JPS63264134A - Production of low molecular weight material by microwave - Google Patents
Production of low molecular weight material by microwaveInfo
- Publication number
- JPS63264134A JPS63264134A JP62096845A JP9684587A JPS63264134A JP S63264134 A JPS63264134 A JP S63264134A JP 62096845 A JP62096845 A JP 62096845A JP 9684587 A JP9684587 A JP 9684587A JP S63264134 A JPS63264134 A JP S63264134A
- Authority
- JP
- Japan
- Prior art keywords
- microwave
- cavity
- cavities
- microwaves
- reaction chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- 239000000463 material Substances 0.000 title abstract 2
- 239000000126 substance Substances 0.000 claims abstract description 25
- 239000007788 liquid Substances 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims description 11
- 230000001678 irradiating effect Effects 0.000 claims description 3
- 238000004611 spectroscopical analysis Methods 0.000 claims 2
- 238000006243 chemical reaction Methods 0.000 abstract description 19
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 abstract description 10
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 10
- 239000010409 thin film Substances 0.000 abstract description 4
- 238000005507 spraying Methods 0.000 abstract description 2
- 239000007864 aqueous solution Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 7
- 238000001514 detection method Methods 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 238000000862 absorption spectrum Methods 0.000 description 5
- 150000003384 small molecules Chemical class 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 238000000889 atomisation Methods 0.000 description 3
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000000295 emission spectrum Methods 0.000 description 2
- 238000002189 fluorescence spectrum Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 238000001237 Raman spectrum Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 238000001675 atomic spectrum Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052878 cordierite Inorganic materials 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 210000004180 plasmocyte Anatomy 0.000 description 1
- 239000003495 polar organic solvent Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000011882 ultra-fine particle Substances 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J19/12—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
- B01J19/122—Incoherent waves
- B01J19/126—Microwaves
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Plasma Technology (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Description
【発明の詳細な説明】
[jI業上の利用分野1
本発明は、マイクロ波による低分子物質の生成方法に関
する。DETAILED DESCRIPTION OF THE INVENTION [jI Industrial Field of Application 1 The present invention relates to a method for producing a low-molecular substance using microwaves.
[従来の技術]
従来、例えば薄膜を形成する方法としては単一室内で試
料ガスの放電により活性種を生成し、同室内で被着体に
被覆する方法が知られている。かかる簿膜形成を第3図
の描画を参照して詳細に説明する。反応室1内に111
12と被着体ホルダ3が設置され、被着体4は該ホルダ
3に載置されている。試料ガスは、ガス入口5から前記
反応室1に導かれ、前記電極2と被着体ホルダ3との間
に印加された電圧で放電され、活性種が生成される。[Prior Art] Conventionally, as a method for forming a thin film, for example, a method is known in which active species are generated by discharging a sample gas in a single chamber and coated on an adherend in the same chamber. Such film formation will be explained in detail with reference to the drawing in FIG. 111 in reaction chamber 1
12 and an adherend holder 3 are installed, and the adherend 4 is placed on the holder 3. The sample gas is introduced into the reaction chamber 1 from the gas inlet 5, and is discharged by a voltage applied between the electrode 2 and the adherend holder 3 to generate active species.
生成した活性種は、被着体4表面に堆積して[1が形成
され、残りのガスはガス出口6から排気される。The generated active species are deposited on the surface of the adherend 4 to form [1, and the remaining gas is exhausted from the gas outlet 6.
[発明が解決しようとする問題点]
しかしながら、従来技術では単一室内で活性種を生成す
るため、気体試料又は蒸気圧の高い試料しか原料として
使用できない問題があった。また、活性種の生成条件(
圧力、流量、エネルギ)等は一定の値の設定して反応を
行ない、生成物の分析を行なった後、条件の評価を行な
っていたため、反応中の状態変化を把握できず、均一な
薄膜形成が困難であった。[Problems to be Solved by the Invention] However, in the prior art, since active species are generated in a single chamber, there is a problem in that only gaseous samples or samples with high vapor pressure can be used as raw materials. In addition, the conditions for the generation of active species (
Because the reaction was performed with fixed values (pressure, flow rate, energy), etc., and the conditions were evaluated after analyzing the products, it was not possible to understand the changes in state during the reaction, and it was difficult to form a uniform thin film. was difficult.
本発明は、上記従来の問題点を解決するためになされた
もので、均一な低分子物質(単分子物質)を再環性よく
生成し得る方法を提供しようとするものである。The present invention was made in order to solve the above-mentioned conventional problems, and aims to provide a method capable of producing a uniform low-molecular substance (monomolecular substance) with good recyclability.
[問題点を解決するための手段]
本願第1の発明は、液状物質を連続して設置した減圧状
態の多段のマイクロ被キャビティに噴霧し、これらキャ
ビティ内を通過させることにより、気化、低分子化させ
ることを特徴とするマイクロ波による低分子物質の生成
方法である。[Means for Solving the Problems] The first invention of the present application sprays a liquid substance into multi-stage micro-cavities that are continuously installed under reduced pressure, and allows the liquid substance to pass through the cavities, thereby vaporizing and reducing low-molecular-weight substances. This is a method for producing low-molecular substances using microwaves.
本願第2の発明は、液状物質を連続して設置した減圧状
態の多段のマイクロ波キャビティに#4霧し、これらキ
ャビティ内を通過させることにより、気化、低分子化さ
せ、更に生成した低分子物質にマイクロ波を照射し、プ
ラズマを発生させることを特徴とするマイクロ波による
低分子物質の生成方法である。The second invention of the present application is to atomize #4 a liquid substance into a multi-stage microwave cavity in a reduced pressure state that is installed continuously, and by passing it through these cavities, it is vaporized and reduced to low molecular weight. This is a method of generating a low molecular weight substance using microwaves, which is characterized by irradiating a substance with microwaves to generate plasma.
上記液状物質としては、例えば酸、アルカリ、塩の水溶
液、粉体と水又は極性有機溶媒に分散させたスラリ等を
挙げることができる。なお、原料として気体のみでも可
能である。Examples of the liquid substance include an aqueous solution of an acid, an alkali, or a salt, and a slurry of powder dispersed in water or a polar organic solvent. Note that it is also possible to use only gas as the raw material.
[作用]
本願第1の発明によれば、液状物質を連続して設置した
低圧条件下の多段のマイクロ波キャビティに噴霧するこ
とにより、該微粒子状の液状物が前段のキャビティ内に
おいて例えば周波数100〜3000M lb、出力1
0〜200 Wのマイクロ波を吸収して昇温、気化する
。次いで、次段に設置されたキャビティ内で分子集合体
から会合度の低い分子(クラスタ)に解離する。更に、
次段のキャビティ内において単分子まで解離する。この
過程は、例えばNaCβ水溶液を液状物質として用いた
場合、第4図に示すように吸収されたマイクロ波の電力
により解離の状態が進むが、一度に大電力を照射しても
液状物質の微粒子や会合度の高い分子が残り、会合度の
興なる分子種が混合した状態となる。本発明では、段階
的にマイクロ波を吸収させるため、目的の分子種を効率
よく生成できる。[Function] According to the first invention of the present application, by spraying a liquid substance into a multi-stage microwave cavity under a low pressure condition that is installed in succession, the particulate liquid substance is transmitted to the cavity at a frequency of, for example, 100. ~3000M lb, output 1
It absorbs microwaves of 0 to 200 W, heats up, and vaporizes. Next, the molecular assembly is dissociated into molecules (clusters) with a low degree of association in a cavity installed in the next stage. Furthermore,
Dissociates into single molecules in the next stage cavity. In this process, for example, when an NaCβ aqueous solution is used as a liquid substance, the state of dissociation progresses due to the absorbed microwave power, as shown in Figure 4, but even if high power is irradiated at once, fine particles of the liquid substance Molecules with a high degree of association remain, resulting in a state in which molecular species with a high degree of association are mixed. In the present invention, since microwaves are absorbed in stages, target molecular species can be efficiently generated.
この時、キャビティに設置した光学窓を通してマイクロ
波、赤外、可視、紫外吸収スペクトルのいずれかをモニ
タし、キャビティ内で生成した分子の種類と濃度を求め
れば、これに基づいて入射マイクロ波の電力を目的とす
る分子種が多く生成するように制御できる。7従って、
段階的に低分子を生成し、リアルタイムで濃度モニタを
行ない、その結果を入射マイクロ波電力の制御のために
フィードバックさせることによって目的とする活性種を
高効率で生成することができる。At this time, if one of the microwave, infrared, visible, and ultraviolet absorption spectra is monitored through an optical window installed in the cavity and the type and concentration of molecules generated in the cavity are determined, based on this, the incident microwave It can be controlled so that a large number of molecular species for the purpose of electricity are generated. 7 Therefore,
By generating small molecules in stages, monitoring the concentration in real time, and feeding back the results to control the incident microwave power, the desired active species can be generated with high efficiency.
また、本願第2の発明によれば上述したマイクロ波キャ
ビティの次段において更にガスの絶縁破壊が起こらない
マイクowt’ix力(例えば0,1〜50torrの
圧力で50〜200W)を供給することにより、プラズ
マが生成し、ラジカル、イオンを生成することができる
。この時、キャビティに設置した光学窓を通して発光ス
ペクトル、原子、分子の吸収スペクトル、蛍光スペクト
ル或いはうマンスペクトルのいずれかをモニタすれば、
これに基づいて入射マイクロ波の電力を目的とする分子
種が多く生成するように制御できる。従って、段階的に
低分子を生成した後、プラズマを生成し、リアルタイム
で濃度モニタを行ない、その結果を入射マイクロ波電力
の制御のためにフィードバックさせることによって目的
とする活性種を高効率で生成することができる。Further, according to the second invention of the present application, it is possible to further supply a microwave power (for example, 50 to 200 W at a pressure of 0.1 to 50 torr) that does not cause dielectric breakdown of the gas to the next stage of the microwave cavity described above. As a result, plasma is generated, and radicals and ions can be generated. At this time, if you monitor the emission spectrum, absorption spectrum of atoms and molecules, fluorescence spectrum, or Eman spectrum through the optical window installed in the cavity,
Based on this, the power of the incident microwave can be controlled so that many target molecular species are generated. Therefore, after generating small molecules in stages, plasma is generated, the concentration is monitored in real time, and the results are fed back to control the incident microwave power to generate the desired active species with high efficiency. can do.
[発明の実施例]
以下、本発明の実施例を第1図、第2図を参照して詳細
に説明する。[Embodiments of the Invention] Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. 1 and 2.
実施例1
第1図は、本実施例1で用いた活性種の発生装置を示す
概略図である。図中の11は、チャンバであり、このチ
ャンバ11は例えば2つの9メツシュ以上の金網からな
るスリット12a 、 12bにより仕切られた第1〜
第3のマイクロ波キャビティ13a〜13cが形成され
ている。また、図中の14は10%濃度のケイ酸水溶液
を収容した貯槽であり、この貯槽14のケイ酸水溶液は
注薬ポンプ15を通して前記第1のキャビティ13a内
に挿入された微粒化ノズル16を介して該キャビティ1
3a内に噴霧される。Example 1 FIG. 1 is a schematic diagram showing an active species generator used in Example 1. 11 in the figure is a chamber, and this chamber 11 is divided by two slits 12a and 12b made of wire netting of 9 mesh or more, for example.
Third microwave cavities 13a-13c are formed. Further, 14 in the figure is a storage tank containing a 10% concentration silicic acid aqueous solution, and the silicic acid aqueous solution in this storage tank 14 is passed through a dosing pump 15 to an atomization nozzle 16 inserted into the first cavity 13a. through the cavity 1
3a.
前記第3のキャビディ13Cには、反応室17が連結さ
れ、かつ該反応室11には前記各キャビティ13a〜1
3c及び反応室11を減圧状態にするための真空ポンプ
18が連結されている。前記各キャビティ13a〜13
0に対応する前記チャンバ11上部には、マクネトロン
19a〜190が設けられており、かつこれらマグネト
ロン19a〜19cにはマグネトロン電[208〜20
cが接続されている。これらマグネトロン電源20a〜
20Cは、制御器21に接続され、該制御器21からの
信号により前記各マグネトロン19a〜19cに出力す
る電力が1IIJIIlされるようになっている。更に
、図中の22は検出器であり、この検出@22は前記第
3のキャビティ13cに対応するチャンバ11に設けら
れた光学窓23を通して該第3のキャビティ13cの赤
外吸収をモニタするものである。前記検出器22は制御
器21に接続され、その検出信号は該制御器21を通し
て前記各マグネトロン電Ill 20a〜20cにフィ
ードバックされる。A reaction chamber 17 is connected to the third cavity 13C, and each of the cavities 13a to 1 is connected to the reaction chamber 11.
3c and a vacuum pump 18 for bringing the reaction chamber 11 into a reduced pressure state are connected. Each of the cavities 13a to 13
Magnetrons 19a to 190 are provided in the upper part of the chamber 11 corresponding to 0, and these magnetrons 19a to 19c are provided with magnetrons [208 to 20
c is connected. These magnetron power supplies 20a~
20C is connected to a controller 21, and the power output to each of the magnetrons 19a to 19c is controlled by a signal from the controller 21. Furthermore, 22 in the figure is a detector, and this detection@22 monitors the infrared absorption of the third cavity 13c through an optical window 23 provided in the chamber 11 corresponding to the third cavity 13c. It is. The detector 22 is connected to a controller 21, and its detection signal is fed back to the magnetrons Ill 20a to 20c through the controller 21.
次に、上述した第1図図示の発生装置を用いて活性種の
生成方法を説明する。Next, a method for generating active species will be explained using the above-mentioned generator shown in FIG.
まず、反応室17内に被着体である例えばアルミナやコ
ージライトからなる多孔質体24を設置lした後、真空
ポンプ18を作動して第1〜第3のマイクロ波キャビテ
ィ138〜13C及び反応室17内を1〜10tOrr
の減圧状態に保持すると共に、各マグネトロン電1[2
0a 〜20cからマクネトロン19a 〜19cに電
力を供給してチャンバ11の第1〜第3のマイクロ波キ
ャビティ13a〜13Cにマイクロ波を発生させる。つ
づいて、注薬ポンプ15を作動して貯槽14内のケイ酸
水溶液を微粒化ノズル16から1μm以下に微粒化して
第1のマイクロ波キャビティ13a内に供給する。この
時、微粒化水溶液は第1のキャビティ13a内において
低圧での蒸発及びマイクロ波の吸収により蒸発され、ケ
イ酸は蒸発固化してクラスタ(H4Si 04 )11
となる。First, after installing a porous body 24 made of alumina or cordierite as an adherend in the reaction chamber 17, the vacuum pump 18 is activated to open the first to third microwave cavities 138 to 13C and the reaction chamber 17. 1 to 10tOrr inside chamber 17
At the same time, each magnetron electric current 1 [2
Electric power is supplied from 0a to 20c to the McNetrons 19a to 19c to generate microwaves in the first to third microwave cavities 13a to 13C of the chamber 11. Subsequently, the dosing pump 15 is operated to atomize the silicic acid aqueous solution in the storage tank 14 to 1 μm or less through the atomization nozzle 16, and supply the atomized solution into the first microwave cavity 13a. At this time, the atomized aqueous solution is evaporated in the first cavity 13a by evaporation at low pressure and absorption of microwaves, and the silicic acid is evaporated and solidified to form clusters (H4Si 04 ) 11
becomes.
次いで、前記クラスタは真空ポンプ18の排気流れに沿
って下流側の第2のキャビティ13bに導かれ、このキ
ャビティ13b内においてマイクロ波を吸収して微細化
させる。この後、更に微細化されたクラスタは下流側の
第3のキャビティ130内に導かれ、ここでマイクロ波
を吸収して最終的に単分子(H4Si 04 )又はそ
の酸化物(SiO2)にまで分解される。この時、検出
器22により第3のキャビティ13Cに対応するチャン
バ11の光学窓23を通して該キャビティ130での赤
外吸収がモニタされ、赤外吸収スペクトルの半値幅及び
強度により単分子クラスタの比率、単分子濃度、ケイ酸
から酸化ケイ酸への脱水過程が把握される。かかる検出
器22で検出した信号を制御器21に出力する・ことに
より、該制御器21から各マグネトロン電源20a〜2
0cにフィードバックされ、これらの電源20a〜20
0と接続されたマグネトロン19a〜19cの出力を制
御され、これによって単分子(H4Si 04 )又は
その酸化物(SiO2)単分子が高効率で生成される。Next, the clusters are guided to the second cavity 13b on the downstream side along the exhaust flow of the vacuum pump 18, and are atomized by absorbing microwaves in this cavity 13b. After this, the further refined clusters are guided into the third cavity 130 on the downstream side, where they absorb microwaves and are finally decomposed into single molecules (H4Si 04 ) or their oxides (SiO2). be done. At this time, the infrared absorption in the cavity 130 is monitored by the detector 22 through the optical window 23 of the chamber 11 corresponding to the third cavity 13C, and the ratio of single-molecule clusters is determined based on the half-width and intensity of the infrared absorption spectrum. The single molecule concentration and the dehydration process from silicic acid to oxidized silicic acid can be understood. By outputting the signal detected by the detector 22 to the controller 21, the controller 21 outputs the signal detected by the detector 22 to each magnetron power source 20a to 2.
0c, these power supplies 20a to 20
The outputs of the magnetrons 19a to 19c connected to 0 are controlled, thereby producing a single molecule (H4Si04) or its oxide (SiO2) with high efficiency.
この単分子は、非平衡条件でガス体として挙動するため
、極めて活性が高く、第3のキャビティ13Cの下流側
に設置された反応室11を流通する過程で該反応室17
に設置したアルミナ等からなる多孔質体24表面に均一
に吸着されてコーティングがなされる。Since this single molecule behaves as a gas under non-equilibrium conditions, it has extremely high activity, and in the process of flowing through the reaction chamber 11 installed downstream of the third cavity 13C,
The coating is uniformly adsorbed onto the surface of the porous body 24 made of alumina or the like placed on the surface.
なお、上記実施例1では検出器22により赤外吸収をモ
ニタしたが、マイクロ波可視、紫外吸収スペクトルやラ
マンスペクトルをモニタし、この検出信号を制御器21
を通してマグネトロン電源20a〜200にフィードバ
ックさせてもよい。In the first embodiment, infrared absorption was monitored by the detector 22, but microwave visible, ultraviolet absorption spectra, and Raman spectra were also monitored, and this detection signal was sent to the controller 21.
It may be fed back to the magnetron power supplies 20a to 200 through the power supply.
実施例2・
第2図は、本実施例2で用いた活性種の発生装置を示す
概略図である。図中の11は、チャンバであり、このチ
ャンバ11は例えば3つの9メツシュ以上の金網からな
るスリット128〜120により仕切られた第1〜第4
のマイクロ波キャビティ138〜13dが形成されてい
る。また、図中の14は10%濃度のケイ酸水溶液を収
容した貯槽であり、この貯槽14のケイ酸水溶液は注薬
ポンプ15を通して前記第1のキャビティ13a内に挿
入された微細化ノズル16を介して該キャビティ13a
内に噴霧される。Example 2 FIG. 2 is a schematic diagram showing an active species generator used in Example 2. Reference numeral 11 in the figure is a chamber, and this chamber 11 has first to fourth slits partitioned by, for example, three slits 128 to 120 made of wire mesh of 9 or more meshes.
Microwave cavities 138 to 13d are formed. Further, 14 in the figure is a storage tank containing a 10% concentration silicic acid aqueous solution, and the silicic acid aqueous solution in this storage tank 14 is passed through a dosing pump 15 to a fine nozzle 16 inserted into the first cavity 13a. via the cavity 13a
sprayed inside.
前記第4のキャビティ13dには、反応室11が連結さ
れ、かつ該反応室17には前記各キャビティ13a〜1
3d及び反応室17を減圧状態にするための真空ポンプ
18が連結されている。前記各キャビティ13a〜13
dに対応する前記チャンバ11上部には、マグネトロン
19a〜19dが設けられており、かつこれらマグネト
ロン19a〜19dにはマグネトロン電源20a〜20
dが接続されている。これらマグネトロン電源20a〜
20dは、制御器21に接続され、該制御器21からの
信号により前記各マグネトロン19a〜19dに出力す
る電力が制御されるようになっている。更に、図中の2
2は検出器−であり、この検出器22は一前記第4のキ
ャビティ134に対応するチャンバ11に設けられた光
学窓23を通して該第4のキャビティ13dの分子、原
子スペクトルをモニタするものである。前記検出@22
は制御器21に接続され、その検出信号は該制御器21
を通して前記各マグネトロン電源20a〜20dにフィ
ードバックされる。A reaction chamber 11 is connected to the fourth cavity 13d, and each of the cavities 13a to 1 is connected to the reaction chamber 17.
3d and a vacuum pump 18 for bringing the reaction chamber 17 into a reduced pressure state are connected. Each of the cavities 13a to 13
Magnetrons 19a to 19d are provided at the upper part of the chamber 11 corresponding to d, and these magnetrons 19a to 19d are connected to magnetron power supplies 20a to 20.
d is connected. These magnetron power supplies 20a~
20d is connected to a controller 21, and the power output to each of the magnetrons 19a to 19d is controlled by a signal from the controller 21. Furthermore, 2 in the figure
2 is a detector, and this detector 22 monitors the molecular and atomic spectrum of the fourth cavity 13d through an optical window 23 provided in the chamber 11 corresponding to the fourth cavity 134. . Said detection @22
is connected to the controller 21, and its detection signal is connected to the controller 21.
It is fed back to each of the magnetron power supplies 20a to 20d through.
次に、上述した第2図図示の発生装置を用いて活性種の
生成方法を説明する。Next, a method for generating active species will be explained using the above-mentioned generator shown in FIG.
前記実施例1と同様に第3のマイクロ波キャビティ13
C内で生成した低分子を下流側の第4のマイクロ波キャ
ビティ13dに導き、ここでマグネトロン電!Ij20
dによりマイクロ波放電を行なうことにより低分子はイ
オン又は活性用の元素まで分解される。この時、検出8
22により第4のキャビティ13dに対応するチャンバ
11の光学窓23を通して該キャビティ13d内のイオ
ン又は活性用の元素を原子、分子スペクトルとしてモニ
タされ、その検出信号をIIIIll器21に出力する
ことにより、該制御器21から各マグネトロン電源20
a〜20dにフィードバックされ、これらの電源20a
〜20dと接続されたマグネトロン19a〜19dの出
力が制御され、これによってイオン又は活性種が高効率
で生成される。こうしたイオン又は活性種は、極めて活
性が高く、第4のキャビティ13dの下流側に設置され
た反応室17を流通する過程で該反応室11に設置した
アルミナ等からなる多孔質体24表面に均一に吸着され
てコーティングがなされる。As in the first embodiment, the third microwave cavity 13
The low molecules generated in C are guided to the fourth microwave cavity 13d on the downstream side, where they are subjected to magnetron electricity! Ij20
By performing microwave discharge in accordance with d, low molecules are decomposed into ions or active elements. At this time, detection 8
22 monitors the ions or active elements in the cavity 13d as atomic and molecular spectra through the optical window 23 of the chamber 11 corresponding to the fourth cavity 13d, and outputs the detection signal to the IIIll device 21. From the controller 21 to each magnetron power source 20
a to 20d, and these power supplies 20a
The outputs of the magnetrons 19a to 19d connected to the magnetrons 19a to 20d are controlled, thereby generating ions or active species with high efficiency. These ions or active species have extremely high activity, and as they flow through the reaction chamber 17 installed downstream of the fourth cavity 13d, they are uniformly distributed over the surface of the porous body 24 made of alumina or the like installed in the reaction chamber 11. is adsorbed to form a coating.
なお、上記実施例2では検出器22によりイオン又は活
性用の元素を原子、分子スペクトルとしてモニタしたが
、発光スペクトル、吸収スペクトル(マイクロ波、赤外
、可視、紫外)、レーザ有機蛍光スペクトル又はラマン
スペクトルをモニタし、この検出信号を制御器21を通
してマグネトロン電源20a〜20dにフィードバック
させてもよい。In Example 2, the detector 22 monitored ions or active elements as atomic and molecular spectra, but emission spectra, absorption spectra (microwave, infrared, visible, ultraviolet), laser organic fluorescence spectra, or Raman The spectrum may be monitored and this detection signal may be fed back to the magnetron power supplies 20a to 20d through the controller 21.
[発明の効果]
以上詳述した如く、本発明のマイクロ波による低分子の
生成方法によれば連続して設置した減圧状態の多段マイ
クロ波キャビティにより段階的に低分子を生成するか、
もしくは低分子を生成し、更にプラズマを生成するかし
た後、リアルタイムで濃度モニタを行ない、その結果を
入射マイクd波電力の制御のためにフィードバックさせ
ることによって目的とする活性種を高効率で生成でき、
ひいては半導体用薄膜、ガス分mil、酸化物被膜など
の*S成長、吸着剤、触媒などの表面改質、太陽電池な
どに用いるアモルファス膜、プラズマエツチング、又は
超微粒子生成に有効に利用できる等顕著な効果を有する
。[Effects of the Invention] As detailed above, according to the method for producing small molecules using microwaves of the present invention, small molecules can be produced stepwise by successively installed multi-stage microwave cavities under reduced pressure, or
Alternatively, after generating small molecules and further generating plasma, the concentration is monitored in real time, and the results are fed back to control the incident microphone D-wave power, thereby generating the desired active species with high efficiency. I can do it,
Furthermore, it can be effectively used for *S growth of semiconductor thin films, gas fractions, oxide films, etc., surface modification of adsorbents, catalysts, etc., amorphous films used in solar cells, plasma etching, and ultrafine particle generation. It has a great effect.
第1図は本発明の実施例1で使用した活性種の発生装置
を示す概略図、第2図は本発明の実施例2で使用した活
性種の発生装置を示す概略図、第3図は従来のil膜形
成装置を示す概略図、第4図はNa C1水溶液がマイ
クロ波を吸収して気化、低分子化、原子化、イオン化さ
れる一連の過程を示す特性図である。
11・・・チャンバ、13a〜13d・・・第1〜第4
のマイクロ波キャビティ、16・・・微粒化ノズル、1
7・・・反応室、18・・・真空ポンプ、19a〜19
d・・・マグネトロン、20a〜20d・・・マグネト
ロン電源、21・・・制御器、22・・・検出器、23
・・・光学窓、24・・・多孔質体。
出願人代理人 弁理士 鈴江武彦
第3図Figure 1 is a schematic diagram showing the active species generator used in Example 1 of the present invention, Figure 2 is a schematic diagram showing the active species generator used in Example 2 of the present invention, and Figure 3 is a schematic diagram showing the active species generator used in Example 2 of the present invention. FIG. 4 is a schematic diagram showing a conventional IL film forming apparatus, and is a characteristic diagram showing a series of processes in which an NaCl aqueous solution absorbs microwaves and is vaporized, reduced in molecular weight, atomized, and ionized. 11...Chamber, 13a-13d...1st to 4th
microwave cavity, 16... atomization nozzle, 1
7... Reaction chamber, 18... Vacuum pump, 19a-19
d... Magnetron, 20a-20d... Magnetron power supply, 21... Controller, 22... Detector, 23
...optical window, 24...porous body. Applicant's agent Patent attorney Takehiko Suzue Figure 3
Claims (4)
マイクロ波キャビティに噴霧し、これらキャビティ内を
通過させることにより、気化、低分子化させることを特
徴とするマイクロ波による低分子物質の生成方法。(1) A low-molecular substance using microwaves, characterized in that a liquid substance is sprayed into a series of vacuum cavities in a multi-stage microwave cavity, and the substance is vaporized and reduced in molecular weight by passing through these cavities. How to generate.
し、多段のマイクロ波キャビティへのマイクロ波電力を
制御することを特徴とする特許請求の範囲第1項記載の
マイクロ波による低分子物質の生成方法。(2) A low-molecular substance produced by microwaves is monitored by a spectroscopic method, and the microwave power to the multi-stage microwave cavity is controlled. How to generate.
マイクロ波、キャビティに噴霧し、これらキャビティ内
を通過させることにより、気化、低分子化させ、更に生
成した低分子物質にマイクロ波を照射し、プラズマを発
生させることを特徴とするマイクロ波による低分子物質
の生成方法。(3) Liquid substances are sprayed into cavities with multi-stage microwaves under reduced pressure that are installed continuously, and by passing through these cavities, they are vaporized and reduced to low molecular weight substances. A method for producing low molecular weight substances using microwaves, which is characterized by irradiating with microwaves and generating plasma.
、マイクロ波を照射するためのマイクロ波電力を制御す
ることを特徴とする特許請求の範囲第3項記載のマイク
ロ波による低分子物質の生成方法。(4) Generation of low-molecular substances by microwaves according to claim 3, characterized in that the generated plasma is monitored by a spectroscopic method and the microwave power for irradiating the microwaves is controlled. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62096845A JPH0698302B2 (en) | 1987-04-20 | 1987-04-20 | Method for producing low molecular weight substances by microwave |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62096845A JPH0698302B2 (en) | 1987-04-20 | 1987-04-20 | Method for producing low molecular weight substances by microwave |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63264134A true JPS63264134A (en) | 1988-11-01 |
JPH0698302B2 JPH0698302B2 (en) | 1994-12-07 |
Family
ID=14175843
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62096845A Expired - Lifetime JPH0698302B2 (en) | 1987-04-20 | 1987-04-20 | Method for producing low molecular weight substances by microwave |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0698302B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006281208A (en) * | 2005-04-01 | 2006-10-19 | Cem Corp | Real time control based on spectroscope for microwave assisted chemical reaction |
JP2009505108A (en) * | 2005-08-23 | 2009-02-05 | シーイーエム コーポレイション | Real-time imaging and spectroscopy during microwave-assisted chemical reactions |
JP2009034674A (en) * | 2007-07-12 | 2009-02-19 | Imagineering Kk | Gas treatment apparatus, gas treatment system, gas treatment method, and exhaust gas treatment system and internal combustion engine using the smae |
JP2011235263A (en) * | 2010-05-13 | 2011-11-24 | Microwave Chemical Co Ltd | Chemical reaction apparatus and chemical reaction method |
JP2011235262A (en) * | 2010-05-13 | 2011-11-24 | Microwave Chemical Co Ltd | Chemical reaction apparatus and chemical reaction method |
JP5702016B1 (en) * | 2014-06-24 | 2015-04-15 | マイクロ波化学株式会社 | Chemical reactor |
US10464040B2 (en) | 2011-11-11 | 2019-11-05 | Microwave Chemical Co., Ltd. | Chemical reaction method |
US11229895B2 (en) | 2011-11-11 | 2022-01-25 | Microwave Chemical Co., Ltd. | Chemical reaction method using chemical reaction apparatus |
-
1987
- 1987-04-20 JP JP62096845A patent/JPH0698302B2/en not_active Expired - Lifetime
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006281208A (en) * | 2005-04-01 | 2006-10-19 | Cem Corp | Real time control based on spectroscope for microwave assisted chemical reaction |
JP2009505108A (en) * | 2005-08-23 | 2009-02-05 | シーイーエム コーポレイション | Real-time imaging and spectroscopy during microwave-assisted chemical reactions |
JP2009034674A (en) * | 2007-07-12 | 2009-02-19 | Imagineering Kk | Gas treatment apparatus, gas treatment system, gas treatment method, and exhaust gas treatment system and internal combustion engine using the smae |
JP2011235263A (en) * | 2010-05-13 | 2011-11-24 | Microwave Chemical Co Ltd | Chemical reaction apparatus and chemical reaction method |
JP2011235262A (en) * | 2010-05-13 | 2011-11-24 | Microwave Chemical Co Ltd | Chemical reaction apparatus and chemical reaction method |
US10464040B2 (en) | 2011-11-11 | 2019-11-05 | Microwave Chemical Co., Ltd. | Chemical reaction method |
US11229895B2 (en) | 2011-11-11 | 2022-01-25 | Microwave Chemical Co., Ltd. | Chemical reaction method using chemical reaction apparatus |
JP5702016B1 (en) * | 2014-06-24 | 2015-04-15 | マイクロ波化学株式会社 | Chemical reactor |
WO2015198931A1 (en) * | 2014-06-24 | 2015-12-30 | マイクロ波化学株式会社 | Chemical reaction device |
US10744479B2 (en) | 2014-06-24 | 2020-08-18 | Microwave Chemical Co., Ltd. | Chemical reaction apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPH0698302B2 (en) | 1994-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6238629B1 (en) | Apparatus for plasma treatment of a gas | |
JP4511039B2 (en) | Metastable atom bombardment source | |
JP5052954B2 (en) | CNT growth method | |
JPS63264134A (en) | Production of low molecular weight material by microwave | |
Howling et al. | From molecules to particles in silane plasmas | |
Mierczynski et al. | Atmospheric plasma in the preparation and pre-treatment of catalytic materials–A mini review | |
Fujera et al. | Aerosol-based multihollow surface DBD: a promising approach for nitrogen fixation | |
Bouchoule et al. | Formation of dense submicronic clouds in low pressure Ar-SiH4 RF reactor: Diagnostics and growth processes from monomers to large size particulates | |
Vasiliev et al. | Beam plasmas: Materials production | |
Matsuda et al. | On the copper oxide neutral cluster distribution in the gas phase: Detection through 355 nm and 193 nm multiphoton and 118 nm single photon ionization | |
Jõgi et al. | Radical production efficiency and electrical characteristics of a coplanar barrier discharge built by multilayer ceramic technology | |
Setiawan et al. | Atmospheric pressure plasma jet for surface material modification: a mini-review | |
KR101864513B1 (en) | Manufacturing device of composite metal particle and method of preparing the same | |
JPS63261700A (en) | Molecule evaporation by microwave | |
Kompa | Laser Photochemistry at Surfaces—Laser‐Induced Chemical Vapor Deposition and Related Phenomena | |
JP4036600B2 (en) | Plasma decomposition apparatus and gas plasma decomposition method | |
Wiedmann et al. | Rotational analysis of the threshold photoelectron spectra of room temperature and jet‐cooled CO2 | |
JP5863178B2 (en) | Method for producing alkali metal and / or alkaline earth metal doped nanoparticles by plasma treatment in microwave liquid and mass spectrometric method using the same | |
RU2497601C1 (en) | Method of plasma-chemical treatment of electrochemical catalyst caron carrier | |
Li et al. | Enhancement of ozone synthesis via ZnO coating for hybrid discharge in pure oxygen | |
Ding et al. | Enhanced formation of negative ions by electron attachment to highly excited molecules in a flowing afterglow plasma | |
RU2305065C2 (en) | Method of preparing carbon, metallic, and metallocarbon nanoparticles | |
JPH10130887A (en) | Production of porous titanium oxide film, porous titanium oxide film and photocatalyst for decomposing gaseous nox | |
JP2001104798A (en) | Photocatalyst, and method and device of manufacturing the same | |
WO2006094913A1 (en) | Method of operating a flow-through plasma device |