能を
も有することが実証された。
This is true for Example 2 and Conventional Example 2, Example 3 and Conventional Example 3,
The same applies to both the fourth embodiment and the fourth conventional example. From the above test results, we found that not only do we have two types of alloy regions using materials with different vapor pressure heights, but also
The contact according to the present invention, which has a boundary region between each alloy region in which the vapor pressure height has a continuously different distribution in the radial direction, has not only a low surge function but also a large current interrupt function. This has been proven.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明による真空開閉器用接点は
、低サージ機能を有する高蒸気圧性材料からなる合金領
域と、大電流しゃ断機能を有する低蒸気圧性材料からな
る合金領域とを少なくとも2種類有し、それぞれの合金
領域の間に蒸気圧の高さの半径方向の分布が連続して異
なる境界領域を存する。このため、高蒸気圧性材料から
なる合金領域から低蒸気圧性材料からなる合金領域への
縦磁界の制御による強制的なアークの移行が容易に行な
われて停滞することがなく、低サージ機能と大電流しゃ
断機能という二つの相反する要求を同時に満たすことが
できる。
As explained above, the vacuum switch contact according to the present invention has at least two types of alloy regions: an alloy region made of a high vapor pressure material having a low surge function and an alloy region made of a low vapor pressure material having a large current cutting function. However, there exists a boundary region between each alloy region in which the radial distribution of vapor pressure height is continuously different. For this reason, the forced transition of the arc from the alloy region made of high vapor pressure material to the alloy region made of low vapor pressure material is easily performed by controlling the longitudinal magnetic field, and there is no stagnation, resulting in a low surge function and a large It is possible to simultaneously satisfy two contradictory requirements of current cutoff function.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の真空開閉器用接点の一実施例を示す図
、第2v4は本発明の真空開閉器用接点を製造するとき
に用いる金型の一例を示す図、第3図は成型体の中心軸
方向の断面を示す図、第4図は真空開閉器を示す図、第
5図は第4図における可動電極8周辺の詳細を示す部分
拡大図、第6図は従来の真空開閉器用接点を示す図、第
7図は真空開閉器に用いられるコイル電極を示す図、第
8図は真空開閉器に用いられるスパイラル電極を示す図
である。 1・・・しゃ断器、2・・・絶縁容器、3a、3b・・
・封止金具、4a、4b・・・金属製蓋体、5.6・・
・導電棒、7・・・固定電極、8・・・可動電極、9・
・・ベローズ、10.11・・・アークシールド、12
.14・・・ろう付、13a・・・可動接点、13b・
・・固定接点、14・・・ろう材部、21・・・第1の
合金領域(A1)、22・・・第1の境界領域(B、)
、23・・・第2の合金領域(A2)、31・・・金型
、32・・・第1のポンチ、32a・・・第1のポンチ
の底部、32b・・・テーパ部、35・・・第2のポン
チ、35a・・・第2のポンチの底部、37・・・金型
台、38・・・空間、39・・・成型体、44・・・コ
イル電極、45・・・スパイラル電極、H・・・磁界。 出願人代理人  佐  藤  −雄 I’ll  図 P)2  図 島3 図 乳7 図 九8 口
Fig. 1 is a diagram showing an embodiment of the vacuum switch contact of the present invention, Fig. 2v4 is a diagram showing an example of a mold used when manufacturing the vacuum switch contact of the present invention, and Fig. 3 is a diagram of a molded body. 4 is a diagram showing a vacuum switch; FIG. 5 is a partially enlarged view showing details around the movable electrode 8 in FIG. 4; and FIG. 6 is a conventional vacuum switch contact. FIG. 7 is a diagram showing a coil electrode used in a vacuum switch, and FIG. 8 is a diagram showing a spiral electrode used in a vacuum switch. 1... Breaker, 2... Insulating container, 3a, 3b...
・Sealing fittings, 4a, 4b...metal lid, 5.6...
・Conductive rod, 7... Fixed electrode, 8... Movable electrode, 9.
...Bellows, 10.11...Arcshield, 12
.. 14... Brazing, 13a... Movable contact, 13b.
... Fixed contact, 14... Brazing metal part, 21... First alloy region (A1), 22... First boundary region (B,)
, 23... Second alloy region (A2), 31... Mold, 32... First punch, 32a... Bottom of first punch, 32b... Tapered part, 35... ...Second punch, 35a...Bottom of second punch, 37...Mold stand, 38...Space, 39...Molded body, 44...Coil electrode, 45... Spiral electrode, H...magnetic field. Applicant's agent Sato-O I'll Figure P) 2 Figure Island 3 Figure 7 Figure 98 Mouth

Claims (1)

【特許請求の範囲】[Claims] 2種類の合金領域とその間にはさまれた境界領域が同心
円状に配され、前記合金領域の各々が蒸気圧の高さの異
なる材料から成り、前記境界領域が半径方向に蒸気圧の
高さが連続して異なるように組成された材料から成るこ
とを特徴とする真空開閉器用接点。
Two types of alloy regions and a boundary region sandwiched between them are arranged concentrically, and each of the alloy regions is made of a material having a different vapor pressure, and the boundary region has a different vapor pressure in the radial direction. A contact for a vacuum switch, characterized in that it is made of a material whose composition is continuously different.
JP10158487A 1987-04-24 1987-04-24 Contact for vacuum switch Expired - Lifetime JPH0777101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10158487A JPH0777101B2 (en) 1987-04-24 1987-04-24 Contact for vacuum switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10158487A JPH0777101B2 (en) 1987-04-24 1987-04-24 Contact for vacuum switch

Publications (2)

Publication Number Publication Date
JPS63266720A true JPS63266720A (en) 1988-11-02
JPH0777101B2 JPH0777101B2 (en) 1995-08-16

Family

ID=14304432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10158487A Expired - Lifetime JPH0777101B2 (en) 1987-04-24 1987-04-24 Contact for vacuum switch

Country Status (1)

Country Link
JP (1) JPH0777101B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5726407A (en) * 1995-03-10 1998-03-10 Kabushiki Kaisha Toshiba Contact electrode for vacuum interrupter
JP2010251079A (en) * 2009-04-15 2010-11-04 Mitsubishi Electric Corp Switch
JP2013110125A (en) * 2013-02-06 2013-06-06 Mitsubishi Electric Corp Circuit breaker
DE112017006731T5 (en) 2017-02-02 2019-10-10 Meidensha Corporation METHOD FOR PRODUCING AN ELECTRODE MATERIAL AND ELECTRODE MATERIAL

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5726407A (en) * 1995-03-10 1998-03-10 Kabushiki Kaisha Toshiba Contact electrode for vacuum interrupter
JP2010251079A (en) * 2009-04-15 2010-11-04 Mitsubishi Electric Corp Switch
JP2013110125A (en) * 2013-02-06 2013-06-06 Mitsubishi Electric Corp Circuit breaker
DE112017006731T5 (en) 2017-02-02 2019-10-10 Meidensha Corporation METHOD FOR PRODUCING AN ELECTRODE MATERIAL AND ELECTRODE MATERIAL
US10614969B2 (en) 2017-02-02 2020-04-07 Meidensha Corporation Method for manufacturing electrode material and electrode material

Also Published As

Publication number Publication date
JPH0777101B2 (en) 1995-08-16

Similar Documents

Publication Publication Date Title
US3246979A (en) Vacuum circuit interrupter contacts
EP0488083B1 (en) Contact material for a vacuum interrupter
JP2768721B2 (en) Contact material for vacuum valve
US5149362A (en) Contact forming material for a vacuum interrupter
JPS63266720A (en) Contact for vacuum switch gear
EP0731478A2 (en) Contact electrode for vacuum interrupter
JP3101329B2 (en) Vacuum valve
JPH052955A (en) Material for electric contact used in vacuum valve
JP2944788B2 (en) Vacuum valve
JP7182946B2 (en) Contact material for vacuum valve, method for manufacturing contact material for vacuum valve, and vacuum valve
JPH0547275A (en) Vacuum valve
JP2911594B2 (en) Vacuum valve
JP2692945B2 (en) Contact material for vacuum valve
JPH0973846A (en) Contact material for vacuum bulb and its manufacture
JPH0347931A (en) Contact material for vacuum valve
JPH04132127A (en) Contact point for vacuum bulb
JP3068880B2 (en) Contact for vacuum valve
JPH06103858A (en) Manufacture of contact material for vacuum valve
JP2904448B2 (en) Contact material for vacuum valve
JPH0123535B2 (en)
JPH04324219A (en) Contact material for vacuum bulb
JPS6260781B2 (en)
JPH1083746A (en) Electrode for vacuum valve and its manufacture
JPH0369126B2 (en)
JPH0673257B2 (en) Contact electrode for vacuum valve